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Abstract: In this work, we consider the design of a probabilistic trajectory planner for a highly 
maneuverable unmanned air vehicle flying in a dense and complex city-like environment. Our design 

hinges on the decomposition of the problem into a) flight controls of fundamental agile-maneuvering 

flight modes and b) trajectory planning using these controlled flight modes from which almost any 
aggressive maneuver (or a combination of) can be created. This allows significant decreases in control 

input space and thus search dimensions, resulting in a natural way to design controllers and implement 

trajectory planning using the closed-form flight modes. Focusing on the trajectory planning part, we 

provide a three-step probabilistic trajectory planner. In the first step, the algorithm rapidly explores the 

environment through a randomized reachability tree search using an approximate line segment models. 

The resulting connecting path is converted into flight milestones through a line-of-sight segmentation. 

This path and the corresponding milestones are refined with a single-query Probabilistic Road Map 

(PRM) implementation that creates dynamically feasible flight paths with distinct flight mode selections. 

We address the problematic issue of narrow passages through non-uniform distributed capture regions, 

which prefer state solutions that align the vehicle to enter the milestone region in line with the next 

milestone to come. Numerical simulations in 3D and 2D demonstrate the ability of the method to provide 

real-time solutions in dense and complex environments.  

 

1. INTRODUCTION 

Practical usage of Unmanned Air Vehicles has underlined 

two distinct concepts at which these vehicles are 

instrumental. First are the routine operations such as border 

or pipeline monitoring for which manned systems are 

expensive and inefficient. Second are scenarios such as an 

armed conflict reconnaissance or nuclear spill monitoring, in 

which there is a high risk for human life loss as the proximity 

to the scenario increases. In this work, we consider a specific 

case of the second type of scenarios which involves flying 

through a complex and dense city-like environment rather 

this be for reconnaissance or monitoring. Specifically, we 
design a trajectory planning algorithm that utilizes the full 

flight envelope of a highly maneuverable air vehicle while 

moving through this environment.  

 

Our approach is based on the simple idea of exploiting the 

full flight envelope of the air vehicle through distinct flight 

modes from which almost any maneuver can be created. This 

mode-based structure is especially well suited both creating 

flight paths and also designing a systematic flight control 

system. However, this structure doesn’t necessarily solve the 

critical problem of finding a) the possible fly-through 

passages and b) the necessary mode selections to utilize these 
passages.  These two points and the corresponding solution 

method are the main focus of this paper. To address these 

problems, we consider a three-step probabilistic trajectory 
planning algorithm.  

 

In the first step, the algorithm explores the complex 

environment and the passages through a randomized 

reachability tree using a simplified version of standard RRT 

implementation. The end result is a connectivity path with 

line segments that can be tracked from the initial point to the 

goal point in the configuration space. It only gives a sense of 

passages that may be tracked in the environment in the next 

steps of planner.   

 

Fig. 1. Complete solution of the mode based probabilistic 

trajectory planner for an aircraft. 

This connectivity path is then filtered in the second step of 

our method with a line-of-sight segmentation. In this phase, 

running through each of the points as set by the connectivity 

path, only the last points that can be seen line-of-sight by its 

previous milestone point are marked and the others (which 
are in between, and cause fluctuations on the connectivity 
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path as a result of probabilistic approach) are eliminated. The 

end result is a clean flight path with milestones (i.e. flight 

way-points) that generally appear as long straight flight 

segments that occasionally enter and exit passages. As a 

result of the underlying randomized exploration towards the 

goal region, the tendency of the path is towards larger 

passages and towards direct paths that lead to the goal region. 

This provides a reasonably good approximation for a flyable 

trajectory. 

 

In the last step, a dynamically feasible path between the way-

points (and their possible neighborhood relaxations) is 

created with a single-query probabilistic road map planner. 

We create milestones for each flight segment using 

randomized flight mode selection. This exploits all the full 

flight-envelope and capability of the vehicle, and once the 

planner samples enough number of milestones near one of the 

way-points, it continues with these milestones to reach other 

way points. To address the issue of flight-attainability, 

specifically while entering and exiting fly-through passages, 

all the way-points are covered by “approaching field 

distribution” that will favor randomized paths that align with 
the next way-point. A complete solution of our approach is 

illustrated in Fig. 1. 

