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Abstract: This paper presents a model predictive control formulation that incorporates
trajectory sensitivity to improve the robustness of the conventional model predictive control
strategy. A structural control benchmark problem is used to illustrate the potential of the
approach. The numerical results suggest that the proposed approach may be a viable option to
increase the robustness of the conventional model predictive control strategy without increasing
the computation requirements.

1. INTRODUCTION

Model predictive control (MPC) is a tool originally devel-
oped in industry to solve multivariable control problems
with input and state constraints. Basically, MPC solves a
constrained optimization problem at each sampling time
that provides the current control action to the system
[Goodwin et al., 2005]. The importance of MPC resides in
its ability to handle multivariable control problems with
constraints.

MPC requires knowledge of the exact model of the sys-
tem. Unfortunately, this ideal situation does not occur in
practice as only approximate models are available. When a
controller which was designed with an approximate model
of the plant is implemented, performance degradation is
likely to occur. This may lead not only to an unacceptable
behavior but also to system instability.

Several approaches have been proposed to reduce the sen-
sitivity of the controlled system to model inaccuracies and
they are known under the name of robust MPC [Michalska
and Mayne, 1993, Kothare et al., 1996, Lee and Yu, 1997,
Mayne et al., 2000, Lu and Arkun, 2000, Badgwell, 1997,
Casavola et al., 2005, Wan and Kothare, 2003, Park and
Jeong, 2004]. A common approach to incorporate robust-
ness to MPC is to reformulate it as a minimax problem,
where the MPC cost function is maximized over the uncer-
tain parameters and the resulting worst-case cost is mini-
mized over the control. A disadvantage of this approach is
that the direct intent of solving the minimax optimization
problem is not attractive for online optimization.

A solution to this problem is to minimize an upper bound
of the maximum value of the cost function over the uncer-
tain parameters, which leads to a more conservative but
simpler formulation. However, the resulting optimization
problem is most likely to require a semi-definite program
online [Kothare et al., 1996, Lu and Arkun, 2000, Casavola
et al., 2005, Cuzzola et al., 2002, Park and Jeong, 2004].
Even though semi-definite programs can be solved in poly-

nomial time, the online computation required to solve
these robust MPC problems may still be prohibitive for all
but slow/simple dynamical systems. In order to extend the
applicability of robust MPC, researchers have developed
methods to reduce the online computation by computing
a set of controllers offline while leaving online only the
selection of the current controller as a function of the
measured state [Wan and Kothare, 2003, Munoz de la Pena
et al., 2006]. Unfortunately, the online solution of these
methods may grow in complexity very quickly with the size
of the problem and provide more conservative solutions in
the cases where approximations are used. Although the
techniques described in this discussion are powerful tools
to deal with uncertainty, in practice, conventional MPC
is mostly used due to its intuitive design and requirement
of solving a simple quadratic program online. In this case,
robustness against model inaccuracies is obtained by tun-
ing the MPC design parameters based on simulation of the
controlled system for a set of possible uncertainty values.
For this reason, robust MPC techniques with simple offline
design are highly desirable. A technique that falls into this
category is in reference Fukushima and Bitmead [2005].

In this paper we propose to modify the conventional
MPC cost function by including a term that penalizes
the sensitivity of the state trajectory with respect to
changes in the uncertain parameters. This approach, which
has been used in optimal control problems in the late
sixties [Frank, 1978, Sobral, 1968, Kreindler, 1969], has
the potential of desensitizing the controller performance to
model inaccuracies, yet it retains the quadratic program
architecture of the conventional MPC problem. In this
paper we show, by example, that this approach has merit
as it produces robust control solutions with a real-time
computational expense comparable to that of the nominal
MPC.

The notation used is fairly standard. We denote with
diag(M1, . . . , Mn) the matrix with block diagonal entries
M1, . . . , Mn. The symbol ⊗ is reserved for the Kronecker
product of two matrices. The identity of order n is denoted
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by In. We define the Q-weighted Euclidian vector norm

by ‖x‖Q =
√

xT Qx. If M is a matrix function of the
parameter vector µ ∈ R

m, we define

∇µM :=

[

∂M

∂µ1

T

. . .
∂M

∂µm

T
]T

(1)

where µ = [µ1 . . . µm]T . Finally, we say that matrix M
is stable if it has all its eigenvalues inside the open unit
circle.

