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Abstract: This paper provides a solution to guidance of multiple unmanned aerial vehicles that
carry sensors for locating a detected emitter of radio frequency signals. Guidance in this paper
refers to updating the state of each vehicle to the most desirable position and velocity, reachable
within a given time for the location purpose. The vehicles can then be guided to the updated
sensor states for further target data acquisition and processing. This process continues until the
target is located within a specified accuracy. Both the guidance criterion and the vehicle state
update procedure take the probability of vehicle loss into consideration. Vehicle state update is
formulated and solved as an optimization problem. The enhanced location performance under
the optimized guidance, and the sensor system tolerance to vehicle loss are shown for a four-
sensor system through simulations.
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1. INTRODUCTION

This paper establishes an entropy-based criterion as an
approximate accuracy evaluation of an estimated emitter
location. This criterion is shown in (Wu, et al., 2008) to be
consistent with the common accuracy measure using con-
centration ellipses. The criterion is used to determine a set
of future positions and velocities of unmanned aerial vehi-
cles (UAV)referred to as vehicle states hereafter, reachable
by individual UAVs from their current states within a time
limit, based on the current estimate of the emitter. The
vehicles are then guided to these states to acquire more
emitter data for improved location accuracy. These future
states are calculated by solving an optimization problem
under the entropy-based criterion. The sensor system tol-
erance to loss of vehicles is discussed. Error ellipses are
calculated based on the outcomes of a large number of
simulations to verify the location accuracy improvement
and the system tolerance to vehicle loss.

This paper considers the use of a specific location technol-
ogy where time difference of arrival (TDOA) and frequency
difference of arrival (FDOA) are measured by paired sen-
sors. Each sensor is carried by a UAV. Emitter location
accuracy using TDOA/FDOA measurements was analyzed
by Chesnut [1982], where the relation between the emitter
location accuracy as a function of FDOA/TDOA mea-
surement accuracy, and the sensor position and velocity
was provided. Torrieri [1984] gave an overview of some
statistical methods for the analysis of a number of passive
location systems. Day et al. [1989] introduced a general
covariance error model for TDOA/FDOA measurement,
where many sources of errors were encompassed. Ho et al.
[2004] provided an analytic solution for TDOA/FDOA
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measurements under the far-field assumption, which is also
made in this paper for calculating vehicle state updates.
In general, technologies for TDOA/FDOA sensing and
emitter location estimation based on the measurement
data are well understood and readily available.

UAV guidance has been discussed by Kaminer et al. [2006],
and Yakimenko [2000] as a combined guidance and control
problem involving feasible trajectory generation, path fol-
lowing, and time-critical coordination of UAVs, for which a
solution is proposed to ensure collision-free maneuvers un-
der strict spatial and temporal constraints. This technique
is highly relevant to our target location problem involving
coordinated airborne sensors. Application of this technique
is being considered for our next step of investigation that
progresses from guidance to control of vehicles. The issue
addressed in this paper concerns, however, only how to
guide a group of UAVs that are subject to failures during
a location mission for the best quality of acquired emitter
data.

The reminder of this paper is organized as follows. Sec-
tion 2 presents the background of TDOA/FDOA location
technology and introduces the criterion for UAV guidance.
Section 3 focuses on setting the guidance problem into an
optimization problem. In particular, the guidance problem
is generalized to include the consideration of probability
of loss of vehicles, and to allow the network reorganization
upon loss of vehicles. Following the principles described
in (Wu, et al., 2008), section 4 reports simulation results
performed for a system of four guided sensors under the
proposed guidance criterion to demonstrate the enhanced
location accuracy, and tolerance to loss of vehicles. Section
5 concludes the paper.
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2. PROBLEM DESCRIPTION

