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Abstract: The effect of supervisory control on a redundant database unit representing
a command and control (C2) system that supports air operations is investigated through
simulation. Several supervisory control policies are considered. They authorize restoration
and/or routing upon the failure of a server in the system. The performance of the modeled
system under these policies is evaluated based on the measures of system mean-time-to-failure
(MTTF), steady-state availability, expected response time, and overhead. The system is modeled
as a discrete event system using a simulation tool. In addition, a system update process is
implemented to ensure the currency of the information contained in the database unit.
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1. INTRODUCTION

The focus of this work is on studying the effect of su-
pervisory control (Cassandras and Lafortune [1999]) on a
number of important measures that pertain to C2 system
performance with a redundant architecture first proposed
and studied in Wu et al. [2005] where a database is parti-
tioned in a way that allows multiple servers to process cus-
tomers in parallel with information backed-up throughout
the system. The proposed architecture is shown in Fig. 1,
where the data are partitioned into the sets A, B, and C.
Customers entering the system are routed based on the
type of information they require.

To enhance fault-tolerance in the face of crash and site fail-
ure, and improve the responsiveness to queries, supervisory
control is applied to the partitioned database unit. The
response time and availability can be potentially improved
by strategically routing customers based on the state of the
servers. Supervisory control introduces policies that allow
the restoration of lost data and/or the routing of queries
based on the state of the information in the system.

The objectives of this work are to qualitatively analyze
the performance of the partitioned database unit under
supervisory control and varying structural parameters, in
terms of MTTF, availability, response time, and overhead,
based on the results obtained through discrete event
system (DES) simulation.

The paper is organized as follows. Section 2 describes the
database system, its operating policies, and its model.
Section 2 also summarizes the analytic results obtained
in Wu et al. [2005], and points out limitations of the ana-
lytic study. Section 3 presents the simulation model, and
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Fig. 1. Partitioned database unit.

comments on the results of cross-verification between the
analytic and simulation models. Section 4 presents main
results of database analysis via simulation, and highlights
the benefits of the simulation study that extended the
scope of the earlier analytic study by the authors in three
areas: removal of the finite query population restriction,
extension of the event life distributions beyond exponen-
tial, and introduction of the deterministic system update
process. Section 5 concludes the paper.

2. BACKGROUND

The presentation in this section is drawn from Wu et al.
[2005] to recapitulate aspects of modeling, control, and
performance analysis of the database unit shown in Fig. 2
(Wu et al. [2005]) to identify the limitations of the ana-
lytical method employed there, and to briefly describe the
extensions made in this paper.

2.1 System Model

The database unit to be studied is taken from Wu et al.
[2005], which is intended to be representative of a C2 sup-
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Fig. 2. Closed queuing network model.

porting system. A closed queuing network representation
of the unit is shown in Fig. 2. The information contained
within the system is partitioned into sets A, B, and C and
placed on three servers that exist in parallel to answer
three classes of queries A, B, and C, respectively. Server
SAB contains class A primary data and class B secondary
data. Server SBC contains class B primary data and class C
secondary data. Server SCA contains class C primary data
and class A secondary data. When a server fails, both its
primary and secondary data are lost. A server is ”down”
when either class of data are lost, and a system failure
occurs when two servers are down concurrently.

The queues preceding SAB , SBC , and SCA are named QAB ,
QBC , and QCA, respectively. They are of sufficient size
that no queries are lost or blocked and operate on a first
come, first serve (FCFS) basis.

The delay elements, each labeled λ indicating an aver-
age delay 1/λ, are representative of the response times
incurred at other nodes of the C2 supporting system which
are not modeled here. The three elements imply that there
are only three customers in the system at any given time, a
limitation of the Markov model in Wu et al. [2005] that is
to be removed in this study. Upon completion of processing
at a server, a customer returns to one of its delay elements,
and after a period of time, re-enters the system. Each time
a customer enters the system it is equally likely to require
information of class A, B, or C. Therefore, under normal
operating conditions, the routing probabilities ρAB , ρBC ,
and ρCA, where ρAB + ρBC + ρCA = 1, are given the
same values.

