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Abstract: While autonomous landing of unmanned aerial vehicles (UAVs) requires accurate position 
estimation, the standard inertial navigation unit (INU, the inertial measurement unit with a global 
positioning system (GPS)) provides relatively poor accuracy in altitude estimation. A common solution for 
this problem is to aid the INU with additional sensors and/or ground infrastructures, but the main hurdles 
to the approach are the limited payload of UAVs and extra cost involved. Dynamic sensor reconfiguration 
can be a good alternative by constructing a new sensor system utilizing available sensors around without 
adding new sensory equipment to UAVs. In this paper, a sensor reconfiguration scenario for autonomous 
fixed-wing UAV landing is considered and the resulting vision-aided inertial navigation system is 
investigated. This paper presents (i) a sensor fusion algorithm for a passive monocular camera and an INU 
based on the Extended Kalman Filter (EKF), and (ii) an object-detection vision algorithm using optical 
flow. The EKF is chosen to take care of the nonlinearities in the vision system, and the optical flow is used 
to robustly detect the UAV from noisy background. Pilot-controlled landing experiments on a NASA UAV 
platform and the filter simulations were performed to validate the feasibility of the proposed approach. 
Promising results were obtained showing 50%-80% error reduction in altitude estimation. 

 

1. INTRODUCTION 

1.1 Background & Motivation 

Recent advances in distributed wireless technologies are 
opening the door to new methods of control reconfiguration 
utilizing remote avionics, actuation, and sensing.  These 
dynamic reconfiguration networks would allow for the 
instantaneous restructuring of coordinated control system 
topologies in a group of vehicles that could include 
delocalized sensor, actuator, and controller components. They 
provide fault-tolerance to a wider class of vehicle system 
failures that conventional approaches are ill-equipped or 
unable to handle.  Control systems in these dynamic networks 
could conceivably be capable of instantaneous polymorphic 
change - that is, the instantaneous and fundamental 
restructuring of the controller form and function. A 
polymorphic control architecture could provide on-the-fly 
reconfiguration to optimize a controller topology given radical 
changes in the environment (Ippolito et al., 2007). 

Consider an autonomous fixed-wing UAV landing as an 
example of such a sensor reconfiguration. Autonomous 
aircraft landing requires accurate control over the flight 
trajectory in the presence of wind and gusts near the ground.  
In some cases, automation of UAV landing requires 

measurement of altitude above ground level (AGL) with an 
accuracy of 0.2m (Tomczyk et al., 1999).  However, the 
current standard GPS system only provides a position 
accuracy of approximately 10m (with 95% confidence) in the 
horizontal direction and 15m (with 95% confidence) in the 
vertical direction; in addition, GPS can be easily 
compromised in some hostile environments (e.g. by jamming). 
Thus the standard INU alone is not good enough (particularly 
altitude AGL estimation) for an autonomous fixed-wing UAV 
landing system. Even though differential GPS (DGPS) or 
other onboard sensors (e.g. altimeter or range finder) are 
available for more accurate landing aid, their complexity, cost, 
limited payload capacity of UAVs, and the need of additional 
ground infrastructure make them prohibitive solutions for 
small/mid-sized fixed-wing UAVs. If there are reconfigurable 
external aiding sensors around (e.g. autonomous ground 
rovers with communication, GPS, and vision system), on-the-
fly sensor reconfiguration can provide a more accurate 
position estimate to accomplish successful autonomous fixed-
wing UAV landing without additional onboard/ground 
equipment installation. 

1.2 Related Work 

Most of the work done regarding autonomous landing of 
UAVs has focused on rotary wing aircraft and several of them 
have demonstrated reliable performance (Hubbard et al., 
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2007).  Vision-only or vision-based approaches are common 
in the previous studies, but they usually require a 
known/structured marker (Proctor et al., 2005), and, as 
mentioned above, non-vision based approaches use beacons, 
DGPS, or range finders which require additional onboard 
hardware and/or ground infrastructure. For fixed-wing UAVs, 
Pisanich et al. (2002) have demonstrated an autonomous 
landing capability. They use the waypoint following approach 
in which the UAV descends blindly toward a waypoint below 
the ground level with low speed until it touches the ground, in 
which it is hard to guarantee safe landings. Portable radar 
units and airborne transponders are adapted by many military 
UAVs providing accurate guidance for landing, but those 
systems are not practical for small/mid-sized UAVs (Quigley 
et al., 2005). 

