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Abstract: The control of active suspension systems is described in many publications over the last 
decades. However, often only idealized linear models are used for control design and simulations, what 
can lead to wrong conclusions regarding controller performance and energy costs. Therefore, this paper 
presents a nonlinear passive suspension model of a quarter car test-rig currently built up at the Institute of 
Automatic Control which can be extended with models of active elements. Furthermore it is lined out, how 
a robust controller can be synthesized for this system. For this purpose the nonlinear model is linearized 
around the equilibrium point and parametric model uncertainties are introduced together with performance 
weighting functions. In order to include the influence of the variable chassis payload into the design 
process, a trim point uncertainty is added which completes the structured uncertainty model. With this a 
modern robust control design approach using the structured singular value can be presented, considering 
different chassis masses and their influence on the linearization point. Finally it is demonstrated, how 
robust performance or robust stability can be analyzed if a linear controller already exists. 

 

1. INTRODUCTION 

Active suspension systems play a more and more important 
role in the automotive industry because they can ease the 
conflict between passenger comfort and ride safety what can 
be done by passive systems only in a very limited way. 
Therefore a quarter car test-rig of a quadricycle is currently 
built up at the Institute of Automatic Control which offers the 
possibility to analyze different semi-active and active 
suspension configurations and control approaches.  
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Fig. 1. Linear active suspension model 

There exist several ways of modeling the system, the most 
simple of which is a linear quarter car model as it is shown in 
Fig. 1 and  presented in innumerable books and papers, e.g. 
(Mitschke et al., 2004). However, here a model should be 
developed which reflects the system behavior in a quite exact 
way in order to allow for a control design which can be 
directly applied to the real test-rig. For this purpose either a 
black box model can be experimentally identified or a 
physical nonlinear model must be derived.  

For this study a physical nonlinear model of the suspension is 
chosen because it offers the advantage that not only arbitrary 
control laws but also changes in the test-rig configuration can 

be quite realistically examined in simulations before applying 
them to the real system. However, even a nonlinear model is 
still only an approximation of the real system using several 
simplifications and idealizations in order to limit model 
complexity. Furthermore some parts of the model, like 
spring, damper or friction characteristics, can only be gained 
by identification. Nevertheless, once the model is built up and 
validated, it represents an excellent simulation tool. 

As beneficial as a nonlinear model may be for simulation 
purposes, as problematic can it be for controller design or 
analysis because many classical design approaches demand a 
linear model. That is why in this paper also the linearization 
of the nonlinear model around the equilibrium point will be 
presented. For linear models there exist plenty of active 
suspension control methods. In (Venhovens, 1993) a good 
overview over different designs and configurations can be 
found. There also exist several robust control approaches 
using either ∞  (e.g. Fialho et al., 2000) or H μ  methods (e.g. 
Lauwerys et al., 2004). Those approaches focus on the linear, 
with parametric or dynamic uncertainties augmented system 
in Fig. 1. In comparison to that, in this paper robust control 
methods are outlined which deal with an uncertain linear 
model that is derived from the nonlinear one. Hence, it 
depends on the equilibrium point which again is a function of 
the variable payload. The robustness analysis or controller 
synthesis is accomplished with the structured singular value 
using a structured uncertainty model which contains different 
types of uncertainties.  

In order to come up for neglected higher order dynamics, 
nonlinearities and other modeling errors, a multiplicative 
system input uncertainty is added to the model. The nominal 
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spring and damper constants are augmented with own 
parametric uncertainties, because they can show high 
nonlinear behavior (bendings in the spring characteristic, 
damping constant dependent on direction and manual pre-
configuration).  