2. DESENSITIZED MODEL PREDICTIVE CONTROL

Let the plant model be defined as follows:

x(k + 1) = A(µ)x(k) + B(µ)u(k), x(0) = x0 (2)

where x is the state and u is the control input. The state
space matrices A and B are C1 functions of the parameter
vector µ ∈ R

m. The parameter µ, with nominal value
µ0, will be used to represent the model uncertainty. In
addition, the control input and the state satisfy u ∈ U

and x ∈ X ⊆ R
nx , where U and X are polytopic sets that

contain the origin.

Let the trajectory sensitivity p, evaluated at µ = µ0, be
defined as follows:

p(k) := ∇µx(k) |
µ=µ0

(3)

From (2) and (3), the trajectory sensitivity p can be
represented with the following linear difference equation:

p(k + 1) = Aµx(k) + Abp(k) + Bµu(k) + Bbuµ(k) (4)

where p(0) = p0 and

Aµ = ∇µA(µ)|
µ=µ0

Ab = Im ⊗ A(µ0)

Bµ = ∇µB(µ)|
µ=µ0

Bb = Im ⊗ B(µ0)

uµ(k) = ∇µu(k) |µ=µ0

Since model (2) will be used for open loop prediction, the
last term of (4) will be assumed to be zero.

Trajectory sensitivity provides information about how the
state trajectories change with infinitesimal variations of µ
around its nominal value µ0. This will be used to reduce
the state prediction sensitivity to the model parameter
value in model predictive control (MPC).

MPC is a control technique in which the control input at
each time is the solution of a constrained optimal control
problem with initial condition set to the measured state.

The infinite horizon MPC cost J∞

MPC at time k is defined
as

J∞

MPC =

∞
∑

j=k

‖x(j)‖2
QM

+ ‖u(j)‖2
R (5)

where QM and R are positive definite matrices of appro-
priate dimensions, x(j) is from (2) and the sequence u is
the optimization variable.

In order to reduce the sensitivity of the state prediction
from the choice of µ in the model, we incorporate a term
in the cost that penalizes the energy of the trajectory
sensitivity. The cost to be used in the desensitized model
predictive control (DMPC) strategy is defined as follows:

J∞

DMPC = J∞

MPC +

∞
∑

j=k

‖p(j)‖2
Qs

(6)

where Qs is a matrix of appropriate dimensions that
weights the relative importance of the trajectory sensitiv-
ity p with respect to the MPC cost J∞

MPC.

The use of an infinite horizon cost, (5) and (6), is highly
desirable because closed loop stability follows from feasi-
bility of the optimization problem [Goodwin et al., 2005].

Because the constrained optimal control problem is solved
numerically, the costs (5) and (6) need to be replaced by
finite horizon ones.

The standard cost formulation consists of a truncation of
the infinite horizon one with the addition of a terminal
cost and a terminal constraint. This terminal cost is often
chosen to approximate (in general) the infinite horizon
cost.

Define the augmented model as

z(k + 1) = Ãz(k) + B̃u(k) (7)

where z(k) = [x(k)T p(k)T ]T is the augmented state. In
the sequel, the nominal system matrices A(µ0) and B(µ0)
will be denoted with A and B, respectively. The matrices
Ã and B̃ are defined as follows:

Ã =

[

A 0
Aµ Ab

]

, B̃ =

[

B
Bµ

]

. (8)

The finite horizon costs at time k are defined as

JN
MPC = ‖x(k + N)‖PM

+
k+N−1
∑

j=k

‖x(j)‖2
QM

+ ‖u(j)‖2
R

(9)

JN
DMPC = ‖z(k + N)‖PD

+

k+N−1
∑

j=k

‖z(j)‖2
QD

+ ‖u(j)‖2
R

(10)

where QD = diag(QM , Qs) and PD is a positive definite
matrix of appropriate dimensions.