As for vision-based approaches for fixed-wing UAVs, 
optical flow has been used as an autonomous landing aid. 
Green et al. (2003) have used optical flow for autonomous 
landing of miniature UAVs. They were able to decrease 
forward speed in proportion to altitude by gradually throttling 
down the motor while keeping the optic flow on the landing 
surface constant. Barber et al. (2005) proposed a similar 
method for altitude AGL estimation using optical flow and 
barometric altimeter data. These approaches use separate 
miniature optical flow sensors for optical flow detection. 
Recently, Schultz et al. (2007) proposed a vision-based fixed-
wing UAV landing system using a known marker and showed 
the feasibility of vision-aided precision fixed-wing UAV 
landings.  

The limitations or weaknesses of most previous vision-based 
approaches can be summarized as follows: (i) a structured 
target is needed, which is unrealistic for landings in 
unstructured environments, and (ii) additional sensors are 
used in the case of optical flow applications. 

1.3 Contributions 

In this work we consider a sensor reconfiguration scenario 
for autonomous fixed-wing UAV landing, and present a 
position estimation system under the scenario, which consists 
of (i) a robust moving object detection algorithm using optical 
flow from a monocular camera, and (ii) an EKF based vision-
aided position estimator without using a structured target. We 
used a NASA Exploration Aerial Vehicle (EAV) platform and 
a NASA MAX rover to verify the feasibility and performance 
of the proposed system for autonomous fixed-wing UAV 
landing. 

2. VISION AIDED FIXED-WING UAV LANDING 

2.1 Fixed-Wing Aircraft Landing Procedure 

The typical aircraft landing procedure has three phases: 
approach, glideslope, and flare (Cohen et al., 1995). Fig.1 
depicts the landing procedure.  In the approach phase, the 
aircraft slows down to the reference approach speed and 
descends from cruising altitude towards a lower altitude. The 
glideslope phase starts when the aircraft finally stabilizes at a 
constant speed and rate of descent. During the glideslope 

phase, the aircraft should keep the flight path angle at -2.5 ~ -
3.0 degrees and be descending towards an aiming point. When 
the aircraft reaches a prescribed flare altitude, the flare phase 
is initiated and the aircraft’s attitude is changed from nose 
down to nose up. In the flare phase, the aircraft keeps a low 
attitude and gradually descends to a final altitude. At the final 
altitude, the aircraft flies level just above the runway and 
decelerates until touchdown point. 

2.2  Sensor Reconfiguration Scenario for UAV Landing 

The scenario consists of a fixed-wing UAV and a ground 
rover. The UAV has an IMU/GPS suite for navigation and a 
radio modem for communication. The rover equipped with a 
camera and a radio modem was deployed beforehand for 
some missions such as foreign object debris (FOD) detection 
and runway maintenance. When the UAV approaches to land, 
some performance metric will realize that the altitude and/or 
side-track error is too high, and will seek to hijack available 
ground-based sensors doing lower-priority functions.  The 
vision sensor will be found from the rover, and the control 
systems on both the UAV and the rover will be reconfigured 
to form several distributed control loops on both systems. The 
UAV sends its state information packet (including position 
and velocity estimates) to the rover through the 
communication link. The rover uses the information to point 
its camera towards the UAV and initialize the vision system. 
Once the vision system detects the UAV, the rover sends 
relative bearing information and rover’s position information 
back to the UAV. The UAV feeds the relative bearing and 
rover’s position information into a position estimator to get 
better position estimates while executing a precise 
autonomous landing (Fig.2). 

