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Abstract: We investigate the scalability of networked estimation under contention-based
medium access. In our set-up, the state of a number of identical first-order linear plants are
measured and transmitted over a shared medium. Each sensor transmits its readings to a
supervisor node that maintains a continuous-time state estimate for the associated plant. When
the medium access delay exceeds the sampling interval, measurements are discarded and replaced
by more recent ones. Our analysis of the shared channel determines the probability of packet
loss as a function of the sampling interval and the number of contending nodes. We compute the
estimation distortion with periodically generated samples as a function of the packet loss rate
and sampling interval, and derive a condition for stable estimator performance. We investigate
the scalability limits of this stability as a function of the number of nodes. When stable
estimation is possible, we provide a procedure that computes the sampling rate that minimizes
the average estimation distortion. We reproduce the analysis of estimation performance when
the sensors sample asynchronously according to independent Poisson counters.

1. INTRODUCTION

In networked control systems, constraints on the com-
munication between sensors and supervising agents or
controllers affect the system design. The communication
constraints are sometimes reflected as a trade-off between
reliable delivery of individual data packets and the input
data load on the communication medium. Such a trade-
off occurs when several sensors have to contend over a
common wireless channel. When one or more nodes in-
crease the rate of accessing the channel, the contention
becomes more intense and the probability of packet col-
lisions increases. On the other hand, for the estimation
or control process, the objective is to have packets with
measurements arrive at the destination nodes at as high
a rate as possible. So, at very low rates of accessing the
channel, the probability of collisions is minimized and
the portion of packets delivered successfully is the best
possible. At very high access rates, the large amount of
contention makes the rate of successful delivery of packets
very small. This report contains some simple calculations
that shed some light on how to choose the rate at which
sensors access the shared channel so as to obtain the best
estimator performance.’

1.1 Related work

State estimation is an important component in most mod-
ern automation systems, with applications in monitoring,
? This research was partially funded by the Swedish Research
Council, the Swedish Foundation for Innovation Systems, and the
European Commission.

fault diagnosis and control. Driven by the strong interest
in networked control systems, the problem of Kalman
filtering under packet losses Sinopoli et al. [2004] and
varying sampling rates Micheli and Jordan [2002] has
received considerable attention. This work is related to the
research on systems with uncertain observations in the 70’s
(e.g. Hadidi and Schwartz [1979]) but contains new insight
into stability properties of the estimation error covariance.
The dual problem of control of systems under packet losses
has also received some attention, see e.g. Gupta et al.
[2005] and the references therein.

Papers that shed light on the scalability of networked
estimation by studying the interaction between networking
and controller co-design are more scarce. Various contri-
butions include Xiao et al. [2003], Adlakha et al. [2007],
Branicky et al. [2003], but none of these includes the
intricate relationships between channel access rate and the
packet loss probability that occur under contention-based
communications. Analytical performance studies of de-
lay distributions for contention-based MAC schemes turn
out to be non-trivial. Under the assumption of saturated
sources, Bianchi [2000] developed effective analysis tech-
niques for 802.11 access points. Sensor networking appli-
cations, however, typically do not operate under saturated
traffic but with sporadic and correlated traffic. Extensions
to this case have recently been proposed in Pollin et al.
[2007], Stabellini and Proutiere [2007].
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Fig. 1. The estimation problem setup: N identical plants
estimated via samples transmitted over a shared chan-
nel. Samples could be lost because of contention.

2. ESTIMATION OF A LINEAR SYSTEM

On the time interval [0,∞), consider the scalar linear
system:

dxt = axtdt + dWt, (1)
with Wt being a standard one dimensional Wiener process
independent of x0. A sensor measures this process exactly.
It samples the state waveform and transmits the samples
as data packets over a medium shared with other nodes.
Each data packet could be lost due to collisions as well as
due to the inherent unreliability of the channel. Here, we
focus exclusively on the effect of collisions.

We assume that the binary process of losses or successful
deliveries of packets from a sensor node is an IID process.
The probability of a packet being lost depends on the
channel access rates of the nodes, and on the amounts of
noise and fading in the channel. In most of the expressions
that follow, we will suppress this dependence and use the
plain symbol p for the packet loss probability.

3. PERIODIC SAMPLING

When the sensor samples the x-process periodically, we
get a periodic stream for input to the shared channel.
The stream of packets received at the supervisor on the
other hand is not periodic. The sequence of times between
arrivals of the packets is an IID process and each member
of this sequence has a discrete geometric distribution.