Suppose that one pair of UAVs collects collaboratively
both time difference of arrival (TDOA) and frequency
difference of arrival (FDOA) data from an RF emitter. If
there is no error in the measurements, the emitter location
can be solved from (1) and (2) below. Let (xe, ye) be the
emitter location, (x1, y1), (x2, y2), (u1, v1), and (u2, v2) be
the positions and velocities of the two sensors, respectively.
Let fe denote the radio frequency (RF) of the emitter and c
denote the speed of light. a noiseless TDOA measurement
from the two sensors is

fTDOA =
1

c
[
√

(x1 − xe)2 + (y1 − ye)2

−
√

(x2 − xe)2 + (y2 − ye)2],
(1)

and a noiseless FDOA measurement from two sensors is

fFDOA =
fe

c
[
(x1 − xe)u1 + (y1 − ye)v1
√

(x1 − xe)2 + (y1 − ye)2

−
(x2 − xe)u2 + (y2 − ye)v2
√

(x2 − xe)2 + (y2 − ye)2
].

(2)

To be more realistic, each signal received at a sensor can
be modeled as an ideal time/frequency measurement cor-
rupted by an additive Gaussian noise. The signals from two
sensors are cross-correlated to obtain the maximum likeli-
hood estimates of the TDOA and the FDOA for that pair
(Stein, 1993). With large number of signal samples, the
TDOA/FDOA estimates can be assumed to be Gaussian
and their error covariance achieves the Cramer-Rao lower
bound (CRLB) by invoking the asymptotic properties of
maximum likelihood estimate (Kay, 1993).

The error covariance matrix of the location estimate from
the ith pair of sensors is given by Day et al. [1989]

[GT
i C−1

i Gi]
−1, Gi =







∂fi,TDOA

∂xe

∂fi,TDOA

∂ye
∂fi,FDOA

∂xe

∂fi,FDOA

∂ye






. (3)

In a network of k pairs of sensors without sensor sharing
among the pairs, the error covariance of the estimate
becomes: (Fowler and Chen, 2006)

[

k
∑

i=1

GT
i C−1

i Gi

]−1

. (4)

Since Gi depends on sensor states (xji, yji, uji, vji) through
fi,TDOA and fi,FDOA, j = 1, 2 and i = 1, · · · , k, as seen in
(1) and (2), the accuracy of location estimation captured
in (3) and (4) is thus affected by the sensor states.

This paper uses a scalarized measure of error covariance
(4) as the criterion for sensor state adjustment to enhance
the accuracy of location estimation. To that end, differen-
tial entropy (Cover, et al., 1991), or entropy, for short, is
chosen as the scalarized measure of covariance (4) of the
Gaussian distribution of the random vector representing
the estimation error in emitter location

1

2
ln(2πe) + ln

∣

∣

∣

∣

∣

(
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∑

i=1

GT
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i Gi)
−1

∣

∣

∣

∣

∣

, (5)

where |.| denotes determinant.

Low entropy implies that the random vector, which is
the error of location estimate, is confined to a small
effective volume. Thus, reducing entropy improves the
accuracy of location estimation. The analysis suggests
that, conditioned on the most recent location estimate
(x̂e, ŷe), the states of the sensor-carrying UAVs can be
updated to the minimizing solution of
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Subject to : (xji, yji, uji, vji) ∈ Ri, j = 1, 2, i = 1, · · · , k

(6)

where Rji is the reachable set of the jth UAV in the
ith sensor pair, defined as the 4-dimensional convex set
that can be reached by the UAV from the current state
within a prescribed time interval under some predefined
magnitude limits of speed and acceleration. Issues related
to the calculation of reachable sets will be reported in the
near future in a separate paper.

3. ROBUST UAV GUIDANCE

This section discusses updating sensor states using entropy-
based criterion (6) within a prescribed interval over which
the reachable sets {Rj,i} have been obtained, conditioned
on the most recent location estimate. The goal is to attain
the most improvement in the next cycle of TDOA/FDOA
acquisition for emitter localization.

Such pursuit is then extended to situations where proba-
bility p of loss of a sensor in a given update interval is avail-
able. To improve average network performance, entropy-
based criteria for all possible outcomes are weighted by
their probabilities of occurrence. The section also treats
sensor loss as a deterministic state information feedback
problem in which a single surviving sensor is reassigned to
pair with one of the sensors of an intact pair.