 
Fig. 1.  Typical Aircraft Landing Procedure 

 
Fig. 2.  Autonomous Landing Scenario Using Sensor Reconfiguration 

2.3 System Description 

The block diagram in Fig. 3 describes the sensor 
reconfiguration for autonomous landing. The position 
estimator can locate either in the UAV or in the rover. 
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Fig. 3.  UAV-Rover Sensor Reconfiguration Schematic 

 

3. OPTICAL FLOW FOR UAV DETECTION 

Detecting a UAV in the sky using a vision system is a 
challenging problem because the UAV appears as a small 
object, the lighting condition is uncontrollable, and 
background (e.g. clouds) can easily hinder the detection. In 
such cases, simple static object detection techniques like edge 
detection and background subtraction easily break. The use of 
optical flow estimation can increase the robustness in the 
vision system by detecting the apparent motion of the UAV. 

3.1  Optical flow 

The relative motion of objects and the view generates optical 
flow. Horn & Schunck (1981) defined optical flow as “the 
distribution of apparent velocities of motion of brightness 
patterns in an image.” Mathematically, optical flow can be 
formulated as the inverse problem of estimating motion in an 
image sequence without tracking an object, which enables us 
to detect a moving UAV robustly. 

3.2   OpticalFlowEsimation : Horn & Schunck’s Method 

The Horn & Schunck method (Horn & Schunck, 1981) is 
one of the most popular and benchmarked methods. Even 
though the method involves some errors in the estimation, it is 
chosen here because (i) the algorithm is simple, and (ii) the 
convergence property has been proven (Mitchie et al., 2004). 
The accuracy of optical flow estimation is not critical in the 
motion detection. In this section, Horn & Schunck’s method is 
briefly introduced. 

1) Assumptions 

For convenience and simplicity, Horn & Schunck (1981) 
make the following assumptions: 

A.1 The object being imaged is a flat surface. 

A.2 The illumination on the image is constant and uniform. 

A.3 The reflectance of the object varies smoothly and has no 
spatial discontinuities. 

These assumptions also assure that the image brightness or 
intensity is differentiable (Horn & Schunck, 1981). 

The assumptions A.1 and A.2 are not true in our application.  
The UAV, however, will appear as a flat object in the far 

distance. If there is intensity variation with time introduced 
due to illumination change, it will appear as a non-zero optical 
flow but that will not hinder the UAV detection.  

2) Constraints 

To relate the change in image brightness at a particular point 
to the motion of the brightness pattern, two constraints are 
established: (i) constant brightness constraint, and (ii) 
smoothness constraint. 

C.1 Constant brightness constraint: 

This constraint is an assumption that the intensity (E) at a 
particular point in an object does not change over time, i.e.: 
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However, the constraint only gives information along the 
intensity gradient, the so-called aperture problem, and the 
flow velocity cannot be uniquely determined without an 
additional constraint for smoothness. 

C.2 Smoothness constraint: 

The brightness patterns in the image are assumed to vary 
smoothly and Horn & Schunck implemented this constraint by 
minimization of the square of the magnitude of the velocity: 

2 22 2
2

B x y t

S

E u E v E

u u v v
x y x y

ε

ε

= + +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠   (2) 

3) Algorithm 

The optical flow (  and ) is found by minimization of both 
the error in the brightness equation and the measure of the 
smoothness constraint in (2). The total error to be minimized 
is defined by : 

dxdyBS
222 εεαε ∫∫ +=     (3) 

4) Iterative solution 

Since a direct solution to the constrained minimization is 
computationally very costly, an iterative solution is 
suggested : 
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3.3 Hybrid Detection Algorithm 

Using the position and velocity information from the UAV’s 
INU, an approximate position of the UAV and an approximate 
value of the mean of optical flow is calculated. Then a small 
region of interest (ROI) is defined around the UAV position 
estimate. When the optical flow is expected to be over a 
threshold value, the optical flow estimation algorithm is 
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applied to the ROI. Otherwise a generic object detection 
algorithm can be applied. 

4. POSITION ESTIMATOR 

An EKF is designed and implemented to accommodate the 
nonlinear vision measurement (Brown et al., 1997, Grewal et 
al., 2001). 