The MPC and DMPC optimization problems at time k
are defined as

min
u

JN
MPC (11a)

subject to:

x(j + 1) = Ax(j) + Bu(j) (11b)

x(k) = xm
k , x(j) ∈ X, x(k + N) ∈ Xf (11c)

u(j) ∈ U, j = k, . . . , k + N − 1 (11d)

and

min
u

JN
DMPC (12a)

subject to:

z(j + 1) = Ãz(j) + B̃u(j) (12b)

z(k) = zm
k , z(j) ∈ Z, z(k + N) ∈ Zf (12c)

u(j) ∈ U, j = k, . . . , k + N − 1 (12d)

where Z = X × R
mnx , zm

k = [xm
k

T pm
k

T ]T , and Xf and
Zf are the terminal sets. The vector xm

k is the state of
the plant (2) at time k and it is measured. The trajectory
sensitivity p is a fictitious state that is available to the
controller. For this reason, pm

k is considered a design
variable. Two possible choices are: (i) pm

k obtained from
the sensitivity model (4) and (ii) pm

k set to zero.
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Once the optimization problem (12) is solved, the optimal
control input u(k) is fed to the plant and the process
repeated.

3. BENCHMARK PROBLEM

In this section we use MPC and DMPC to control a civil
engineering structure under the presence of environmental
disturbances. In particular, we will use the benchmark
problem presented in Spencer et al. [1997], which consists
of a high fidelity dynamical model of a three story building
subject to ground acceleration disturbances generated by
an earthquake. The actuator is an active mass driver
(AMD) placed on the top of the third floor which is
manipulated through the command input u. A schematic
of the building is shown in Figure 1. Controllers will be
designed using five available measurements: the absolute
acceleration of each of the three floors, ẍa1, ẍa2 and ẍa3,
the absolute acceleration ẍam of the AMD, and the ground
acceleration ẍg.

The objective is to design a controller which is robust
against changes in the damping ratio ζ1 of the first natural
frequency. We will use two control techniques: MPC and
DMPC, both based on the nominal model.

3.1 The model

The model used for design and analysis is the evaluation
model described in Spencer et al. [1997]. This model has
28 states and it is given by the following equations

η̇ = Aη + Eẍg + Bu (13a)

y = Cyη + Fy ẍg + Dyu + v (13b)

z = Czη + Fzẍg + Dzu (13c)

where η is the state vector, ẍg is the ground accel-
eration, u is a scalar control input. The vector z =
[xa1 xa2 xa3 xm ẋa1 ẋa2 ẋa3 ẋm ẍa1 ẍa2 ẍa3 ẋam]T is the
vector of of all system outputs and y = [ẍa1 ẍa2 ẍa3 ẍam ẍg]

T

+vT is the vector of measured accelerations used to com-
pute the control input. The variable xi is the displacement
of the ith floor relative to the ground, xm is the displace-
ment of the AMD relative to the third floor, ẍai is the
absolute acceleration of the ith floor, ẍam is the absolute
acceleration of the AMD and v is the measurement noise.

We want to evaluate the robustness of the controllers
to changes in the damping ratio ζ1 of the first natural
frequency. The available model is an input-output model
that does not have an explicit dependence on the damping
ratio. In this paper we replace the state space model given
in Spencer et al. [1997] with a realization that explicitly
depends on the parameter ζ1. This model is obtained
following the approach in D’Amato and Rotea [1998]. The
nominal value for ζ1 was found to be 0.0033. This model
is used to determine the sensitivity with respect to the
damping ratio ζ1 and to conduct robustness studies by
varying the damping ratio.

3.2 Evaluation criteria and implementation constraints

Reference Spencer et al. [1997] provides ten evaluation
criteria J1 −J10 to compare the performance of the closed
loop system. Here we consider only those that directly
measure the effect of the controller on the building.

Stochastic evaluation criteria The ground acceleration
ẍg is a stationary stochastic process with power spectral
density

Sẍgẍg
(ωg, ζg) = S0(ωg, ζg)

4ζ2
gω2

g + ω4

(ω2 − ω2
g) + 4ζ2

gω2
gω2

(14)

where the natural frequency ωg and the damping ratio ζg

are set to 37.3 and 0.3, respectively. The scaling factor S0 is
chosen such that the rms value of the ground acceleration
takes the value of σẍg

= 0.12 g’s.