Let the sampling period of sensors be h, and the sequence
of times at which packets arrive at the estimator be:

{R0, R1, R2, . . . } ,

with R0 = 0. Let lt denote the process that denotes the
time of last reception of a packet:

lt = inf
i
{Ri |Ri ≤ t} .

The periodic sampling at the sensor and the IID loss model
for packets mean that ∀i ≥ 1,

P [Ri+1 −Ri = nh] = (1− p)pn−1, ∀n ≥ 1.

The average time-interval (denoted henceforth by the
symbol δ̄R) between reception of packets is :

E [Ri+1 −Ri] =
∞∑

n=1

(1− p)pn−1nh =
h

1− p
∀i.

The least-squares estimate x̂t at the supervisor is given by:
x̂t = xlt × ea(t−lt). (2)

3.1 Quality of estimation with lossy samples

We will measure the real-time throughput for the estima-
tion problem directly through the average squared distor-
tion in the supervisor’s estimate:

JEstim , lim sup
M→∞

1
M

∫ M

0

E
[
(xt − x̂t)

2
]
dt.

In order for the estimation distortion to be finite, we need
the following condition to be satisfied:

2a <
1
h

ln
(

1
p

)
(3)

When the above condition holds, the distortion can be
computed to be:

JEstim =
1

δ̄R

∞∑
n=1

(1− p)pn−1

{
e2anh − 1

4a2
− nh

2a

}
,

=
1

4a2h

(1− p)2pe2ah

p (1− pe2ah)
− 1− p

4a2h
− 1

2a
.

Note that in the above analysis, we have assumed that if a
sample is transmitted, it is transmitted practically at the
sampling time. This is not quite true as will be clear in the
next section. Nevertheless, in adopting this position, the
resulting loss of accuracy is tolerable because the intervals
between successful receptions of packets at the estimator
are dominated by the multiples of sampling periods over
which no successful transmission happens; the fraction of a
sampling period that is needed in addition can be ignored.

4. PACKET LOSS RATE AND THE SAMPLING
RATE

4.1 Description of the MAC protocol

Each sample generated by sampling the sensor is trans-
mitted over the common channel using slotted ALOHA
as the MAC protocol. The competition for accessing the
channel is from similar nodes. More precisely, there are
assumed to be exactly N − 1 other nodes each measuring
an identical linear plant and sampling at the same rate.
The N different plants are statistically identical, but their
driving noise processes are mutually independent. In addi-
tion to sampling at identical rates, the nodes also sample
at exactly the same times. Such an assumption allows us to
compute the packet loss rate under slotted ALOHA. The
rate thus computed is then an upper bound on the loss
rate one would get as a result of staggered transmissions.
The main point of this assumption is to have a reasonable
yet tractable model for the contention phenomenon. Note
that, in our model, a packet transmitted in a slot can be
lost only due to collision with a packet transmitted by
another node during the same slot.

4.2 Computing the packet loss rate

We will now proceed with the mission of finding the
dependence of the packet loss rate p on the sampling
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period h. We assume that the nodes can detect collisions
of data packets either by some collision sensing mechanism
or by receiving acknowledgements upon successful trans-
missions. We denote by L, the duration which includes
the length of one data packet and some addition time
needed for any acknowledgement packets. In the numer-
ical calculations which we present later, we have assumed
the nominal value of 1ms for L. Then, over the interval
between two successive sampling instants at sensor nodes,
the number of slots available for attempted transmissions
equals

S (h) =
⌊

h

L

⌋
.

We number the slots from 0 up to S(h)− 1. Under slotted
ALOHA, each of the nodes employs an identical random-
ized strategy for packet transmission during every slot
until either the number of slots runs out or the packet
has been successfully transmitted. During each slot, if the
packet at a node is still to be transmitted, then, with prob-
ability qtr the node attempts transmission. The event that
one node decides to attempt transmission is independent of
a similar decision at any other node or whether any other
node has already successfully transmitted its packet.

If at the beginning of any slot, there are n nodes that
are yet to successfully transmit their packets, they are the
only potential contenders for the channel. The probability
that a successful transmission happens during this slot is
exactly equal to

nq
tr

(1− q
tr

)n−1
.