 

One distinct feature of this planner in comparison with other 

probabilistic planning methods is the reduced input space 

selection. Specifically, in each query, instead of choosing all 

input variables randomly, our planner chooses maneuver 

mode and its parameters that are constrained by vehicle 

dynamics. In addition, the size of the search is limited to only 

partial flight segments. Both of these factors contribute 

significantly in reduced computation time. In the next 

subsection, we review the key computational and solution 
quality aspects in light of the related work. 

1.1 Previous and Related Works 

In the last few decades randomized sampling-based motion 

planning algorithms have shown success in solving 
challenging robotic motion planning problems in complex 

geometries while using a much simpler underlying dynamic 

model in comparison to an air vehicle. Roadmap-based 

planners, like well-known Probabilistic Road Mapping 

(PRM) method as mentioned in (Kavraki, et. al., 1996), are 

typically used as multi-query planners (i.e. simultaneous 

search of the environment from different points) that connect 

these multiple queries using a local planning algorithm. PRM 

planners converge quickly toward a solution path, if one 

exists, as the number of milestones increases. This 

convergence is much slower when paths must go through 
narrow passages – a point which will be addressed in more 

detail in Section 2. Tree-based planners build a new roadmap 

for each query and the newly produced samples of each query 

are connected to the samples that are already existing in the 

tree as in (Hsu, et. al., 1997), (Hsu, 2000), (Sanchez and 

Latombe, 2003), (Plaku, et. al., 2005) and (LaValle, 1998). 

Rapidly-Exploring Random Tree (RRT) is most popular 

representative of tree-based planners that is an exploration 

algorithm for quickly searching high-dimensional spaces that 

have both global and differential constraints.  

 

Over the past several years, sampling-based planners, 

especially tree-based planners (RRT and single-query PRM 

variant), have been adapted to solve dynamically feasible 

path accommodate kinodynamic constraints. The main 

philosophy behind kinodynamic planning is searching a 

higher dimensional state space that captures the dynamics of 

the system as mainly mentioned in (LaValle and Kuffner, 

2001) and (Hsu, et al., 2002) via the above two distinct 

sampling strategies. In single query PRM implementations, 

increasing the number of milestones within the tree causes 
the solution time to increase exponentially as a result of the 

tree size. One of the key points within our strategy is to 

segment the overall space into small spaces by defining way 

points. Instead of searching the whole configuration space 

with one PRM algorithm (that chooses milestones in a 

potentially huge PRM tree) , we are searching feasible paths 

between way points with small PRM trees by trusting RRT 

planner’s exploring ability we used in first step. Also note the 

important experimental results of RRT based path planning 

for micro air vehicles in (Griffiths, Beard et. al. 2007). 

 
It is noted by (Frazzoli, et. al., 2002) that,  in general 

kinodynamic motion planners require at least exponential 

time in that dimension of the state space of dynamical 

systems which is usually at least twice the dimension of the 

underlying configuration space. Because of this 

consideration, in practice kinodynamic planners are 

implementable only for systems that have small state-space 

dimensions. Thus, for the air vehicles that we focus on, it is 

hard and time-consuming to obtain a feasible path using a 

standard kinodynamic planner. We address this problem by 

directing the search not to the expensive state-space, but to 

only a subset of the input space as required by the flight 
modes (and their resulting controlled state-space selections). 

Thus, for almost every flight mode, the input space is either 

two or three dimensional, with the most complex mode 3D 

spin, being four dimensional.   

 

Fig. 2. Nonlinear control of an aggressive maneuvering of F-

16 over flight modes using the full-envelope dynamic model 

including stall. 

