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Abstract: Marriage in Honey Bees Optimization (MBO) is a new swarm-intelligence method,
but existing researches concentrate more on its application in single-objective optimization.
In this paper, we focus on improving the algorithm to solve the multi-objective problem and
increasing its convergence speed. The proposed algorithm is named as multi-objective Particle
Swarm Marriage in Honey Bees Optimization (MOPSMBO). It uses non-dominated sorting
strategy and crowded-comparison approach, utilizes the local Particle Swarm Optimization
(PSO) to perform the local characteristic, and simpler the structure of MBO. Based on the
Markov chain theory, we prove that MOPSMBO can converge with probability one to the entire
set of minimal elements. Simulations are done on several multi-objective test functions and
multi-objective Traveling Salesman Problem (TSP). By comparing MOPSMBO with MOGA,
NPGA, NSGA and NSGA-II, simulation results show that MOPSMBO has better convergence
speed and can better converge near the true Pareto-optimal front.

1. INTRODUCTION

Swarm intelligence usually studies the behavior of social
insects and uses their models to solve problems. Recently,
based on the marriage process of honey bees, the new algo-
rithm of Marriage in Honey Bees Optimization (MBO) was
proposed by Hussein A. Abbass and was shown to be very
effective in solving the propositional satisfiability problem
(Abbass [2001]). MBO is a kind of swarm-intelligence
method. Mating behavior of honey-bees is also considered
as a typical swarm-based optimization approach.

Recent years, several researches on MBO were done. Teo
Jason et al. introduce a conventional annealing approach
into MBO (Teo et al. [2001]). Omid Bozorg Haddad et
al. applied MBO to minimize the total square deviation
from target demands of a single reservoir with 60 periods
(Haddad et al. [2006]). Hyeong Soo Chang et al. adapt
MBO into ”Honey-Bees Policy Iteration” (HBPI) for solv-
ing infinite horizon-discounted cost stochastic dynamic
programming problems (Chang [2006]).

While, these researches all applied MBO to single-
objective optimization. The objective of this paper is to
improve the algorithm to solve the multi-objective problem
and increasing its convergence speed.

The proposed algorithm is named as multi-objective
Particle Swarm Marriage in Honey Bees Optimization
(MOPSMBO). It uses non-dominated sorting strategy to
get non-dominated set of solutions and uses a crowded-
comparison approach to preserve diversity among solu-

tions. It combines with the local Particle Swarm Opti-
mization (PSO) and simplifies the structure of MBO to
increase the convergence speed. Based on the Markov
chain theory, we prove that MOPSMBO can converge with
probability one to the entire set of minimal elements. And
then, to test the proposed algorithm, simulations are done
on several multi-objective test functions and also on 48
cities multi-objective Traveling Salesman Problem (TSP).
By comparing MOPSMBO with MOGA, NPGA, NSGA
and NSGAII, simulation results show that MOPSMBO has
better convergence speed and can better converge near the
true Pareto-optimal front.

The paper is organized as follows. The problem of multi-
objective optimization and its basic definition is intro-
duced in Section2. Section 3 gives the proposed algorithm
and its convergence analysis is proved in Section 4. Some
simulations are done in Section 5. Finally in Section 6
conclusion is given.

2. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Many multi-objective evolutionary algorithm were pro-
posed. The Famous algorithms such as Fonseca and Flem-
ing’s MOGA (Fonseca et al. [1993]), Srinivas and Deb’s
NSGA (Srinivas et al. [1995]), Horn et al.’s NPGA (Horn
et al. [1994]), Deb’s NSGA-II (Deb et al. [2002]) and so
on. The following is the basic definitions (Veldhuizen et al.
[2000]).

Definition 1. (Pareto Dominance): A vector u = (u1, ..., uk)
is said to dominate v = (v1, ..., vk) (denoted by u ≤ v) if
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and only if u is partially less than v , i.e., ∀i ∈ {1, ..., k},
ui ≤ vi ∧ ∃i ∈ {1, ..., k} : ui < vi.

Definition 2. (Pareto Optimality): A solution z ∈ Z is said
to be Pareto optimal with respect to Z if and only if there
is no z′ ∈ Z for which v = F (z′) = (f1(z

′), ..., fk(z′))
dominates u = F (z) = (f1(z), ..., fk(z)).