3.1 Guidance with optimized velocity

It is not difficult to see that (6) presents a complex
problem. Two practically desirable conditions are stressed
that help make (6) more tractable.
i. Every participating UAV is sufficiently far from both the
emitter location and its estimate.
ii. The update interval of UAV state is sufficiently small,
resulting in small position change relative to the range
with respect to the emitter.
These conditions are intended to uphold the statement
that velocity updates dominantly influence the optimal
value in (6). These assumptions are collectively called a
far-field small-interval condition hereafter.

To show some finer points, discussion from this point on
is specialized to a 4-sensor (2-sensor-pair) network. In this
case (6) becomes

min
(xji,yji,uji,vji), i,j=1,2

ln
∣

∣(GT
1 C−1

1 G1 + GT
2 C−1

2 G2)
−1

∣

∣ (7)

where Gi is defined in (3) evaluated at current estimate
(x̂e, ŷe) with entries

G11,i =
1

c

[

x2,i − x̂e
√

(x2,i − x̂e)2 + (y2,i − ŷe)2
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−
x1,i − x̂e

√

(x1,i − x̂e)2 + (y1,i − ŷe)2

]

(8)

G12,i =
1

c

[

y2,i − ŷe
√

(x2,i − x̂e)2 + (y2,i − ŷe)2

−
y1,i − ŷe

√

(x1,i − x̂e)2 + (y1,i − ŷe)2

]

(9)

G21,i = {
(x1,i − x̂e) [(x1,i − x̂e)u1,i + (y1,i − ŷe)v1,i]

√

(x1,i − x̂e)2 + (y1,i − ŷe)2
3

−
(x2,i − x̂e) [(x2,i − x̂e)u2,i + (y2,i − ŷe)v2,i]

√

(x2,i − x̂e)2 + (y2,i − ŷe)2
3

−
u1,i

√

(x1,i − x̂e)2 + (y1,i − ŷe)2

+
v2,i

√

(x2,i − x̂e)2 + (y2,i − ŷe)2
}
fe

c

(10)

G22,i = {
(y1,i − ŷe) [(x1,i − x̂e)u1,i + (y1,i − ŷe)v1,i]

√

(x1,i − x̂e)2 + (y1,i − ŷe)2
3

−
(y2,i − ŷe) [(x2,i − x̂e)v2,i + (y2,i − ŷe)v2,i]

√

(x2,i − x̂e)2 + (y2,i − ŷe)2
3

−
v1,i

√

(x1,i − x̂e)2 + (y1,i − ŷe)2

+
v2,i

√

(x2,i − x̂e)2 + (y2,i − ŷe)2
}
fe

c

(11)

It is clearly seen that G11,i and G12,i are independent of
the sensor velocity variables, whereas G21,i and G22,i are
linear in the velocities. Overall, matrix Gi is affine in the
velocity variables, and its special structure results in that
|GT

1 C−1
1 G1 + GT

2 C−1
2 G2| is quadratic. The far-field small-

interval condition is now invoked, which excludes sensor
positions from the set of optimization variables in (7). The
simplified problem aims to

min
(uji,vji)∈Rji, i,j=1,2

ln
∣

∣(GT
1 C−1

1 G1 + GT
2 C−1

2 G2)
−1

∣

∣ (12)

Unfortunately, no convexity can be assumed in general de-
spite the significant simplification. However, when UAVji

is considered as a point mass with a maximum speed con-
straint and a maximum curvature constraint, its reachable
set Rji can be easily calculated by integrating from the
initial its velocity up to specified interval T seconds (Shin,
2007). The set of optimal points (u∗

11, v
∗
11), (u∗

21, v
∗
21),

(u∗
12, v

∗
12), and (u∗

22, v
∗
22) that solves (12) is searched in

R11 ×R21 ×R12 ×R22.