Let us use the symbol a
n

to denote this probability. For
1 ≤ k ≤ N , the number of slots required for exactly k of
the nodes to have successfully transmitted their packets is
the sum of independent geometric random variables:

k∑
i=1

1 + τi,

where, τi is a geometric random variable taking values on
the set of non-negative integers with its PMF given by:

P [τi = j] = a
N−i+1

(
1− a

N−i+1

)j ∀j ≥ 0.

Let πk denote the probability that during a sampling
period, exactly k nodes succeeded in transmitting their
packets. We have ∀k such that 1 ≤ k ≤ N − 1,

πk = P

[(
k∑

i=1

τi

)
≤ S (h)− k

]

− P

[(
k+1∑
i=1

τi

)
≤ S (h)− k − 1

]
. (4)

We have appropriate formulas for the special cases when
k = 0, 1, N :

π0 = P [τ1 > S (h)− 1] = (1− a
N

)S(h)
,

π1 = P [τ1 ≤ S (h)− 1]− P [τ1 + τ2 > S (h)− 2] ,
= 1− π0 − P [τ1 + τ2 > S (h)− 2] ,

πN = P

[(
N∑

i=1

τi

)
≤ S (h)−N

]
.

We also have the following formula for 2 ≤ k ≤ N − 1:

P

[(
k∑

i=1

τi

)
≤ S (h)− k

]

=

(
k−1∏
m=0

a
N−m

)
×

k−1∑
i=0

(
1− a

N−i

)k−1 −
(
1− a

N−i

)S(h)

a
N−i

∏
j 6=i

0≤j≤k−1

(
a

N−j
− a

N−i

) .

(5)
The last formula is obtained by first writing down the Z-
transform of the sum of independent Geometric random
variables, then using a partial fraction expansion for the
transform and finally inverting it back to obtain the
desired PMF. Now we are ready to compute the average
packet loss rate p(h) for each of the nodes:

p(h) =
1
N

E [# of Nodes failing to transmit in S(h) slots]

=
1
N

(N − E [# of Nodes succeeding])

=
N∑

k=0

N − k

N
πk. (6)

The upshot of the analysis in this section is the fact that
we have an explicit expression for the average packet loss
rate. The downside is that we now have to choose the
best value of attempted transmit probability during each
slot, namely, q

tr
and this is computationally intensive. This

choice depends on the number of nodes N and on the
number of slots S(h). Once this calculation is performed,
we have the desired relationship between the average
sampling rate and the average packet loss rate offered by
slotted ALOHA with the matching transmit probability.

4.3 Heuristic choice for qtr

There is a suboptimal approach to choosing the trans-
mit probability qtr. For 1 ≤ i ≤ N , τi is a geometric
random variable with the success probability parameter
being a

N−i+1 . All moments of a geometric random variable
are simultaneously minimized by maximizing the success
probability parameter. So, the random variable τi is min-
imized (each of its moments is simultaneously minimized)
when a

N−i+1 is maximized. The latter happens when qtr =
1

N−i+1 . Thus to minimize τ1, we should set qtr = 1
N and

similarly, to minimize τN , we should set qtr = 1. Based on
these considerations, we are only able to conclude that the
optimal qtr should lie between 1

N and 1.

We now outline a heuristic calculation that arrives at the
assignment:

qtr =
2

N + 2
.

We will arrive at such an assignment after some approxi-
mations.

Firstly, we consider an approximate scheme to maximize
the probability (πN ) that all N nodes succeed in transmit-
ting their packets within a sampling period.

πN = P

[(
N∑

i=1

τi

)
≤ S (h)−N

]
The approximation consists in claiming that πN is maxi-
mized by picking qtr that minimizes
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E

[(
N∑

i=1

τi

)
− (S (h)−N)

]
.

Here, S(h)−N does not depend on qtr. Using this observa-
tion and the fact that each τi has geometric distribution,
we see that qtr should minimize the expression:

N∑
i=1

1− a
N−i+1

a
N−i+1

.

Now we adopt a second approximation, one that lets
us approach the calculation of of p(h). To derive an
(approximate) expression for p(h), we use the form of the
expression in equation (6) and claim that p(h) is minimized
when

N∑
i=1

(N − i)
1− a

N−i+1

a
N−i+1

.

is minimized. The difference between the last two expres-
sions is in the weighting factor N − i present in the one
for p(h). This factor reflects the fact that τi affects the
statistics of the timing for the ith successful transmission,
but also those of the remaining successful transmissions;
we have used a linear factor i−1 to model this dependence.
The last approximation step is to replace the weighting
term N − i with N − i + 1, so that we can obtain a closed
form expression.