Definition 3. (Pareto Optimal Set): For a given MOP
F (z), the Pareto optimal set (P ∗) is defined as P ∗ := {z ∈
Z |¬∃z′ ∈ Z : F (z′) ≤ F (z)}.
Definition 4. (Pareto Front): For a given MOP F (z) and
Pareto optimal set (P ∗), the Pareto front (PF ∗) is defined
as PF ∗ := {u = F (z) = (f1(z), ..., fk(z)) |z ∈ P ∗ }

3. MULTI-OBJECTIVE PARTICLE SWARM
MARRIAGE IN HONEY BEES OPTIMIZATION

3.1 Local Particle Swarm Optimization

PSO was originally developed by a social-psychologist
(James Kennedy) and an electrical engineer (Russell Eber-
hart) in 1995 and emerged from earlier experiments with
algorithms that modeled the ”flocking behavior” seen in
many species of birds.(Chen et al. [2003], Pan et al. [2006])

The scheme for updating the position and velocity of each
particle is shown below:

{

Vi(t + 1) = w · V (t) + c1 · r1 · (Pi − Xi(t))
+c2 · r2 · (Pg − Xi(t))

Xi(t + 1) = Xi(t) + Vi(t + 1)
(1)

where Vi is the velocity of the particle, and Xi is the its
current poison. Pi is the best position found by the particle
i by far and Pg is the best position in the swarm at that
time. r1 and r2 are random numbers between [0, 1]. c1

and c2 are called learning parameters. w is the weighted
parameter between [0.1, 0.9].

We found that, when w equal zero, PSO will convergence
to local optimization (Zeng et al. [2004]). Then (1)
becomes

Xi(t + 1) = Xi(t) + c1 · r1 · (Pi − Xi(t))
+c2 · r2 · (Pg − Xi(t))

. (2)

We can get Xi(t) =
c1r1Pi+c2r2Pg

c1r1+c2r2

+
(

Xi (0) − c1r1Pi+c2r2Pg

c1r1+c2r2

)

·
(1 − c1r1 − c2r2)

t
. If |1 − c1r1 − c2r2| ≺ 1, then lim

t→∞

Xi (t) =

c1r1Pi+c2r2Pg

c1r1+c2r2

. When[t → ∞, Xi (t + 1) = Xi (t) and

for equation (2), we can get c1r1Pi + c2r2Pg = (c1r1 +
c2r2)Xi (t). Because c1, c2, r1 and r2 are statistic variab-
lesso lim

t→∞

Xi (t) = Pi = Pg.

3.2 Proposed Algorithm

MBO have five main processes. (a) The mating-flight of
the queen bees with drones encounter at some probabilis-
tically. (b) Creating new broods by the queen bees. (c)
Improving the broods’ fitness by workers. (d) Updating
the workers’ fitness. (e) Replacing the worst queen(s) with
the fittest brood(s).

By using a fast non-dominated sorting strategy and a
crowded-comparison approach, utilizing the local PSO as

Fig. 1. Mean f2 Results of evaluation function 1

the Worker and adopting simplified structure of MBO, we
propose the MOPSMBO.

In MOPSMBO, we define four operators: Selection,
Crossover, Mutation and Heuristic.

(a)Selection: The queens keep the optimal ones in each
generation, which is considered as the strategy of selecting
elites.

(b)Crossover: Crossover operator exchanges the pieces of
genes between chromosomes.

(c)Mutation: Mutation operation alters individual alleles
at random locations of random chromosomes at a very
probability.

(d)Heuristic: For the good local convergence performance,
we use local PSO method as the heuristic operator.

4. CONVERGENCE ANALYSIS OF MOPSMBO
ALGORITHM

In this section, we use Markov chain to analysis the
convergence of the MOPSMBO algorithm.

4.1 Markov Chain and Some Basic Definitions

Markov chains have been used extensively to study con-
vergence characteristic.

Definition 5. A square matrix is A = [aij ]n×n
.

(a)if∀i, j ∈ {1, . . . n} : aij > 0,
Aispositive(A > 0);

(b)if∀i, j ∈ {1, . . . n} : aij ≥ 0,
Aisnonnegative(A ≥ 0);

(c)ifA ≥ 0 and∃m ∈ N : Am > 0,
Aisprimitive;

(d)ifA ≥ 0 and∀i ∈ {1, . . . n} :
n
∑

j=1

aij = 1,

Aisstochastic;
(e)if∀i ∈ {1, . . . n} : aii ≻ 0,

Aisdiagonal − positive;
(f)if∀j ∈ {1, . . . n} ,∃i ∈ {1, . . . n} , aij ≻ 0,

Aiscolumn − allowable.

(3)

Definition 6. If the state space S is finite (|S| = n), and
the transition probability pij (t) are independent from t,

∃i, j ∈ S,∃u, v ∈ N, pij (u) = pij (v) (4)
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the Markov chain is said to be finite and homogeneous.
pij (t) is the probability of transitioning from state i ∈ S
to state j ∈ S at step t .

Definition 7. (G Rudolph et al. 2001): An element z∗ ∈ F
is called a minimal element of the poset (F,≤), if there is
no z ∈ F such that z ≺ z∗. The set of all minimal elements,
denoted M(F,≤), is said to be complete if for each z ∈ F
there is at least one z∗ ∈ M(F,≤) such that z ≤ z∗.