Now the fact that the equilibrium point and the system 
dynamics are a function of the chassis payload, e.g. the driver 
mass, must be considered. If no gain-scheduling is applied on 
the controller, the robustness with respect to those payload 
variations must be challenged. Therefore the dependency of 
the model on the chassis mass is included into the model 
using a trim point uncertainty. By that a very modern and 
effective way of synthesizing or analyzing robust controllers 
for active suspensions is demonstrated. Another application 
of this trim point uncertainty concept can be found in 
(Herrnberger et al., 2007) where it is used for the robustness 
analysis of a flight control system. 

2. NONLINEAR SUSPENSION MODEL 

The nonlinear suspension model is based on the nonlinear 
quarter car structure depicted in Fig. 2. Although it is 
nonlinear, still some assumptions are made, e.g. that the 
masses are lumped in two chassis and wheel point masses 
and that there is only one friction force acting parallel to the 
spring, damper and actuator forces.  
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Fig. 2. Nonlinear active suspension model and forces 

2.1  EQUATIONS OF MOTION 

The differential equations of motion can be derived with 
Lagrange mechanics (Goldstein et al., 2002). Details on the 
calculations can be found in (Mäder, 2007). A logical choice 
for the generalized coordinates is 

T][ ϕCz=q . (1) 

The kinetic energy T  of the system contains the kinetic 
energy of the two point masses. 
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The term for the potential energy is set to 0 here because the 
first source of potential energy, the gravity, is not part of the 
model due to the fact that only motions around the 
equilibrium point are treated; the second source, the spring 

force, is classified as nonconservative in order to allow for a 
nonlinear spring characteristic. Beside the spring forces, the 
nonconservative forces also contain the damper, friction and 
actuator forces. They are summed up as "suspension force" 

 and "road force"  (see Fig. 2). SF RF

In the y-z-frame the nonconservative force vectors can be 
represented as 
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what leads to the generalized nonconservative force vector  
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with ( )ϕϕ cos2)( 22
TATASS llllll ++==  where ir  represents 

the positions of the force application points. According to 
Lagrange's equation 
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the equations of motion of the suspension system can be 
derived with ( )( )WCSS mmmm ⋅+== ϕϕ 2cos)(  as 
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Finally the nonconservative forces are defined in (7). Here 
for the road force, linear spring and damper characteristics 
are assumed (which can be replaced by a better model later), 
while for the suspension force a nonlinear characteristic is 
considered. The latter can be identified in experiments.  
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(7) 

As it can be seen in (7), the nonconservative forces depend 
on the equilibrium point which is marked with the index 0. 
The equilibrium point itself is a function of the chassis mass 
which changes with the payload.  

2.2  FRICTION MODEL 

The friction force Fric  in (7) is calculated with a friction 
model proposed in (Canudas de Wit et al., 1995) which uses 
Coulomb and Stribeck friction.  

F
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The details of the friction model in (8) should not be 
explained here as it represents not the main contribution of 
this paper. It should only be mentioned that it works with 
delayed static and Stribeck friction values in order to take 
lubrication film dynamics into account (e.g. hysteresis). 
Although the model is quite complicated it provides more 
realistic results than only using static and vicious friction. 
Not all parameters were exactly identified, yet, but Fig. 3 
shows the friction force for a specific relative velocity profile 
with estimated parameters. 
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Fig. 3. Friction characteristic 

3. LINEARIZATION OF THE STATE SPACE MODEL 

As mentioned above, for the controller design / analysis 
presented in this paper a linear model is needed. Therefore 
the system from (6) is linearized in the equilibrium point of 
the suspension system which is defined by (9). Details and 
the full equations again can be found in (Mäder, 2007).  