Motion planning of agile vehicles from a control perspective 

has been mainly studied under the topic of hierarchical hybrid 

systems. Basically, the flight path of an aircraft can be 

divided into modes, and these modes serve as reference 
blocks to a control system, and the control system regulates 

these modes with given specifications by possibly using 

nonlinear control laws (Tomlin and Rosh, 2000). Note that 
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this modal approach can also be used for trajectory 

optimization for multiple vehicles (Inalhan, Stipanovic, 

Tomlin, 2002). (Frazzoli et. al., 2002)  suggested a path-

planning system which defines a class of maneuvers from a 

finite state machine, and uses a trajectory based controller to 

regulate the agile vehicle dynamics into these feasible 

trajectories. This approach has got the advantage of 

generating both feasible and optimal trajectories in an 

environment with an obstacle while ensuring robust tracking 

of these trajectories. However, the trajectories to be 

controlled are limited to the trajectories generated by the 
finite state machine. Similar approaches have also been 

developed in (Schouwenaars et. al. 2004). Although these 

works provide asymptotic tracking, the modes as governed by 

the state-machines do not exploit the full flight envelope and 

the generated maneuvers are not really tailored towards an 

environment, which demand tactical advantage through 

exploitation of the vehicle’s full capability – a feature that 

exists in sample based motion planning algorithms and we 

exploit this feature while creating dynamically feasible paths 

using the probabilistic roadmap approach over flight modes. 

We illustrate the control of a complex agile maneuver over 
such modes in Fig. 2. Detailed description of this will be 

given in Section 3. 

 

Rest of paper organized as follows. In Section 2; we describe 

the motion planning algorithm in two subsections: 2.1 

Finding the connectivity path and 2.2 Finding the Feasibility 

Path. Section 2.1 specifically covers the RRT implementation 

(2.1.1) and the path filters (2.1.2), where as Section 2.2 

focuses on single-query PRM implementation details and 

numerical results. Section 3 provides an example on the 

concept of the modal-based maneuvers as perceived from 

flight dynamics point of view. The conclusions and future 
work are discussed in Section 4. 

2. MOTION PLANNING 

Our general motion planning strategy is first to find 

connectivity path rapidly disregarding the vehicle’s attitude 

dynamics. In this phase, we use RRT Algorithm because of 

its quick spreading ability. After this first phase, connectivity 

path is refined and re-gridded as can be reached way points. 

Finally, feasible paths are searched by PRM Algorithm 

between these way-points with maneuvers selected from 

Modal-Based maneuver set of vehicle. Furthermore, we 

define joint fields on way points as approaching field is 
mentioned in Feasible Path section. All of these processes 

can be seen in Fig. 3.  

 

Fig. 3. Motion Planning Strategy 

Note that, to facilitate the intelligibility on figures, we choose 

2D environment demonstrations, but our main concern is 3D 

complex environments. 

2.1 Connectivity Path 

2.1.1 Goal Biased RRT Algorithm 

RRT is an exploration algorithm for quickly searching high-

dimensional spaces that have both global and differential 

constraints (Lavalle, 2002). However, one of the important 

drawbacks of this method to use as a stand-alone planner is 

biasing of the distribution of milestones towards the obstacle 

regions if the configuration space has large obstacles. This 
drawback may be caused undesirable and severely slow down 

the rate of convergence as mentioned in (Hsu, et al., 2002). 

We are only motivated by RRT’s good property to obtain 

connectivity path that can be tracked during flight. In this 

phase, our strategy does not focus on feasibility of the path 

and we do not do an input space sampling. In this part, we 

only investigate whether the points can be connected to each 

other while not hitting the obstacles. Construction of Goal 

Biased RRT algorithm is given below as Algorithm I. 

 

Algorithm I: Goal Biased RRT Algorithm  

Input  :  initial and goal positions; ����� , ����� 
Output: connectivity path  

 1: Add initial point ����� to 	 tree and 
 �1 

 2: repeat  

 3:      Select random point �
���  in � 

 4:      Select nearest neighbour ����
 of �
���  in 	 tree 

 5:      Generate ���� from  ����
 toward �
���  

 6:      Generate trajectory ����  from ����
 to ���� 

 7:      if ���� and ����are in collision-free region then 

 8:         Add ���� to 	 tree and 
 �1 

 9:          if ���� in end region then  

10:             break with success 

11:     Select nearest neighbour ����
 of ����� in 	 tree 

12:     Generate ���� from  ����
 toward ����� 
13:     Generate trajectory ���� from ����
 to ���� 