3.2 Tolerance to sensor loss

One important contribution of this paper is to support
the proposed measures to increase network tolerance to
loss of sensors in (Wu, et al., 2008) through numerical
simulations, where such tolerance is enhanced in two ways.
They are the use of a weighted sum of objective functions
by the probability of sensor loss of the form in (6), and
the practice to pair the remaining sensors who have lost
partners.

Let {pi} be the probability distribution for the surviv-
ing network at the end of an update period. A distinct
expression of guidance criterion Ji can be be written for

each viable outcome of a particular set of surviving sensors
based on the information of a single sensor loss probability
(Wu, et al., 2008). The modified criterion
{

arg min
xji,yji,uji,vji

p1J1 + p2J2 + ... + pkJk

Subject to : (xji, yji, uji, vji) ∈ Ri, j = 1, 2, i = 1, · · · , k
(13)

is expected to be tolerant to loss of sensors. The details
and the benefits of such measures of tolerance to sensor
loss are best understood through explanation of results of
simulations in the following section. The difficulty caused
by the additional cross terms in the measurement error
covariance due to reconfiguration in the second case is
overcome by using a block diagonal upper bound of the
covariance (Wu and Fowler, 2006) in sensor state updates
as discussed in Wu et al. [2008].

4. SIMULATION RESULTS

4.1 Location accuracy enhancement through sensor state
optimization

The first objective of the simulation study is to verify
that the entropy criterion can improve the estimation
accuracy. Again a 4-sensor network is used. The signal
to noise ratio of the received data is between 15 dB
and 20 dB. The true position of the emitter is at the
origin and the initial estimate of the emitter location
is randomly selected within a 50 × 50 meter rectangle
centered at the origin The initial sensor positions are
500 ∼ 1000 meters away from the initial estimate of
the emitter location, and the initial UAV velocities are
randomly assigned, with a speed between 120 and 140 m/s,
and a random direction. Maximal velocity and acceleration
are predefined as 140m/s and 10m/s2 respectively. The
Gauss-Newton method (Denis, 1977) is used to calculate
the location estimate. Vehicle state update interval is 2
seconds.

To compare the accuracy of the location estimation, 50%
error ellipses are formed with and without the sensor state
adjustments with 150 independent replications in each
case. The best states are selected using the entropy-based
criterion defined in (6). Adjusted states are obtained by
generating a large number of candidate random states in
the reachable set and selecting one state with the lowest
entropy value.

Fig. 1 compares the estimation accuracy in terms of
geometric closeness of the estimated to the true emitter
location. Estimates obtained from measurements by the
4 sensors at their initial selected states are shown as red
circles and estimates obtained from measurements by the
same 4 sensors at their adjusted states are marked by black
asterisks using the same initial estimate. These adjusted
states are reachable within 2 seconds when constrained to
a maximum speed at 140m/s and a maximum magnitude
of acceleration at 10m/s2. Concentration ellipses enclosing
50% of the 150 independent estimates are also shown
for each case with matching colors. The improvement in
estimation accuracy is evident.

Fig. 2 compares the same two scenarios in terms of their
computed entropies for all 150 pairs corresponding to the
recent estimates with and without velocity adjustment.
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Fig. 1. 150 location estimates without velocity optimiza-
tion (red circle) and 150 location estimates with ve-
locity optimization (black star)

The results show that, as expected, with the data acqui-
sition at the best reachable states, the distributions of all
the 150 estimation error vectors have lower entropies. The
more pronounced fluctuation observed in the case where
sensor velocities are optimized is due to the logarithmic
scale used, and more importantly, the adjusted sensor
states can lie outside of the range specified for randomizing
the initial sensor states.