( ) ( )( ) ( ) gmlllF CSTAS ⋅=⋅⋅+⋅ 00,000, /cos2 ϕϕϕ  (9) 

Measurements showed that °= 750ϕ  for a chassis mass 
. If the nonlinear system is described by the 

nonlinear state space model 
kg45=Cm
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where  and  are defined by the equations in (6), 
then the in the equilibrium point linearized model can be 
written as 
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The matrix elements of  are found to be A
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where the ),( 0ϕCii mKK =  are constants for a certain 
equilibrium point. The spring and damping constants 0C  and 

0C  , which result from the suspension force in (7), need not 
consequently be the exact derivatives of the characteristics at 
the equilibrium point, but can also be user-defined mean 
values. The parameter 0Cd  also contains the viscous damping 
coefficient which results form the linearized friction force.  

c
d

 4. ACTUATORS AND SENSORS 

For the active control of a suspension system an active 
element must be added, of course. For the test-rig a special 
linear motor will be used. While the exact nonlinear actuator 
modeling is often worth an own paper, here, for the first 
preliminary studies, the actuator will only be modeled as a 
simple linear second order system with time delay. By that, at 
least the most crucial actuator properties should be taken into 
account. The time delay τ , which is modeled as 1st order 
Padé approximation, represents the digital signal processing 
delays. Thus, the actuator is defined by 

)12( 22
)2/1(
)2/1( ++⋅= +

−
ActActActs

s
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For the sensors equivalent second order systems with time 
delay are used. In the course of the test-rig project the 
actuator and sensor models will be improved. 

5. UNCERTAINTY MODEL 

For the design / analysis of a robust controller the linearized 
model of (11) is augmented with uncertainties and weighting 
functions. Most of the theory of uncertainty modeling and 
robust control design can be found in (Balas et al., 1998), 
(Skogestad et al., 1996) or (Zhou et al., 1996). The basic 
procedure will only be briefly presented here because it is 
extensively investigated in many publications. 

At first the system output must be chosen for feedback. 
Usually the chassis acceleration C  (or velocity C  or 
position C ) and the suspension deflection, which is here 
characterized by the angle 

z&& z&
z

ϕ , are used because they can 
rather easily be measured. By taking e.g.  as 
output, the state space model of (11) can be completed: 

T][ ϕCz&&=y
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5.1  MODEL UNCERTAINTIES 

As it was mentioned in the introduction, due to nonlinear and 
by the driver switchable characteristics, the nominal 
suspension spring and damper constants are augmented with 
own parametric uncertainties, 

( ) ( ,1and1 0000 ddCCccCC ddcc δηδη +=+= )  (15) 

where 00 , CC dc  are the nominal mean values, dc ηη ,  are the 
multiplicative uncertainty weights and dc δδ ,  are the 
uncertainty variables, fulfilling 1≤iδ .  The mean values 

00 , CC dc  and the uncertainty weights dc ηη ,  can be modeled 
as functions of C , too. The weights must be chosen in such 
a way that they cover all values the parameters may assume 
in a sufficient large range around the equilibrium point. 

m

To come up for the linearization errors in (11), the neglected 
higher order actuator dynamics in (13) and other possible 
parametric uncertainties ( Wc  etc.) a complex uncertainty is 
added in the actuator input channel. The augmented system 
can be transformed into a so called linear fractional 
representation (LFR) by adding new virtual inputs and 
outputs (Balas et al., 1998), as it is shown in Fig. 4. 

 
Fig. 4. Actuator input uncertainty and actuator LFR 
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5.2  TRIM POINT UNCERTAINTY 

Until now the uncertainty modeling has only been done for 
one equilibrium point. Hence, in order to guarantee 
robustness for all possible chassis masses, either the 
controller synthesis / analysis must be done multiple times 
for a sufficient big set of possible masses or the chassis mass 
variation is included into the model with the help of a trim 
point uncertainty. Then with one single analysis / synthesis, 
the whole payload range can be taken into account. 

As it was already outlined in (Herrnberger et al., 2007) for 
another application, the idea behind the “trim point 
uncertainty” is to approximate the dependency of the nominal 
system parameters on  by algebraic functions and to 
parameterize these functions with a variable 

Cm
TPδ  in such a 

way, that the whole range of trim values is covered when 
varying TPδ  from -1 to 1. Here the expression trim point is 
equal to the equilibrium point. 