14:     if ���� and ����are in collision-free region then 

15:        Add ���� to 	 tree and 
 �1 

16:         if ���� in end region then  

17:             break with success 

18:     if 
= N max iteration number then  

19:         break with fail 

20: until end region is reached with success 

21: Select connectivity path points can be gone back  

                 end region to initial point in 	 tree 

 

In this part of algorithm, each loop attempts to extend the 	 

tree first towards the random selected point �
��� , and 
second towards the goal point by adding new points. To 

select points, nearest point already within the 	 tree to the 

sampled random point (in Line 4) and the nearest point to the 

goal point is selected (in Line 11) respectively. Generate 

functions generates new point ���� on the direction of the 

selected nearest points ����
 at random selected distances as 

shown in Line 5 and 12. If direction angles exceed predefined 

limits, max direction angles are selected. These boundaries 
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may be chosen according to vehicle’s kinematic boundaries. 

If new generated point and its trajectory is in obstacle-free 

region (checked in Line 7 and 14) then ���� is added  	 tree 

as shown in Line 8 and 15. If 	 tree reaches end region 

anywhere, algorithm returns with success and gives 

connectivity path. End region can be obtained within a 

tolerable capture region as explained in (Hsu and et al., 

2002). An example simulation in 2D is illustrated in Fig. 4. 

 

Fig. 4. Connectivity Path 

2.1.2 Path Filters 

Because of the RRT’s extending strategy and our 

simplifications, undesirable detours are frequently seen in 

obtained connectivity path. Since we only consider finding 

the obstacle-free region; we can simply remove the points 

that cause these detours. In this phase of our strategy, 

connectivity path is refined by some filters. Line-of-Sight 

Filter algorithm erases points that result in useless 

fluctuations with using a line-of-sight arguments. As can be 
seen in Fig. 5, remaining points generally appear in nearby 

entering and exiting field of narrow passages and inherently 

hard regions. These fields give a sense of agile maneuverings 

that are needed to fly over these points. 

 

 Algorithm II : Line-of-Sight Filtering  

Input: connectivity path 

Output: visible points  

  1: Add initial point �� to visible points,  

              ������ �  ��  and �� �  �� 

  2: repeat  

  3:         Generate line ������  from ������  to ��     
  4:          if  ������collides with an obstacle 

  5:              Add ���� to visible points 

  6:              ������ �  ����  

  7:         else   

  8:              
 � 1 

  9: until last point of connectivity path ��is reached   

 

In this part of algorithm, a simple iteration checks if the 

selected point m�� �!  can connect with the previous points in 

connectivity path with a line segment without colliding with 

any obstacle. If the line segment collides with an obstacle, in 

other words, if the current point cannot be connected to the 

selected point, last connectable point is added to the way 

point sequence and the subsequent search continues from this 

point. This algorithm runs until the last point of connectivity 

path is reached with a line segment. A solution is illustrated 

in Fig. 5.   

 

Fig.5 Line-of-Sight filter result. 

Sometimes, the distance between two neighbor points in the 

visible points can be long and therefore it could potentially 

take a long time to find a dynamically feasible path with a 

PRM implementation. To address this potential pitfall, we 
implement a simple Re-Gridding algorithm that adds new 

guide points between neighboring points, if the distance is 

longer than a pre-described threshold; long. This term is 

defined as distance metric value and is chosen according to 

density of environment. 

 

Algorithm III : Re-Gridding  

Input: visible points 

Output: way points 

 1: Add visible points to way points 

 2: for 
�" point �� in way points;  

           from �� to last point ��   

 3:       if distance from ���� to �� is long then 

 4:          Add point to way points middle of ���� and �� 

2.2 Dynamically Feasible Path: Mode-Based PRM 

Previous subsection provided the methods for us to obtain a 

flight path with way-points that generally appear as long 

straight flight segments that occasionally enter and exit 

passages. As a result of the underlying randomized 

exploration towards the goal region, the tendency of the path 

is towards larger passages and towards direct paths that lead 

to the goal region. Although this provides a reasonably good 

approximation, it doesn’t necessarily correspond to a flyable 

trajectory as it is based on a simple point mass model with 

velocity and heading. 