Theorem 8. For a homogeneous finite Markov chain, with
the transition matrix, if

∃m ∈ N : Pm > 0, (5)

then this Markov chain is ergodic and with finite distribu-
tion. lim

t→∞

pij (t) = pj , i, j ∈ S is the steady distribution of

the homogeneous finite Markov chain.

Theorem 9. (G. Rudolph 1994, The basic limit theorem
of Markov chain) If P is a primitive homogeneous Markov
chain’s transition matrix, then

(a)∃!ωT > 0 : ωT P = ωT ,ω: a probability vector.
(b)∀ϕi ∈ S (ϕi is the start state and it′s
probability vector is gT

i ) : lim
k→∞

gT
i P k = ωT

(c)From lim
k→∞

P k = P ,P : limit probability matrix

,n × n, it′s all rows are same toωT .

(6)

Theorem 10. (RudolphA et al. [2001]) Let I,D, C, P, A be
stochastic matrices where I is irreducible, D is diagonal-
positive, C is column-allowable, P is positive, and A
arbitrary. Then

(a) AP and PC are positive,

(b) ID and DI are irreducible.

4.2 Convergence of MOPSMBO

Definition 11. The state space of MOPSMBO is

X = {Xt = [x1, x2, . . . , xM ] |xi ∈ S, i = 1, . . . ,M }
S = {x = [q1, q2, . . . , qN ] |qi ∈ {0, 1} , i = 1, . . . , N } , (7)

where [q1, q2, . . . , qN ] is the binary bit cluster listed in
turn. N is the dimension of a population member. M is
the number of population members in one generation. Xt

represents the population of iteration t, and it is a big
binary bit cluster composed by that’s of all population
members. X is the state space of MOPSMBO.

Theorem 12. MOPSMBO can be described as a Markov
chain, and the Markov chain is finite and homogeneous.

Proof. With ρi, ρj ∈ X, the probability of transformation
from the state ρi to the state ρj at step t only depends on
ρi and is independent of time. So the MOPSMBO can be
described as a Markov chain. From the whole evolution
process of MOPSMBO, we can see that all four operators
(Selection, Crossover, Mutate and Heuristic) don’t change
with time. Thus the Markov chain of the MOPSMBO
algorithm is homogeneous. And then, the number of the
population members (M) is finite, we can know easily that
the Markov chain of the MOPSMBO algorithm is finite.

We use four transition matrix S, C, M and H to describe
their infections respectively. Finally, we can get

Tr = S · C · M · H, (8)

where Tr is the transition matrix of the Markov chain of
the MOPSMBO algorithm.

Theorem 13. The transition matrixes of the selection
probability (S) in the MOPSMBO algorithm is column-
allowable.

Proof. The selection operator is a deterministic operator.
Every generation, the best populations are saved in the
queens, and the worst ones are rejected.

The square matrix S is S = [sij ]n×n
. Then

∀j ∈ {1, . . . n} : ∃i ∈ {1, . . . n}, sij > 0. (9)

So S is column-allowable.

Theorem 14. The transition matrixes of the crossover
probability (C) and Heuristic probability (H) in the
MOPSMBO algorithm are all stochastic.

Proof. The square matrix C is C = [cij ]n×n
. Then











∀i, j ∈ {1, . . . n} : cij ≥ 0

∀i ∈ {1, . . . n} :
n
∑

j=1

cij = 1 (10)

So C is stochastic.

The square matrix H is H = [hij ]n×n
. Then,











∀i, j ∈ {1, . . . n} : hij ≥ 0

∀i ∈ {1, . . . n} :
n
∑

j=1

hij = 1 (11)

So H is stochastic.

Theorem 15. The transition matrix of the MOPSMBO
with mutation probability (M) is stochastic and positive.

Proof. M = [mij ]n×n
is a square matrix. Then











∀i, j ∈ {1, . . . n} : mij ≥ 0

∀i ∈ {1, . . . n} :
n
∑

j=1

mij = 1 (12)

So M is stochastic.

And the mutation has an influence on every position of
a state vector. We can easily know ∀xi, xj ∈ X. Each
position of xi can mutate to the value of xj . So the
probability of xi mutate to xj is positive. So M is positive.

Theorem 16. The Markov chain of the MOPSMBO (Tr)
is ergodic and with finite distribution, lim

t→∞

trij (t) = trj >

0, i, j ∈ X .

Proof. Let Tg = C · M · H, We have Tr = S · Tg.
According to Theorem 14, Theorem 15, Tg is positive.
According to Theorem 13, and Theorem 10, Tr is positive.
And according to Theorem 8, this proposition is proved.