The model is built with the premise that event lifetime
distributions have been established for all the processes
involved. The delay process, or equivalently, query gener-
ation, has an exponential distribution exp(λ) ≡ 1 − e−λt,
where λ is the rate and 1/λ is the mean. The same is true
for the process of service completion (exp(µp)), the process
of server failure (exp(ν)), the process of data restoration
(exp(γ)), and the process of unit overhaul (exp(ω)), when
the entire unit is repaired due to system failure. All pro-
cesses are independent. Note that all rates and therefore
means are relative and carry the units time−1 and time,
respectively.

u1 u2 SAB ρAB ρBC ρCA

0 1 2 0 1/2 1/2

1 0 2 (1) 1/3 (1/3) 1/3 (1/3) 1/3 (1/3)

1 1 2 (1) 0 (1/6) 2/3 (1/6) 1/3 (2/3)

Table 1. Examples of routing probabilities.

2.2 Control Policies

To maximize the efficiency of the database unit under
server failures, two supervisory control inputs are intro-
duced based on the state information of the system. These
control actions alter the transition rates of the system
when data loss occurs in a server for the purpose of
improving performance. The necessary state information
is the current state of the servers. Define server state SAB ,
SBC , SCA ∈ 0,1,2 where ”2” ≡ both the primary data
and the secondary data are lost in a server, ”1” ≡ the
primary data have been restored but the secondary data
have not yet been restored, and ”0” ≡ the primary data
and secondary data in the server are both intact. A server
is failed, or in the down state, when either class of data
are lost, and is up when both the primary and secondary
data are intact.

Two supervisory control inputs, u1 and u2, govern restora-
tion and routing, respectively. The control input u1 allows
an intact server to halt its current process and restore lost
data in a failed server, and input u2 adjusts the routing
probability of customers based on the state of the servers.
Because of the symmetry of the model, the control inputs
and policies may be sufficiently described by the case
of only one failed server SAB , where the remaining two
servers must be intact for the system to be up. The control
inputs may be summarized as follows.

u1 =



0, SAB = 2,SBC serves,
SCA serves (no restoration)

1,


SAB = 2,SBC serves,

SCA restores class A data
SAB = 1,SCA serves,

SBC restores class B data

, (1)

u2 =



0, SAB = 2,
ρAB = ρBC = ρCA = 1/3

1,


SAB = 2, ρAB(2, u1),

ρBC(2, u1), ρCA(2, u1)
SAB = 1, ρAB(1, u1),

ρBC(1, u1), ρCA(1, u1)

, (2)

Recall the routing probabilities ρAB , ρBC , and ρCA. Under
supervisory control, these probabilities are dependent not
only on the routing control input u2 and the state of
the servers, but also on the restoration control input u1.
Table 1 shows three sets of routing probabilities.

The composition of u1 and u2 gives rise to four different
control policies. The case of (u1 and u2) = (0, 0) corre-
sponds to the case of a single point failure, and is therefore
not considered in the performance analysis. The control
policies in the other three cases are named

Policy 1: (u1, u2) = (0, 1) when a server is down,
Policy 2: (u1, u2) = (1, 0) when a server is down,
Policy 3: (u1, u2) = (1, 1) when a server is down.

(3)

Note that policy 2 does not permit routing, whereas policy
1 does not permit restoring. A special consideration with
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the case u1 = 0 is the rerouting of the customers who
have arrived at a server before the server fails to the delay
elements.

2.3 Analytic Results

The above system was first studied in Wu et al. [2005]
where the database unit was modeled as a closed Markov
queuing network. The performance of the system under
supervisory control was evaluated based on the perfor-
mance measures of mean time to failure (MTTF) of the
system, steady-state availability, expected response time,
and service overhead.

System failure is defined as the loss of a second server
before the restoration of a first failed server is completed.
MTTF is a measure of the life of the system. The MTTF
was found to significantly improve under policies 2 and 3,
apparently attributed to the introduction of restoration.
Availability, a measure of the percentage of time the
system is available to serve customers (i.e., not in a system
failure state), also improved under these policies.

The expected response time, defined as the length of time
a query spends in the upper portion of the system shown in
Fig. 2, also benefited from policies 2 and 3 for a sufficiently
high restoration rate γ. However, at low values of γ, the
system profited from not having to devote a majority of
its resources to restoring failed servers but simply servicing
customers with its two intact nodes under policy 1. Policy
3 showed slightly better performance than policy 2; this
advantage is expected to improve with the addition of
customers to the system.