The last part of our planning strategy is an extension of 

single-query PRM algorithm that given as Algorithm IV. It 

iteratively builds a tree-shaped roadmap to connect the way-

points one-by-one. In every inner loop, it first selects at 

random a milestone as in Line 5, maneuver-mode as in Line 6 

and modal inputs as in Line 7 and then generates a trajectory 

with selected maneuver mode and modal inputs from selected 

milestone as shown in Line 8. If this trajectory does not 

collide with any obstacle (checked in Line 11), its end point 
is added to tree as a new milestone as shown in Line 16 and 

its modal inputs are stored. If newly generated milestones fall 

in nearby region of any goal points, the planner assigns a 

weight value to these milestones according to their 

approaching angles as depicted in Line 12. 

 

Milestone Selection; The planner selects an existing 

milestone in the Tree at random according to direct 

proportion to their values. A milestone which has higher 
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weight value has a greater chance of being selected by 

planner, in the other words; milestones which can be 

propagated with more smooth trajectories have greater 

chance to continue. These weight values are assigned by 

approaching field. This milestone selection technique pushes 

our planners to side of kinodynamic planners that use single-

query PRM method. Differently, RRT based kinodynamic 

planners select existing milestones which are nearest 

(metrically) to randomly-selected states (within all space). 

PRM like kinodynamic planners can select a milestone in tree 

according to their values that are charged by planners before. 
Hence, planner can make decision about which milestones 

should be chosen more densely. Therefore, our planner uses 

alike method to select milestones.        

 

Modal-Input selection; Our planner only chooses modal 

inputs of the distinct maneuver modes instead of choosing 

control inputs from high dimensional control-input space. 

These distinct modes can exploit the full flight envelope and 

almost every flight paths can be created with their 

combinations. In every loop of algorithm, after the milestone 

selection, planner first chooses flight maneuver-mode and 
then chooses its modal inputs according to weight value of 

the selected milestone. For example, considering to selecting 

level-flight mode, the milestones which have close angles 

with line-of-sight to next-coming goal in a small interval 

(therefore, it is assigned with higher weight values by 

approaching field) can be propagated with longer straight 

flight paths. Therefore, if this milestone is selected by 

planner, higher velocity rates (in constant time, longer 

distance rates) are mostly preferred as modal input. 

 

Computing Weight Values; If new generated collision-free 

milestone falls in nearby of any way points in distinct 
distance metric, according to its angles and distance, it is 

assigned with the specific weight value. For deciding these 

values, every way points are enclosed with approaching 

fields includes distinct regions. If the angles of the milestone 

(felt in the region) are within specific rate interval of the 

region, it is enumerated with the respective weight value. 

Thus, it is aimed that; to charge the milestones which have 

angles closer to angle rates that can carry it easily (i.e. with 

smoother curve) to next-coming way point with higher 

values. The planner more densely selects the milestones are 

charged with higher value. Hence, it is intended to create 
more smooth flight segments. This tunneling effect provides 

a straight-forward solution to the classical narrow passage 

effect seen in standard PRM methods. 

 

To overcome this narrow passage problem, some of the 

previous works focused on improving sampling important 

areas of the configuration space using workspace information 

as in (Boor, et. al.,1999) (Hsu, et. al., 2003) and (Kurniawati 

and Hsu, 2004). They are briefly discussed in (Tsianos, et 

al.,2007) and (Saha and Latombe, 2005). Some retraction 

methods use medial axis are proposed as in (Holleman and 

Kavraki, 2000) and (Lien, et. al., 2003) that are based on the 
slightly fattening the free space, constructing a roadmap in 

fattened free space and repairing colliding portions of 

roadmap. But especially for the complex dynamic and 

kinematic system, repairing strategy cannot be obtained or 

solution may take a considerable amount of time. 