Hence the suboptimal qtr we are seeking is the one that
minimizes:

N∑
i=1

(N − i + 1)
1− a

N−i+1

a
N−i+1

=
N∑

i=1

(N − i + 1)
1− (N − i) qtr(1− qtr)

N−i

(N − i + 1) qtr(1− qtr)
N−i

.

Notice that this is the same as minimizing:
N∑

i=1

(N − i + 1)
1

(N − i + 1) qtr(1− qtr)
N−i

,

=
N∑

i=1

1

qtr(1− qtr)
N−i

,

=
1− (1− qtr)

N+1

q2
tr(1− qtr)

N
.

The above minimization gives us:

q∗tr ≈
2

N + 2
.

Now, we are in a position to calculate the packet loss rate
as a function of the sampling rate h. In figure 2, we have a
plot of the packet loss rate when the number of nodes are
2, 5 and 15.

5. SCALABILITY AND PERFORMANCE
OPTIMIZATION

Given a number of sensor nodes, we first need to make sure
that the estimation errors stay bounded. This of course
rests on the dependence of p(h) on h and this function is
influenced by N . Under periodic sampling, the estimate
is stable whenever inequality (3) is satisfied. In figure 3,
we have, for different choices for the number of competing
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Fig. 2. The average packet loss rate as a function of the
sampling rate.
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Fig. 3. The limits of bounded estimation distortion. We
probe the maximum allowed value of a suggested by
inequality (3). For each choice of N , the peak of the
plotted curve represents the maximum tolerated value
of 2a.

nodes, the maximum tolerated values for the parameter
2a. When N is 2, 5 or 15, the maximum possible values for
a are respectively 0.325, 0.15 and 0.46.

If the number of nodes is not too large to cause instability,
the task then is to find the choice of sampling period h
which minimizes the average estimation distortion. We
have a computational procedure to perform this optimiza-
tion. The procedure is essentially to consider different pos-
sible reasonable values of h from roughly NL to 500L and
to pick the one that minimizes the estimation distortion J .
This is computationally feasible because it involves search
over the range of a single scalar variable. The results of
this optimization are shown in figures 4, 5.

6. SAMPLING ACCORDING TO A POISSON
PROCESS

Sometimes, in explicit recognition of the fact that a
TDMA-based scheme for accessing the channel is not
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Fig. 4. Optimization of estimation distortion. For each
choice of N , we plot the distortion under periodic
sampling as a function of h. The above plots are for
a stable system: a = −1.
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Fig. 5. Optimization of estimation distortion. For each
choice of N , we plot the distortion under periodic
sampling as a function of h. The above plots are for
an unstable system: a = 0.001.

scalable, a non-periodic and randomized sampling scheme
could be adopted. Sampling the measurement waveforms
using independent Poisson counters at different sensors is
such an alternative (Micheli and Jordan [2002]).

Let the rate of the Poisson counter be λ. Then, we have
∀i ≥ 1:

P [Ri+1 −Ri > s] =
∞∑

n=0

pne−λs (λs)n

n!
.

This gives a common exponential probability density func-
tion for the inter-reception intervals. This PDF (as a
function of s ≥ 0) has the form:

λ (1− p)e−λ(1−p)s.

Then, the average time-interval (δ̄R) between reception of
packets is :

δ̄R =
1

λ (1− p)
.
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Fig. 6. Comparison of estimation distortion under periodic
and Poisson sampling schemes. We have: N = 15 and
a = 0.001.

The average squared distortion in the supervisor’s estimate
is:

JEstim =
1

δ̄R

∫ ∞

0

{
e2at − 1

4a2
− t

2a

}
λ (1− p)e−λ(1−p)tdt.

If 2a < λ(1 − p), then the distortion is finite and can be
computed to be:

JEstim =
1

4a2

{
λ2(1− p)2

λ(1− p)− 2a
− λ(1− p)

}
− 1

2a
.

When 2a ≥ λ(1− p), the sampling rate is insufficient and
the average distortion is unbounded.