4.2 Tolerance to sensor loss through network reorganization

The next set of simulations is aimed at showing the ef-
fectiveness of reorganization of the 4-sensor network in
the event of loss of one of the sensors. The reorganiza-
tion simply pairs the remaining sensor that has lost its
collaborator with one of the two sensors of the intact pair.
The additional complication due to the coupling of the two
pairs presented in the estimation error covariance of the
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Fig. 2. Accuracy improvement measured by entropy with-
out velocity optimization (dashed line) and entropy
with velocity optimization (solid line) in 150 indepen-
dent replications
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Fig. 3. Comparison of location accuracy resulting from
sensor state optimization using probability-weighted
criterion equation (13) (red) and unweighted equation
(6) (black) as functions of single sensor loss probabil-
ity

objective function is mitigated by an application of block
diagonal upper bound (Wu and Fowler, 2006).

In this simulation, 150 independent replications are per-
formed under the following set of conditions. It is assumed
that loss of a sensor is an independent event of a known
probability of occurrence within each interval of sensor
state update. In particular, a probability of 0.05 is used
in the computation and the simulations of this paper. The
initial estimate of the emitter location is placed randomly
between 2 and 4 kilometers from the emitter. The initial
positions the two sensors in each pair are placed randomly
20 to 30 kilometers, and 30 to 40 kilometers from the from
the emitter, respectively.

The 4 items shown in Table 1 differ in sensor states and in
network configurations. The sample performance column
in the table is the sample mean over each of the computed
entropies of 150 replications. The numbers in Table 4.2
indicate significant performance recovery through network
reorganization upon a sensor loss, despite the conservative
estimate of the performance using upper bounding.

4.3 Tolerance to sensor loss through a probability-weighted
criterion

This set of simulations is used to compare the location
accuracy resulted from optimizing probability-weighted
criterion (13) with that resulted from non-weighted crite-
rion (6). 6 sensors (or three pairs) are involved. Signal-to
noise ratio is set at 8 ∼ 10dB, maximal speed is set at
150m/s, maximal acceleration is set at 10m/s2, and time

Table 1 : Summary of location accuracy comparison measured by
sample means of the calculated entropies of estimated covariances
in the distributions of estimation errors of sensor loss-induced
configurations of the 4-sensor network.

Network Configuration Sensor Velocity Performance

2-pairs, no sensor loss Initial velocity 3.9703

2-pairs, no sensor loss optimized under (6) 3.701

2-pairs , 1 sensor loss optimized under (13) 4.47

1-pair , 1 sensor loss optimized under (6) 7.459
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interval between state update is fixed at 10seconds. Initial
guess of emitter location is 2.5 ∼ 5 km away from the true
location. Each UAV is 50 ∼ 100 km away from the emitter
location. The initial velocity of UAV is 100 ∼ 150 m/s
with a random direction, and single sensor loss probability
within an update interval is varied from 0% ∼ 60%.

Figure 3 shows the comparison of the area of 50% con-
centration ellipses which are equivalent to calculated en-
tropies used in the previous subsection. As expected, the
location accuracy with optimal sensor state derived under
weighted-criterion (13) is extremely robust with respect
to a range of single sensor loss probability, and degrades
sharply under (6) as the sensor loss probability increases.

5. CONCLUSIONS AND FUTURE WORK

This paper uses entropy associated with the distribution
of the estimate of emitter location as a criterion by which
sensor velocities for the next round of TDOA/FDOA data
acquisition are optimized. Iteration between emitter loca-
tion estimation and sensor trajectory update has shown to
expedite the target location mission. The entropy criterion
was arrived at naturally due to its equivalence to volume
minimization of the ellipsoid (or area minimization of
ellipse), which is a commonly used measure of location
accuracy (Torrieri, 1984).

Tolerance to sensor loss is achieved through two ap-
proaches. (i) The entropy criterion used to determine the
next sensor velocities is weighed by the probabilities from
the distribution of surviving network structures derived
from the the single sensor loss probability. (ii) The network
is restructured to allow the single remaining sensors to
recombine so that they can continue to provide target
information after losing their partners.

Time-coordinated control of vehicles to their desired next
states is being considered. Algorithms for verification of
collision-free condition are also being developed.
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