 

Algorithm IV : Mode-Based PRM Planner  

  Input: way points 

  Output: dynamically feasible path 

  1: repeat (main loop) 

  2:    Add reached points to Tree as initial points 

  3:    Add further way points as goal point 
  4:    repeat (path segment loop) 

  5:       Select a milestone �
���  from Tree probabilistically 
  6:       Select maneuver mode uniformly at random 

  7:       Select modal inputs according to selected milestone  

  8:      Create trajectory segment ����with  

                        modal inputs and maneuver mode 

  9:       Propagate �
���   to ����with trajectory ���� 

10:       if ���� and ���� Є �#
��  

11:           if ���� Є approaching field of any goal point 

12:               Compute w weight value  

13:               Add ���� and its w weight value  

                             to reached points  

14:                if size of reached points is enough then  

                         exit with success 

15:           else 

16:               Add ���� to Tree  and  
 �1 

17:       if 
= N max iteration number then  

18:           exit with failure and $ �1 
19:    until success or failure 

20:    if $= M max failure number then 

21:        Erase prior path segment and go back  

22:                  prior interest region to recalculate 

23:    else  

24:       $ �0 

25: until last way point is reached 

 

In the main loop, the inner PRM path segment loops try to 

connect the way-points one-by-one until the ultimate goal 

region is attained. During this iteration, if the inner loop 
returns an increased number of failures, prior path segment is 

erased as depicted in Line 21 and PRM searching is run from 

prior interest region. Snap-shots from the evolving PRM 

iterations and the completed solution are given in Fig. 6 and 

example completed solution for 3D environment is given in 

Fig. 7. 

 

Fig. 6. Mode-Based PRM Searching 
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Fig. 7. Dynamically Feasible Path for 3D city-like 
environment 

We tested the performance of our method on some dense 

environments in varying ratio of obstacle space to all work 

space.  The results are illustrated in Fig. 9 for 2D and 3D 
environments. All the experiments were conducted on a 1.60 

GHz Intel Pentium M processor and the average results are 

obtained over 10 runs. The experiment setting is arranged 

such that the vehicle will be able to cruise to the goal region 

in 40 secs (2D) and 60 secs (3D) if not faced with obstacles. 

 
Fig. 8. Example solution in 3D workspace that has 44 % of 

volume is blocked by obstacles 

 
Fig. 9. Minimum, mean and maximum values of solution 

times according to varying percentages of blocked space. 
 

During the all of this implementation, solution time of 

finding a Connectivity Path were observed to below 1.6 

seconds for 2D workspace and below 3.6 seconds for 3D 

workspaces in general. As anticipated, increasing blocked 
space also increases the solution time. However, this 

increasing rate does not grow exponentially according to 

percentage of obstacle space and the algorithm can be 

implemented.  In addition, the solution times suggest that our 

method will be applicable for real-time implementations as 

the solution time is favorably comparable to implementation 

times. 

3. MODAL-BASED MANEUVERING 

The main idea of modal based maneuvering is to divide the 

motion of an aircraft into simpler modal blocks, and to build 

any maneuver using these blocks. Many of the standard agile 

maneuvers and standard flight patterns implement these 

modes listed below: 

• Primitive Modes: Level Flight, Climb/Descent, 

Longitudinal Loop, Lateral Loop 

• Transition Modes: Stability Axis Roll, Re-

Orientation 

• Complex Modes: 3D Spin 

Primary modes are the most basic building blocks of arbitrary 

maneuver sets. In order to sequence these modes efficiently, 

we define some transition maneuvers between them. For 

example aircraft must go through a roll mode without sideslip 

to transfer from level flight to coordinated turn, or it can be 

desired to invert the aircraft with a stability axis roll. Also in 

case the aircraft results in an undesired disoriented attitude, 
re-orientation mode regulates the aircraft into a stable safe 

state in which it can begin to execute any of the primary 

modes. This mode also prevents aircraft from stalling due to 

high angle-of-attack flight. The final mode is called a 

complex mode, because it actually entails an attitude dictated 

combination of primary modes listed above, this mode is 

used to control whenever two of the primary modes must be 

executed simultaneously. 