When both the random ground disturbance and the mea-
surement noise are applied to the structure, we use the
following criteria to evaluate the controller performance:

J1 = max

{

σd1

σx30

,
σd2

σx30

,
σd3

σx30

}

(15)

J2 = max

{

σẍa1

σẍ30

,
σẍa2

σẍ30

,
σẍa3

σẍ30

}

(16)

where the notation used is as follows: the interstory drift
di is the relative lateral displacement between consecutive
floors (d1 = x1, d2 = x2 − x1, d3 = x3 − x2) and the
symbol σx denotes the rms value of the stochastic variable
x. The normalization constants σx30

and σẍ30
are defined

in Spencer et al. [1997].

The computation of J1 and J2 will be done numerically by
simulating the closed loop system during 300 seconds.

Deterministic evaluation criteria In this case, the
ground acceleration is one of the two historical earthquake
records: 1940 El Centro NS and 1968 Hachinohe NS. The
controllers are evaluated according to the following criteria

J6 = max
ElCentro

Hachinohe

max
t

{

|d1(t)|

x30
,
|d2(t)|

x30
,
|d3(t)|

x30

}

(17)

J7 = max
ElCentro

Hachinohe

max
t

{

|ẍa1(t)|

ẍ30
,
|ẍa2(t)|

ẍ30
,
|ẍa3(t)|

ẍ30

}

(18)

where the normalization constants x30 and ẍ30 are defined
in Spencer et al. [1997]. In addition, the peak values of
the control input u, AMD displacement xm and AMD
absolute acceleration ẍam must satisfy the following hard
constraints.

max
ElCentro

Hachinohe

max
t

|u(t)| ≤ 3v (19)

max
ElCentro

Hachinohe

max
t

|ẍam(t)| ≤ 6g (20)

max
ElCentro

Hachinohe

max
t

|xm(t)| ≤ 9cm. (21)

3.3 Controller design

In MPC and DMPC, a model of the plant is used to deter-
mine the future values of the system state. Unfortunately,
this calculation cannot be performed as the future values
of the ground acceleration ẍg are unknown. In this paper
we use a model to estimate the future values of the ground
acceleration. The model is obtained from the Tanai-Tajimi
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Fig. 1. Schematic of the three-story building

spectral description given in (14) with the following state
space realization [Mei et al., 2001]:

θ̇ = Agθ + Bgw (22a)

ẍg = Cgθ (22b)

where w is a white noise process and the system matrices
are given by

Ag =

[

0 1
−ω2

g −2ζgωg

]

Bg =

[

0
1

]

(23a)

Cg =
[

−ω2
g −2ζgωg

]

√

S0 (23b)

We now define the model that will be used for design
as the evaluation model (13) augmented with the ground
acceleration model (22) as follows

η̇a = Aaηa + Eaw + Bau (24a)

y = Cyaηa + Dyau + v (24b)

where

Aa =

[

A ECg

0 Ag

]

Ea =

[

0
Bg

]

Ba =

[

B
0

]

(25a)

Cya = [ Cy FCg ] Dya = Dy (25b)

Because only certain outputs are measured, the state of
the system is estimated with an observer. In this paper we
implement a Kalman filter designed for the model in (24)
where y is measured and u is known.

The MPC controller is designed with a discretization of the
nominal model (24). In the cost we have chosen to penalize
the energy associated with the acceleration of each floor.
That is,

JN
MPC = ‖ηa(k + N)‖2

PM
+

k+N−1
∑

j=k

‖y(j)‖2
QM

+ ‖u(j)‖2
R

(26)

where QM = diag(1, 1, 1, 0, 0) and the terminal weight PM

is selected to represent an infinite horizon cost with control
input chosen to be u(j) = −Kx(j) for j > k + N − 1.
The matrix K is the solution of an unconstrained infinite
horizon optimal control problem with cost

∑

∞

j=0 ‖y(j)‖2
Q̂

+

‖u(j)‖2
R̂
. That is, K and PM are the solution to

PM = AT
a PMAa−

KT (R̂ + BT
a PMBa)K + CT

yaQ̂Cya (27a)

K = (DT
yaQ̂Dya + R̂ + BT

a PMBa)−1

(BT
a PMAa + DT

yaQ̂Cya) (27b)

where Q̂ = QM and R̂ = 50. With this linear controller the
closed loop system satisfies the constraints (19)-(21) for

both earthquake records. The horizon length is N = 30. No
constraints for the terminal set were used. The constraints
(19)-(21) are enforced over the prediction horizon.