4.1  Coordinate systems 

Three coordinate systems are considered : (i) North-East-
Down (NED) coordinate for UAV and rover position 
reference,  (ii) camera coordinate, attached to the camera in 
the rover, and (iii) image coordinate, attached to the camera 
coordinate. 

The coordinate transformation between NED coordinate 
system and the camera coordinate system is defined by 
translation T, and Euler angles: yaw(ψ ), pitch(θ ), and roll(φ ).  
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X Y Z x T

x T
φ θ ψ
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where ( , , )N E DT T T  is the rover(camera) position, ( , , )N E Dx x x is 
the UAV position, and ( , , )C C CX Y Z is the camera coordinate. 
For simplicity, it is assumed that the runway is level and 
therefore the camera roll angle is zero. 

 
. Fig. 4.  Coordinate Systems 

4.2  System Model 

The system is described by a discrete linear dynamic 
equation with a time interval of tΔ . The input is the velocity 
estimate from the inertial navigation unit. 

1 1 1 1( , )k k k k k− − − −= +x f x u w     (6) 

where ( , , )N E Dx x x=x , 1 1 1 1 1k k k k k− − − − −= +f F x B u  , 1 3 3k − ×=F I , 
1 3 3k t− ×= ΔB I , and 1k −w is system noise. 

4.3 Sensor Models 

The camera measures two relative bearings: the inclination 
and azimuth in the camera coordinate. Note that the 
measurement is highly nonlinear. 

( )k k k k= +z g x v     (7) 

where [ ]( ) , tan( ), tan( )
T TC C C C

k k k k k k inclination azimuthθ θ⎡ ⎤= =⎣ ⎦g x Y X Z X , 
and kv  is measurement noise. 

4.4  Implementation of Estimator 

The EKF filter implementation steps are as follows: 

Step 0. Initialize the filter using 0 INUˆ ( )tx  , 0( )tP  . 

Step 1. Compute the predicted state estimate 

1 1 1ˆ ˆ( ) ( ( ), )k k k k− − −− = +x f x u  

Step 2. Compute the predicted measurement 

ˆ ˆ( ( ))k k k= −z g x  

Step 3. Compute linear approximation equations 

- System equation 
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Step 4. Compute the a priori covariance matrix 

1 1 1 1( ) ( ) T
k k k k k− − − −− = + +P F P F Q  

Step 5. Compute the Kalman filter gain 

( ) 1
( ) ( )T T

k k k k k k k

−
= − − +K P G G P G R  

Step 6. Update the state estimate with measurement residual 

ˆ ˆ ˆ( ) ( ) ( )k k k k k+ = − + −x x K z z  

Step 7. Compute the a posteriori covariance matrix 

( ) ( ) ( )k k k k+ = − −P I K G P  

5. EXPERIMENTS & ESTIMATOR SIMULATIONS 

A series of flight tests were conducted to verify the 
performance of the proposed vision aided position filtering for 
an autonomous UAV landing system. This section presents 
the results of the experiments along with the estimator 
simulations. As the UAV approaches for landing, the rover’s 
vision system detects the UAV and sends the measurements to 
the UAV. The position estimator on the UAV is initiated by 
the cue from the rover. The experiments were pilot-controlled 
and open-loop. 

5.1  Experimental Hardware 

1) NASA Exploration Aerial Vehicle (EAV) 

NASA Ames Research Center (ARC) has developed in-
house capabilities for flight validation on a smaller scale, with 
the focus on reduced costs associated with performing flight 
test experiments on a real vehicle system.  The EAV project 
currently fields three aircrafts based on the Hangar 9 Cessna 
182 Skylane 95” ARF platform, which is modelled after the 
2000 version of a Cessna 182 at one quarter-scale. The 
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modified Hangar 9 Cessna aircraft has proven to be a reliable 
platform for flight testing. 