Definition 17. (G Rudolph et al. 2001): Let Xt be the
population of MOPSMBO algorithm at iteration t ≥ 0
and Ft = f(Xt) its associated image set. The evolutionary
algorithm is said to converge with probability 1 to the
entire set of minimal elements if d(Ft, F

∗) → 0 with
probability l to the set of minimal elements, Here, F ∗

denotes the set of minimal elements, d(Ft, F
∗) = |A ∪ B|−

|A ∩ B|.
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Theorem 18. The MOPSMBO converges with probability
1 to the entire set of minimal elements.

Proof. Snow denotes the set of selected population mem-
ber (the queens). F ∗ = M(F,≤) denotes the complete set
of minimal elements ( Pareto optimal set ). Ft = f(Xt)
denotes the image set of Xt.

Let x1 ∈ Snow and f (x1) /∈ F ∗. Because F ∗ = M(F,≤) is
a complete set of all minimal elements. Depending on the
Definition 7, ∃x2 ∈ X, f (x2) < f (x1). Theorem 16 tell us
that MOPSMBO can reach every element in state space X
infinitely often and the selection operator use elite strategy
(save in queens). So if at iteration t, ∃x2 ∈ Xt, f (x2) <
f (x1), then x1 will be replaced by x1. This process will
go on until ∀x1 ∈ Snow, f (x1) ∈ F ∗. Therefore non-
optimal elements will be eliminated after a finite number
of iterations with probability one.

The selection operator use elite strategy. So if x3 ∈ Snow

and at iteration t, ∃x4 ∈ Xt, f (x4) < f (x3), then x3 will
be deleted from Snow . But if f (x3) ∈ F ∗ according
to Definition 7 that ¬∃x4 ∈ Xt, f (x4) < f (x3). So if
f (x3) ∈ F ∗ and x3 ∈ Snow, then x3 will not be deleted
from Snow.

To sum up, in finite time, all non-optimal elements will
be discarded and all optimal ones will go into Snow with
probability one. At the same time optimal ones do not go
out of Snow. So the MOPSMBO algorithm converges with
probability 1 to the entire set of minimal elements.

5. SIMULATIONS

To test the convergence performance of MOPSMBO, we
choose MOGA, NPGA, NSGA, NSGA-II for comparison.
We did the simulation on two parts, one using some
popular complex multi-objective Evaluation Functions and
the other using multi-objective TSP.

5.1 Comparison on multi-objective Evaluation Functions

The initial value is generated randomly, and population
number is 30, generation number is 50.

Evaluation Function 1 : Schaffer

f1 (x) = x2

f2 (x) = (x − 2)
2 (13)

Evaluation Function 2 : Fonseca

f1(x1, ..., xn) = 1 − exp

(

−
n
∑

i=1

(

xi − 1/
√

n
)2

)

f2(x1, ..., xn) = 1 − exp

(

−
n
∑

i=1

(

xi + 1/
√

n
)2

) (14)

5.2 Comparison on multi-objective Travelling Salesman
Problem

A Multi-objective Traveling Salesman Problem (TSP)
has been an interesting problem. Here it is solved by
MOPSMBO, MOGA, NPGA, NSGA and NSGA-II respec-
tively.
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5.3 Some Remarks

From the above, we can see that:

(a) MOPSMBO is convergent and keeps good perfor-
mance for all these test functions, though these test func-
tion are more complex than the normal ones and may have
many local optimization points.

(b) MOPSMBO performs better than MOGA, NPGA,
NSGA and NSGA-II. MOPSMBO converges more quickly,
especially at initial part. Particularly, even if the ini-
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tial condition is worse than MOGA, NPGA, NSGA and
NSGA-II, MOPSMBO can show finer result.

(c) On the multi-objective TSP test, MOPSMBO show
better performance than MOGA, NPGA, NSGA and
NSGA-II and can keep converge faster with both distance
and money.

6. CONCLUSIONS

In this paper, we proposed a multi-objective Particle
Swarm Marriage in Honey Bees Optimization (MOPSMBO)
algorithm. It uses non-dominated sorting strategy and
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crowded-comparison approach, utilizes the local Particle
Swarm Optimization (PSO) to perform the local charac-
teristic, and simpler the structure of MBO.

Based on the Markov chain theory, we prove that
MOPSMBO can converge with probability one to the
entire set of minimal elements.

Simulating with multi-objective evaluation functions and
multi-objective TSP, MOPSMBO shows better perfor-
mance than MOGA, NPGA, NSGA and NSGA-II. And
it has better convergence speed and can better converge
near the true Pareto-optimal front.
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The algorithm still deserves deep study. And the research
about MOPSMBO will be carried out and will be tested
and improved with high dimension (> 2) practical cases
in the future.
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