Similarly, DMPC is designed with the discretization of the
nominal model (24) augmented with the corresponding
sensitivity equation

p(j + 1) =
dAa

dζ1
ηa(j) + Aap(j) (28)

as it was explained in Section 2. The initial condition pm
k ,

for the trajectory sensitivity in (12), is chosen to be zero.
The weighting matrices QM and R, the horizon length N ,
and the constraints are the ones used in MPC.

The sensitivity weight Qs is designed to penalize the
trajectory sensitivity corresponding to the acceleration
of each floor, that is, Qs = 10−6qsC

T
yaQMCya. Three

DMPC controllers are tested. DMPC1 is designed with
qs = 1, DMPC2 with qs = 3 and DMPC3 with qs = 5.
The terminal weight PD, for each controller, is obtained
following the same approach taken in MPC but using,
instead, the augmented system matrices and the weighting
matrix Q̂ = QD = diag{QM , Qs}.

All the controllers are implemented with a sampling time
equal to 0.001s and a computation delay of 200µs as spec-
ified in Spencer et al. [1997]. The optimization problems
were solved with the optimization toolbox from Matlab.

3.4 Results

MPC and DMPC were tested on nine plants with damping
ratio ζ1 ranging from -80% to 80% of its nominal value.
To compare the robustness of the controllers we calculate
the mean and the standard deviation as percentage of the
mean, for each evaluation criteria. Tables 1 and 2 show the
numerical results.

DMPC penalizes the energy of the sensitivity of the floor
accelerations to changes in the damping ratio. Thus, one
would expect the standard deviation associated with the
floor accelerations (criteria J2 and J7) to decrease as
qs increases. Notice from the Table 2 that the standard
deviations for J2 and J7 follow this pattern. DMPC is
able to decrease the standard deviation, compared to
MPC, from 18% up to 9.3% for J2 and from 3.7% to
2.5% for J7. This effect can also be seen in Figure 2 and
Figure 3, which show the variation of J2 and J7 with
damping ratio for the four controllers. In these plots, the
computed evaluation criteria is shown with markers while
the connecting lines are interpolated values. The criterion
J2 exhibits the well-known tradeoff between performance
and robustness; while J2 increases with qs, its variation
with damping ratio decreases with qs.

The evaluation criteria J1 and J6 are associated with the
interstory drift. The sensitivity of those outputs were not
penalized in DMPC. Yet, the standard deviation using
DMPC, compared to that using MPC, has decreased
from 44.8% up to 31.5% for J1 and remained practically
unchanged for J6.

4. CONCLUSIONS

We have presented a method to desensitize the perfor-
mance of MPC from model inaccuracies. The method is
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J1 J2 J6 J7 umax[V] xm,max[cm] ẍam,max[g]

MPC 0.1687 0.1977 0.3372 0.6533 2.0698 7.3004 5.9993

DMPC1 0.1656 0.1951 0.3381 0.6400 2.0677 7.3294 5.9815

DMPC2 0.1681 0.2133 0.3397 0.6066 2.1447 7.6933 5.9801

DMPC3 0.1774 0.2385 0.3407 0.5903 2.1784 7.8161 5.9837

Table 1. Evaluation criteria comparison: mean.

J1 [%] J2 [%] J6 [%] J7 [%] umax [%] xm,max [%] ẍam,max [%]

MPC 44.8 18.0 0.6 3.7 0.6 0.5 0.7

DMPC1 44.4 13.8 0.6 3.7 0.5 0.5 0.8

DMPC2 38.8 8.7 0.6 3.7 0.7 0.7 0.9

DMPC3 31.5 9.3 0.6 2.5 0.7 0.7 1.0

Table 2. Evaluation criteria comparison: standard deviation as percentage of the mean.

−80 −60 −40 −20 0 20 40 60 80
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2

 

 

MPC

DMPC1 − q
s
=1

DMPC2 − q
s
=3

DMPC3 − q
s
=5

Fig. 2. Changes in criterion J2 with the damping ratio ζ1.

based on the simple idea of incorporating the sensitivity
of the state trajectory to changes in model parameters in
the MPC cost function. The resulting method, which we
introduced as DMPC, retains the on-line computational
simplicity of the conventional MPC problem.