Table 1.  EAV Specification 
Wing Span/ Length 2.4 m / 1.9m 
Flying Weight  8.22 kg(Empty), 10.52 kg(Full) 
Max Payload Weight 4.5 kg 
Cruise Speed 23 m/s 
Operations Ceiling 152m (flight field restrictions) 
Engine/ Type Zenoah G-38 / 2-Stroke Gas/Oil 
Primary CPU Diamond Athena 660MHz/128MB RAM 

Sensors High fidelity INU, WAAS-enabled GPS, angle 
of attack, sideslip, airspeed and altitude 

Communications 

• 72Mhz Receiver (Pilot/Safety Control) 
• 900Mhz Transceiver (Data 

Communications) 
• 2.4GHz Transmitter (Data/Video 

Downlink) 

 

2) NASA MAX rover 

A NASA MAX 5A rover was used as the camera platform. 
The rover is designed and built as a testbed for polymorphic 
control system by Carnegie Mellon University and is now 
commercially available (www.senseta.com). The rover’s 
extensive IO capability and rich sensor suite, including 
camera, GPS, and LIDAR make it a perfect platform for the 
sensor reconfiguration scenario. 

Table 2. MAX 5A rover Specification 
Dimension / Weight 0.45m x 0.38m x 0.48m / 9.5 kg 
Speed ~6m/s 
Primary CPU 1.6 GH Pentium M 
Communications 802.11g (2.4 GH) &  900 Mhz Radio Modem 

Sensors 
Stereo Camera Pair(640x480) 
Sonar Ranger Finders(up to 10), LIDARs (up to 6)
High fidelity INU(with DGPS) sensor suite 

Actuation Pan and Tilt Camera Head 
Four-wheel Drive w/Double-Ackerman Steering 

 

   
Fig. 5.  NASA EAV and MAX rover 

5.2  Results 

During the flight tests, a number of landing maneuvers were 
performed. These maneuvers were recorded by both the 
avionics on the EAV and the rover. The camera on the rover 
also recorded the maneuvers. 

Fig. 6 ~ Fig. 8 show the altitude AGL profile of some of the 
landing maneuvers. Fig. 6 is a bumpy landing and Fig. 7 and 8 
are soft landings. Since we do not have absolute altitude AGL 
measurements, the videos and vertical speed records are used 
to verify the actual touchdown. It turned out that the vertical 
speed is a good indicator of touchdowns. The performance of 
the vision aided position estimator is clearly shown in the 

close-up view of touchdowns (Fig. 6-2, 7-2, 8-2). While the 
nominal INU gives 3.5~7m error in altitude AGL, the vision 
aided position estimator has less than 1.5m error. There are 
still delays of about 2 seconds in the altitude estimates of the 
vision aided position estimator. Those are believed to be due 
to (i) uncertainties in the rover position and camera angles, (ii) 
measurement delay from the communication and vision 
processing , and (iii) weak observability of the monocular 
camera. 

Even though we do not have absolute measurements for 
lateral positions, it is expected that the vision aided position 
estimator has more accurate position estimates than the 
nominal INU. Fig. 9 is an example of 3D position estimation. 

 
Fig. 6-1.  Landing #1 

 
Fig. 6-2.  Landing #1 : Close-up View of Touchdown 

 
Fig. 7-1.  Landing #2 
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Fig. 7-2.  Landing #2 : Close-up View of Touchdown 

 
Fig. 8-1.  Landing #3 

 
Fig. 8-2.  Landing #3 : Close-up View of Touchdown 

 
Fig. 9.  3D View of a Landing 

6. CONCLUSIONS 

In this paper, a vision aided position estimator for 
autonomous fixed-wing UAV landing was presented. An 
optical flow estimation algorithm was adopted to add 

robustness for UAV detection in the vision system. The 
experiments validated the feasibility of the proposed system 
and the results are very promising: 50%~80% error reduction 
in altitude AGL compared to the altitude estimation by a high 
fidelity INU. The uncertainties in the rover position and 
camera angles, measurement delay, and the weak 
observability of the monocular camera are believed to be the 
main source of errors in the position estimates, and are topics 
for further investigation. The authors plan to conduct 
additional experiments including fully autonomous closed-
loop landing. 
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