Overhead is defined as the cost incurred by the system
for self-preservation. It is calculated as the ratio of time
invested in restoring the system to its overall busy time,
and does not include the overhaul process. As the failure
rate ν increased, policies 2 and 3 became expensive, and
surpassed the overhead associated with policy 1.

2.4 Limitations

The Markov model of the database unit presented in Wu
et al. [2005] suffered many limitations. The complexity
of the model was restricted by the need for a manage-
able number of states and the exponential event lifetime
distributions. A linear increase in either the number of
customers or the number of servers allowed in the system
causes an exponential growth in the number of states,
whereas any non-exponential event lifetime distribution
destroys the memoryless properties essential to a Markov
model, although many of the processes under consider-
ation are most adequately described by non-exponential
distributions.

A majority of database units require a periodic update to
the information contained within the system to maintain
the currency of the data. As seen in Fig. 2, Wu et al.
[2005] omitted the updating process to avoid the explosion
of the size of the state space due to the additional class
of customers and the non-Poisson nature of the update
requests.

Modeling the database unit by means of a simulation tool
enables us to remove the limit on the number of customers,

diversify the event lifetime distributions, and include the
update process.

3. SIMULATION MODEL

3.1 Discrete Event System Simulation

Modeling of systems in which the state variable changes
only at a discrete set of points in time is known as discrete
event system (DES) simulation (Banks et al. [2001]).
Simulation implies solving for the system variables through
numerical rather than analytic methods. Observations of
the variables collected throughout the history of the model
are stored and processed to evaluate system performance
measures. A major component in a discrete event system
simulation is the future event list which contains the
notices for all future events scheduled to occur. For each
event that occurs, beginning with the first event of the
simulation, durations are either computed or drawn from
a statistical distribution, and the end-event is added to
the future event list. The advantage of this method is that
every time instance need not be evaluated, allowing the
simulation to omit time intervals where the state of the
system does not change.

The simulation package used in this study is Arena R© Pro-
fessional Edition (Rockwell [2003]). Arena R© utilizes
an object-based design for graphical model development
(Banks et al. [2001]). Objects called modules are used
to model system logic and physical components such as
servers and queues. In addition, Arena R© provides methods
for statistical distributions, failure modeling, statistics col-
lection, and process analysis. Arena R© allows any number
of independent replications to be run for a simulation, with
the replication terminating upon a user defined condition.
System as well as user defined statistics are collected for
each replication and evaluated for the entire simulation.

In this study, the effect of supervisory control is evaluated
for MTTF, system availability, expected response time,
and overhead, as in Wu et al. [2005]. MTTF is evaluated
using the method of independent replications, whereas
system availability, expected response time, and overhead
are evaluated using the method of regenerative simulations
(Law and Kelton [2000]). All calculated performance mea-
sures are obtained from simulation with 100 replications
unless otherwise noted. The Process Analyzer is a tool in
Arena R© that allows a series of simulations (scenarios) with
varying system parameters (controls) to be run automati-
cally in succession and displays the chosen system outputs
(responses). This feature proved extremely useful in the
evaluation of multiple performance measures as a function
of varying system parameters.

3.2 Model Verification

The model shown in Fig. 2 and described in Section 2.1
was simulated via Arena R© under the supervisory control
policies presented in Section 2.2. The results from each
modeling method were compared for verification purposes.
The MTTF and availability corresponded between the two
simulation methods, as did the system overhead. However,
the expected response time calculated from simulation was
significantly lower due to the fact that the simulation
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Fig. 3. Expected response time of open queuing network
versus restoration rate.

calculation is not a steady-state measure. Response time
statistics are only able to be collected for customers that
enter and exit the system. Customers that are trapped
outside a failed system do not contribute to the calculated
response time. Therefore, only customers who are in a
server when the system fails will suffer the delay of the
overhaul process. The limited number of customers makes
this delay insignificant, resulting in lower response times
for the simulation model. This deficiency no longer exists
when an open queuing system is introduced in the next
section.