We have demonstrated by example the effectiveness of
this idea using the benchmark problem from Spencer
et al. [1997]. Numerical results show that DMPC can be
less sensitive against model inaccuracies than MPC. This
suggests that the use of the trajectory sensitivity in the
MPC cost has potential benefits that have not yet been
exploited and therefore it is a research direction worth
exploring.

REFERENCES

Thomas A. Badgwell. Robust model predictive control
algorithm for stable linear plants. Proceedings of the
American Control Conference, 3:1618 – 1622, 1997.

Alessandro Casavola, Monica Giannelli, and Edoardo
Mosca. Min-max predictive control strategies for input-
saturated polytopic uncertain systems. Automatica, 54
(7):627 – 43, 2005.

−80 −60 −40 −20 0 20 40 60 80

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Change in ρ1[%]

J
7

 

 

MPC

DMPC1 − q
s
=1

DMPC2 − q
s
=3

DMPC3 − q
s
=5

Fig. 3. Changes in criterion J7 with the damping ratio ζ1.

F.A. Cuzzola, J.C. Geromel, and M. Morari. An improved
approach for constrained robust model predictive con-
trol. Automatica, 38(7):1183 – 9, 2002.

Fernando J. D’Amato and Mario A. Rotea. Limits of
achievable performance and controller design for the
structural control benchmark problem. Earthquake
Engineering & Structural Dynamics, 27(11):1203 – 1224,
1998.

P. M. Frank. Introduction to sensitivity analysis. Academic
Press., 1978.

Hiroaki Fukushima and Robert R. Bitmead. Robust
constrained predictive control using comparison model.
Automatica, 41(1):97 – 106, 2005.

G. C. Goodwin, M. M. Seron, and J. A. De Dona. Con-
strained Control and Estimation : An Optimisation Ap-
proach. Springer Verlag, 1st edition edition, 2005.

M.V. Kothare, V. Balakrishnan, and M. Morari. Robust
constrained model predictive control using linear matrix
inequalities. Automatica, 32(10):1361 – 1379, 1996.

E. Kreindler. Formulation of minimum trajectory sensitiv-
ity problem. IEEE Transactions on Automatic Control,
AC-14(2):206 – 207, 1969.

J.H. Lee and Zhenghong Yu. Worst-case formulations
of model predictive control for systems with bounded
parameters. Automatica, 33(5):763 – 781, 1997.

Yaohui Lu and Yaman Arkun. Quasi-min-max MPC
algorithms for LPV systems. Automatica, 36(4):527 –

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13192



540, 2000. ISSN 0005-1098.
D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.

Scokaert. Constrained model predictive control: stabil-
ity and optimality. Automatica, 36(6), 2000.

G. Mei, A. Kareem, and J.C. Kantor. Real-time model pre-
dictive control of structures under earthquakes. Earth-
quake Engineering and Structural Dynamics, 30(7):995
– 1019, 2001.

H. Michalska and D.Q. Mayne. Robust receding horizon
control of constrained nonlinear systems. IEEE Trans-
actions on Automatic Control, 38(11):1623 – 33, 1993.

David Munoz de la Pena, Alberto Bemporad, and Carlo
Filippi. Robust explicit MPC based on approximate
multiparametric convex programming. IEEE Transac-
tions on Automatic Control, 51(8):1399 – 1403, 2006.

PooGyeon Park and Seung Cheol Jeong. Constrained
RHC for LPV systems with bounded rates of parameter
variations. Automatica, 40(5):865 – 872, 2004.

M. Sobral, Jr. Sensitivity in optimal control systems. IEEE
Proceedings, 56(10):1644 – 1652, 1968.

B.F. Jr. Spencer, S.J. Dyke, and H.S. Deoskar. Benchmark
problems in structural control. part i: Active mass driver
system. Structures Congress - Proceedings, 2:1265 –
1269, 1997.

Z. Wan and M.V. Kothare. An efficient off-line formulation
of robust model predictive control using linear matrix
inequalities. Automatica, 39(5):837 – 46, 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13193