It should be mentioned that the uncertainty modeling can also 
be done in a more automated way with symbolic calculations 
which can also lead to uncertainty models of lower order, as 
it is proposed e.g. in (Hecker, 2007). However, in order to 
enhance the insight into the process and to make it more 
independent of special toolboxes, here the modeling is 
demonstrated in a more classical step-by-step way. 

Combining (12) and (15) it can be seen that every single state 
space matrix element of A , , C , B D  can be represented by 
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whereby  are trim point dependent constants and the 
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following the modeling will only be presented for the A -
part, because the procedure is the same for ,  and B C D . If 
now, having according to (9) )(fct0 Cm=ϕ  in mind, the trim 
range of  is mapped to a trim point uncertainty variable Cm
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then the values of the parameters  along the trim 
range can be approximated e.g. with rational functions which 
can be computed via least mean square regression for a set of 
trim points: 
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Fig. 5. Trim point approximation with rational functions 

For this system rational functions allow for quite good 
approximations of  with neglectable errors, as it can 
exemplarily be seen in Fig. 5 for  (x = five real 
values, solid line = approximation), and provide smaller 
uncertainty model dimensions than more complicated 
functions. Now, after substituting , in the 
state equations new virtual inputs  and outputs 

 can be added in order to separate the 
uncertainty variables in an own uncertainty matrix (as it was 
done in (16) and Fig. 4). 
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Finally a LFR of the suspension state space model can be 
created which contains the known constant values in S  and 
all the c

P
δ , dδ  and TPδ  uncertainty variables in a sorted 

arrangement on the diagonal of S  (see Fig. 6). By merging 
the actuator LFR, the suspension system LFR and the sensor 
transfer functions, it is possible to represent the whole system 
together with a controller  in a closed loop LFR (Fig. 6). 
For more details (Herrnberger et al., 2007) can be consulted. 

Δ
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Fig. 6. Uncertain subsystems and closed loop LFR 

6. CONTROLLER SYNTHESIS AND ANALYSIS 

Basing on the closed loop LFR in Fig. 6 it is now quite easy 
to synthesize a robust controller or analyze an existing one 
via the µ methods. If a robust controller shall be designed, at 
first performance weighting functions must be added to the 
signals and  in order to normalize the transfer functions 
according to the performance requirements. Here  d  denotes 
the disturbances which enter the system (road excitation and 
measurement noise), whereas  represents the error signals 
which should be minimized (e.g. the chassis acceleration or 
the dynamic wheel load). The frequency weighting functions 
are necessary because it is not possible to reduce all transfer 
functions from to  in the same frequency range with the 
same magnitude. However, since it is not the focus of this 
paper to explain the definition of the weighting functions, it 
shall be referred to (Fialho et al., 2000) where a very good 
example for the design of the weights is given. 

d e
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After adding the weights, which creates a new weighted error 
signal  and an extended system , a complex 
unstructured "fake" uncertainty  can be added to the 
system which connects the signals d and , see Fig. 7a. By 
that the robust performance problem can be treated as a 
robust stability problem (Balas et al., 1998).  Then the design 
of the robust controller can be performed using the D-K-
iteration, e.g. in Matlab, which is a numeric approximation of 
the µ synthesis and, due to the structured uncertainty matrix 

, less conservative than the  design. It 
should be mentioned, that the trim point uncertainty can add 
some conservatism to the design when it is extrapolated to 
values 

we w
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1>TPδ , as it may be the case during the synthesis 
process. Here a skew-µ approach could be helpful which 
limits TPδ  to the range between -1 and 1. 