With a simulation model constructed and verified in
Arena R©, the limitations on the number of customers,
the event lifetime distributions, and the update process
discussed previously may now be removed, as presented in
the following section.

4. ANALYSIS VIA SIMULATION

4.1 Open Queuing Network

A fixed number of customers severely limits our ability to
fully observe the behavior of the system, but it is necessary
to model the database analytically. Simulation modeling
removes this restriction, and more realistic measures of
system performance are provided.

The system is modeled in Arena R© as the open queuing
network shown in Fig. 1 where customers enter the sys-
tem with an exponentially distributed inter-arrival time
exp(λ). The customers are removed from the system upon
service completion.

The MTTF and availability of the open queuing network
are statistically indistinguishable from that obtained in
the closed simulation model. The expected response time
however does increase significantly now that customers are
freely allowed to enter and accumulate in the system. The
benefits of routing control are apparent, as shown in Fig. 3.
Policy 3 realizes a lower response time with customers
routed strategically by supervisory control input u2. How-
ever, as failed servers are restored at a higher rate, the
advantage of policy 3 decreases. Routing control becomes
less beneficial because queue lengths do not grow as large
at failed servers.

Fig. 4. Overhead of open queuing network versus failure
rate.

Overhead is less sensitive to the type of queuing network.
The values shown in Fig. 4 correspond to those obtained
analytically in the closed queuing network. The overhead
of policy 1 is unaffected by an increase in the rate of
failure because the system is never required to restore
itself. Restoration is beneficial at low failure rates, how-
ever, beyond some threshold, it becomes expensive to the
system.

4.2 Generalized Distributions

Simulation of the database unit permits the removal of the
limitation to exponentially distributed event lifetimes. The
exponential distribution has a constant failure rate and
therefore is unfit for many event lifetimes. For example, a
component with a failure process described by an exponen-
tial distribution has a constant failure rate and is therefore
probabilistically always as good as new, regardless of its
age (Trivedi [1982]), while in reality, most components
are more likely to fail as they age. For the distributions
described below, parameters such as the shape parameter
α and the scaling parameter β, are chosen to provide a
mean equivalent to that of the exponential distribution
previously used.

The arrival process lifetime remains exponentially dis-
tributed (exp(λ)). Often systems undergo certain ”busy”
periods, but for the purposes of this study, customers will
arrive at a constant rate. The gamma distribution is often
used to represent the time required to complete a task
(Kelton et al. [2004]) and is therefore used to describe the
process of service completion (gamma(1/αβ = µ)). A com-
ponent lifetime is better described by a distribution that
reflects the age of the component. The Weibull distribution
has a rate that varies with time, and is used to describe
the failure process (Weibull(α, 1/β = ν)). For α > 1, the
probability of failure increases with age. Triangular distri-
butions with mode m are used for the restoration process
(tria(1/m = γ)) and the overhaul process (tria(1/m = ω))
because these event lifetimes are relatively deterministic.
The time required to restore a known amount of data
should not vary significantly.

With the failure event lifetime now dependent on time,
the MTTF and availability of the system, as shown in
Table 2, is expected to decrease. This is true for the policies
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MTTF Availability

Policy Expo. Gen. Expo. Gen.

1 169 172 .61 .62

2 317 244 .71 .69

3 317 265 .71 .69

Table 2. Comparison of exponential (Expo.)
and generalized (Gen.) distributions.

Fig. 5. Expected response time versus restoration rate
using generalized distributions.

involving restoration; however it is not the case for policy
1, which is unaffected. For policies allowing restoration,
the MTTF is dependent on a failed server recovering
before another failure occurs. A time dependent failure
rate causes failures to occur more closely (assuming the
lifetimes begin concurrently), increasing the likelihood of
overlapping failures, and reducing the MTTF. Policy 1 is
unaffected because the failure of a second server always
results in a system failure. The MTTF obtained for policy
1 under each type of distribution is statistically equal
because the mean values of both distributions are equal.

Expected response time decreases under the generalized
event lifetime distributions, as shown in Fig. 5, however
the values follow the same trend as those shown in Fig. 3.