 

For example, a complex helical maneuver (to obtain a 

gradual “focus on” loitering) implements a simultaneous pure 
pitch and coordinated turn (or simply a constant roll) action 

at the same time (means that maneuver is governed by 

complex mode), where as an Immelmann Turn (implemented 

to do a 180 degrees direction change with a tactical height 

gain advantage) implements a level-flight, longitudinal loop, 

roll and level flight modes in sequence. Both complex and 

basic maneuvers are used in motion planning where each 

mode has its use and their sequence is selected from a 

probabilistic algorithm as described in the previous section. 

In our complimentary work (Ure, and Inalhan, 2008), we 

demonstrated the ability to achieve full-controlled 
autonomous aggressive maneuvering of these modes via a 

switching sliding mode control design for an F-16 over the 

full flight envelope including stall.  This is also illustrated in 

Fig. 2 for a complex maneuver. Please refer to the authors to 

obtain the pre-publication results on this. 

 

Fig. 10. Controlled Immelmann Turn using flight mode based 
control structure 
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From a path planning point of view, this actually brings a 

considerable advantage, as the simultaneous control and 

trajectory planning problem over the whole state variables 

and control inputs can be decomposed into a) flight control 

design for specific modes and b) path planning over these 

prescribed modes with a small set of design parameters. To 

illustrate this, consider the standard six degrees of freedom 

nonlinear dynamics model of an aircraft, in which the state 

variables are defined as follows;%,',(are velocities in wind 

axes, ), *, + are roll, pitch and yaw Euler angle set, ,,-, . 

are body angular rates. With the total velocity corresponding 

to'/ , and aerodynamic angles (angle of attack and sideslip 

angle) are 0 and 1. 

 

From a controls point of view, once the controls are designed 

for obtaining the six specific modes these modes can be 

specified via reference input signals denoted simply by A. 

Level Flight('/�2, B. Climb/Descent3'/� ,  4�
5 2, C. 

Longitudinal Loop36���7 , *5�2, D. Lateral Loop86���7 , +�
5 9, E. 

Stability Axis Roll 8,� , )#9, F. Re-Orientation , G. 3D 

Spin(,� , -� , .�2. It must be indicated that, these modes have 

their limits in flight envelope of the aircraft; these are usually 

in terms of modal inputs. For example in level flight, 

aircraft’s maximum and minimum velocity corresponding to 
current altitude are determined before the execution and if the 

mode specifications are not within the limits; aircraft can 

suffer from actuator saturation or stall due to high angle of 

attack. So we specify envelopes for each mode and ensure the 

command signal lies within these intervals to provide 

feasibility. 

 

Under this basic dynamic equations can be compacted using 

the basic mode specifications over a general Mode Maneuver 

Chart. For an example, Immelmann Turn is illustrated in Fig. 

X with capture coordinates corresponding to the desired 

switching sequence – ACEA and a simulation result for this 

maneuver for an F-16 aircraft (using the full-envelope model 

including stall) is shown in Fig. 10. Note that we haven’t 

included the re-orientation and 3D spin modes for simplicity 

of presentation. 

4. CONCLUSIONS 

Trajectory design of an air vehicle in dense and complex city-

like environments, while pushing the limits of the vehicle to 

full performance is a challenging problem in two facets. The 
first facet is the control system design over the full flight 

envelope and the second is the trajectory planning utilizing 

the full performance of the aircraft. In this work, we try to 

address the second facet via the decomposition of the flight 

controls and the trajectory planning using flight modes from 

which almost any aggressive maneuver can be created. Our 

three step hybrid mode based probabilistic trajectory planner 

aims at rapid generation of reachability tree (and hence 

milestones) to any desired physical location, and feasible 

trajectory generation over the milestones utilizing the basic 

modes. In our numerical simulations, we observed that the 
approach not only has real-time implementation capability, 

but also shows features which will allow alternative path 

creations through distributed computing and plan-as-you-

along capability.  

 

In our future work, we will explore these issues with a 

distributed seeding, simultaneous search of the complex 

environment. Inclusion of dynamically varying and reacting 

environments is another point that needs to be addressed for 

any realistic experimental validation. Although through 

numerous implementations, RRTs are observed to be very 
good at finding a feasible solution; one of the key open 

questions is the non-existence of a formal certificate of 

guarantee to find a feasible solution if one exists.  
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