If already a controller exists, the robust performance of which 
should be proved, then standard numeric µ analysis can be 
applied on the block diagram shown in Fig. 7b. To generate 
the system , the controller  is included into the 
system via a lower linear fractional transformation: 
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If only the performance loop with F  is considered ( CL  is 
empty) and, by definition, 
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Mathematically µ is defined as the reciprocal value of the – 
in terms of the H∞ norm – smallest perturbation  which 
drives the system to the border of instability. This happens 
when the determinant in (22) vanishes. Thus, the system is 
robust stable if (and only if) µ < 1 for all frequencies. 
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Fig. 7. LFR setup for a) µ synthesis, b) µ robust performance 
analysis, c) µ robust stability analysis 

If only the robust stability of the controlled system must be 
examined, then only the part 11  of CL , which is 
connected to , is used for µ analysis, see Fig. 7c.  

M M
CLΔ

7. ANALYSIS EXAMPLE 

In order to illustrate the concept of trim point uncertainties a 
simple example for C -feedback should be given. As 
described in (Mäder, 2007), the use of velocity feedback is 
not the best but a quite effective method compared with the 
simplicity of the approach. This example only focuses on the 
robust stability analysis in order to illustrate the effectiveness 
of the approach. For the first test a chassis mass variation 
from 45 kg to 125 kg was assumed (45 kg for no payload, 
125 kg with driver / payload). The approximation with 
rational functions works excellent for this system, as shown 
in Fig. 5.  

z&

At first some nonlinear simulations were performed for 
different chassis masses and controller gains. Some of the 
parameters were estimated (e.g. for the friction model), 
because the model identification hasn't been completed, yet 
( 19=Wm , 90000=Wc , , 400=Wd 32200=Cc , 1000=Cd , 

14.0=Tl , 3.0* =Tl , 295.0=Al , , 02.0=ActT 002.0=Actτ , 
1=Actd ). For the street profile real measurement data was 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6281



 
 

 

used. The simulations showed that for  the system 
becomes unstable for controller gains , whereas 
for  an  could be allowed. Furthermore 
in Fig. 8 the simulation results of the passive and the active 
configuration for  and 

45=Cm
7000−≤R

85=Cm 11000−≥R

45=Cm 3000−=R  were plotted. The 
active system yields a much better performance (the actuator 
forces were rather high, but not unrealistic). 

For the stability analysis, first the parametric uncertainties 
were set to 0, using only a dynamic uncertainty 

 (i.e. 5% input uncertainty for low 
frequencies), in order to come up for linearization errors. Fig. 
9 plots the 

)400/()20()( ++= sssg

μ  upper and lower bounds for the same 
controllers that were examined in the simulations above: for 

, with  the system is robust stable 
(

]125;45[∈Cm 5000−=R
1<μ ) and for  unstable (7000−=R 1>μ ); for 

, with  the system is still stable 
again. The results show, that simulation and analysis match 
very well which proves the presented methodology to be a 
promising approach. 

]125;80[∈Cm 10000−=R

In a final test the both parametric spring and damper 
uncertainties were set to 40% (which covers relevant 
deviations) and the input uncertainty was increased to 20% 
for low frequencies (which is a rough empirical value), in 
order to take also modeling errors into account. For this case, 
the controller gain had to be set to  to preserve 
robust stability. But also for this gain, the vibration control 
works still quite well on the nominal system, as it can be seen 
in Fig. 8. 
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Fig. 8. Simulation of : passive vs. active system  )(tzC
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Fig. 9. µ-bounds for -feedback for different controllers Cz&

8. CONCLUSIONS 

For an active suspension test-rig a nonlinear model was 
derived and linearized in the equilibrium point. Using the 
concept of trim point uncertainties, the theoretical basics for 

some innovative robust µ synthesis and analysis methods 
could be outlined which take the variation of the chassis mass 
into account. The idea was illustrated with a robust stability 
analysis example. Future work will treat the exact 
identification of all system components and the comparison 
of different controllers with the proposed methods. Finally 
the developed control designs must be validated by testing 
them on the test-rig or even a real quadricycle. Furthermore 
the approaches can be improved by using e.g. skew-µ 
synthesis or gain-scheduled and nonlinear controllers. 
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