Overhead is shown in Fig. 6 for the generalized distribu-
tions. Comparison with Fig. 4 shows a decrease over that
observed from the use of exponential distributions. Using
the Weibull distribution, servers are more likely to fail as
they age, resulting in less time devoted to restoration in the
early stages of their lifetime. As the system ages, more si-
multaneous failures are likely to occur. When failures occur
close together, the time a server spends restoring another
server decreases because the overhaul process takes over
to restore the system.

4.3 System Update Process

In order to keep the information stored in the database
unit current and useful, the system must be periodically
updated. While an overhaul of the system will update the
data, system failure should occur infrequently, resulting in
the need for a system update at a steady interval in the
form of an update entity.

Update entities arrive at a deterministic rate, with the
inter-arrival time being the acceptable age of the infor-

Fig. 6. Overhead versus failure rate using generalized
distributions.

Fig. 7. Age of data versus the update interval.

mation in the system. An update entity is sent to each
server and becomes the first in-line at the queue. Both
the primary data and secondary data for each server are
contained on the update entity. It follows that the time to
process an update entity is described by twice the restora-
tion process distribution. A server is unavailable while
processing an update entity. An update entity arriving at
a failed server will restore that server, a significant benefit
to policy 1, as well as the remaining policies, under which
servers no longer have to restore a failed server that is
processing an update entity. It is important to note that
an update to a server does not reset the lifetime of the
component.

The update interval only partially determines the age of
the data in the unit. The data, on average, will only be as
old as the minimum of the update inter-arrival time or the
MTTF, which will result in the system being overhauled
with current data. The age of the data contained within
the database unit is shown in Fig. 7 versus the update
interval. At low intervals, the data is as old as the inter-
arrival time. As the interval increases, the age of the data
reaches a maximum of the MTTF of each policy given in
Table 2. At these high intervals, the data is being updated
only by the system overhaul process.

The update interval has a significant impact on the avail-
ability of the system, as shown in Fig. 8. As the update
interval increases, the system is more available to answer
queries. Availability increases until the update interval is
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Fig. 8. Availability versus the update interval.

Fig. 9. Expected response time versus the update interval.

so large it neither improves MTTF nor hinders processing
queries, and it reaches the steady-state value given in
Table 2. Policy 1 enjoys a higher availability at low update
intervals because failed servers are being restored by the
update process, which, on average, is 2.5 times faster than
the overhaul process. Beyond an update interval equal to
its MTTF, policy 1 no longer benefits from restoration pro-
vided by the update process and its availability diminishes
slightly.

Frequent system updates tax the resources of the database
unit causing an increase in the expected response time,
as shown in Fig. 9. As the update interval increases, the
customer service interruption caused becomes negligible,
and the expected response time reaches the values shown
in Fig. 5. Policy 1 experiences a substantial increase in
expected response time at a low update interval because
many times only two servers are available to process
queries. The impact on expected response time is more
severe when those servers are interrupted to process up-
date entities.

Updating the system is considered time invested in main-
taining the database unit. Therefore, the expression for
overhead θ in Wu et al. [2005] is modified to

θ ≡ Pr[M |N ]
Pr[P |N ]

(4)

where M ≡ SAB restores or fails or updates, N ≡ unit
is not failed, and P ≡ SAB restores or fails or updates or
serves.

Fig. 10. Overhead versus the update interval.

Overhead improves as the update inter-arrival time in-
creases, as shown in Fig. 10. Restoration of failed servers
by an update entity is not assessed as overhead for policy
1 because the database unit is failed during this time.
Therefore, overhead is significantly lower for policy 1.

5. CONCLUSION

The use of discrete event system simulation allows the
removal of limitations imposed by having to represent
a database unit analytically as a Markov model. A
more practical system may be evaluated that includes
an open queuing network, dynamic event lifetime dis-
tribution rates, and an update process. This paper has
modeled and evaluated a database unit representative of
a C2 supporting system under several supervisory control
policies. The effects of restoration (u1) and routing (u2)
were assessed based on measures of fault-tolerance and
responsiveness. While restoration remains more beneficial
than routing, the benefits of routing control are slightly
more visible for an unlimited-sized population as compared
to the results obtained in Wu et al. [2005]. The addition of
an update process, while necessary, weighs heavily on the
performance of the system.
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