6.1 Performance comparison between the two sampling
schemes

Given a particular setting, it can sometimes be interesting
to compare the performance of the two presented sampling
schemes. For this comparison to be fair, the inter-sampling
times must be the same. This means letting λ = 1/h, which
gives the same average time between sampling attempts
and also the same average time between reception of
packets for both sampling schemes. If further, the loss
probability, p, is assumed to be either fixed or only
dependent on h and the number of sensors, N , the two
schemes have the same loss probability in this setting.
We will now prove the superiority of periodic sampling
which is suggested by figure 6. However, we should bear in
mind that TDMA style periodic sampling has the burden
of clock synchronization in practice.
Lemma 1. Under these conditions, periodic sampling
will always outperform Poisson sampling, i.e. JPoisson

Estim >
JPeriodic

Estim will hold for all feasible values of a, h, and p.

Proof. To begin with, the feasible set for the compari-
son must be determined. The sets for the two sampling
schemes are:

Periodic sampling: {(a, h, p) : 2a < − 1
h

ln p, p ∈ [0, 1)}

Poisson sampling: {(a, h, p) : 2a <
1
h

(1− p), p ∈ [0, 1)}
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Since we have
− ln p > (1− p) for p ∈ [0, 1)

the feasible set will be determined by:
D = {(a, h, p) : 2ah < 1− p, p ∈ [0, 1), 2ah 6= 0}

The requirement 2ah 6= 0 comes from the fact that a step
size of zero is not allowed.

Now consider the function:
JDiff

Estim = JPoisson
Estim − JPeriodic

Estim =

=
1

4a2

{ 1
h2 (1− p)2

1
h (1− p)− 2a

− 1
h

(1− p)
}
− 1

2a
−

−
{

1
4a2h

(1− p)2e2ah

1− pe2ah
− 1− p

4a2h
− 1

2a

}
=

=
1

4a2h

{
(1− p)2

1− p− 2ah
− (1− p)2e2ah

1− pe2ah

}
=

=
(1− p)2

4a2h

1 + (2ah− 1)e2ah

1− p− 2ah + e2ah(2ahp + p2 − p)
Since h > 0, the first part of the expression is positive. Let
x = 2ah and y = p, the feasible set now becomes:

D′ = {(x, y) : x < 1− y, y ∈ [0, 1), x 6= 0}
What we now need to show is that:

1 + (x− 1)ex

1− y − x + ex(xy + y2 − y)
> 0, (x, y) ∈ D′

This will for example hold if both the numerator and the
denominator are positive.

Define the following functions:
f(x) = 1 + (x− 1)ex

g(x, y) = 1− y − x + ex(xy + y2 − y)
To show that f(x) > 0, (x, y) ∈ D′, we use the derivative
f ′(x) = xex and calculate f ′(x) = 0. We have f ′(x) = 0
for x = 0 and x → −∞. For x = 0, we have f(x) = 0
and f ′′(x) = 1 > 0, meaning that it is a local minimum
for f(x). Since limx→−∞ f(x) = 1, x = 0 is a global
minimum for f(x). Thus, we have shown that f(x) > 0
for (x, y) ∈ D′ (since x = 0 /∈ D′).

For g(x, y), rewrite the function as:
g(x, y) = (1− x− y)(1− yex)

and use that:
x < 1− y ⇐⇒ 1− x− y > 0

This means that we only have to show that 1 − yex > 0
for (x, y) ∈ D′. In D′, we have 1−yex > 1−ye1−y = γ(y).
Since γ(0) = 1, γ(1) = 0, and γ′(y) = −(1 − y)e1−y < 0
for y ∈ [0, 1), it holds that γ(y) > 0, (x, y) ∈ D′ which
gives g(x, y) > 0, (x, y) ∈ D′. This gives JDiff

Estim > 0 for
(a, h, p) ∈ D, which concludes the proof.

Note that the relation JPoisson
Estim > JPeriodic

Estim also will hold if
the packet drop probability is larger for Poisson sampling
since JPoisson

Estim is an increasing function in p.

7. CONCLUSIONS

We have, through explicit calculations, suggested a way in
which the rate of accessing a shared channel can be cho-
sen mindful of collisions. Our analysis considers how the
sampling interval affects packet loss rate in a contention-
based medium access protocol, and the combined effect
of sampling and packet loss on the achievable estimation

error variance. We have also investigated how the achiev-
able performance depends on the time constants of the
processes and the number of contending sensors.

The main weakness of this work is the conservative nature
of the model for collisions. We have assumed a synchro-
nized sampling scheme and worked out the performance of
slotted ALOHA. This provides only a qualitative picture
of the contention situation in a network with no good
synchronization. The actual intensity of contention under
TDMA style sampling with staggered transmissions will
be lower than our analysis suggests.
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