
A Knowledge-Based Robot Searching for
an Unpredictable Goal under Unknown

Environment ?

Huifang Wang ∗ Yangzhou Chen ∗

∗ Beijing University of Technology, Chaoyang district, Beijing 100022,
China (Tel: 86-10-67396189-602; e-mail: Elizabethhw@gmail.com).

Abstract: This paper describes a knowledge-based robot that explores an unknown environ-
ment for an unpredictable goal. Distinguishing characteristics of such environments for robotic
navigation are that the goal’s position is unpredictable and some obstacles cannot be sensed
directly. Considering such features we propose a search algorithm for finding the goal and a
simplified DPLL to allow robotic reasoning. Moreover we demonstrate the completeness and the
execution cost of the search algorithm and also support the completeness and soundness of the
simplified DPLL. The set memory rules allow for computer processing limitations. In addition,
the simulation results of randomly produced environments demonstrate the completeness,
soundness and effectiveness of method.

1. INTRODUCTION

This paper presents a knowledge-based planning method
for a mobile robot which travels in an unknown envi-
ronment looking for an unpredictable goal and navigates
in a safe route with the help of reasoning based on its
knowledge. The unpredictable goal means that the goal
position is unknown until the robot reaches or near it.
Such environments have two distinct characteristics which
need to be considered. The first is that the overall picture
of its environment is unavailable, so that the robot only
has the information around its current position and does
not know the exact position of the goal until it actually
reaches there. This could be regarded as an agent-centered
search problem in unknown domains for mapping build.
The second distinct characteristic of our environments is
that the robot must be able to judge the safety of its next
step from its knowledge base and inference rules.

Robot path planning algorithms in unknown terrain or
partial known environment have attracted high research
interests since the early 1990’s from Korf [1990] and
these algorithms provide the theoretical search methods
for sensor-based robots. Koenig [2003] categorizes these
algorithms into agent-centered search and assumption-
based planning. Assumption-based planning makes the
path planning between the current location and the goal
location with the assumption that all unknown terrains
are travelable. Dynamic A* (D*) in Nilsson [1971] Stentz
[1995], D* Lite in Koenig [2005] and LPA* in Koenig
[2002]) moves a robot to a given goal location in unknown
terrain with such assumption. In this paper, these algo-
rithms can be used to plan a path back to the entrance
after a robot achieving a goal location. An agent-centered
search in Koenig [2001], however, restricts planning to
the part of the domain around the current state of the

? This work was supported by Doctoral Fund of Ministry of Edu-
cation of China, 20060005014 and by the National Natural Sciences
Foundation of China 60774037

agents. Greedy Mapping in Koenig [2001], Node Count-
ing in Pirzadeh [1990], Learning Real-Time A* (LRTA*)
in Bulitko [2006] can be categorized as Agent-centered
search. Our proposed algorithms in section 3 also can
be considered as an Agent-centered search since it limits
planning only on the known locations. Moreover sharing
ideas with above mentioned algorithms it gives high pri-
ority to safe unvisited locations. However in this paper we
focus our attention on the completeness of the planning
algorithm after introducing locations whose safety needed
be referenced.

Another kind of related algorithms is coverage path plan-
ning which guides a robot to pass all points in a given
environment. These coverage algorithms focus on their
completeness. The coverage path planning first being de-
veloped for known space gives a good survey in Choset
[2001]. Afterward the coverage algorithms for unknown
space are introduced in Acar [2003] and Conner [2005].
These methods rely on finding the critical points of a
function to guarantee the completeness of the algorithms.
Its critical points have the similar role as MPoint in our
refined algorithm.

The second distinct characteristic of our environments mo-
tivates a robot that develops its ability to judge the safety
of its adjacent locations by inference. The inference ability
is a useful addition for the widely-used behavioral-based
robots in Arkin [1998]. In this paper we use propositional
logic to produce and increase the knowledge base and
Davis-Putman-Logemann-Loveland (DPLL) algorithm in
Russell [2003] for inference about the safety of surround-
ing environments. Due to the unique properties of this
navigation application we simplified the procedure and
still maintained its completeness and soundness. From
repeated simulation experiments we recognize the impor-
tance of choosing the content of the knowledge, i.e. of
remembering essential information and forgetting trivial
items. See Section.4.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13701 10.3182/20080706-5-KR-1001.3895

Fig. 1. A robot works with its environment

2. THE ROBOT NAVIGATION SYSTEM

In this section we first introduce how this knowledge-based
robot works in a given environment. Then we explain the
whole procedure of the robot for exploring this unknown
environment to achieve its unpredictable goal.

Assume that the mobile robot is omni-directional, point-
sized, equipped with two types of sensors. The first type of
sensors (denoted by SI) can directly perceive the obstacles,
which are called OI . Whereas the second type of sensors
(SII) only gets some information OII , which is located
in adjacent positions but its exact locations only can be
obtained by inference. In addition, the robot does not
know the position of the goal until it nears it. The robot
only senses the around environment so that it interleave
planning in deterministic domains with execution.

Fig.1 illustrates how a robot works in its environment
which is initially unknown for it. When the robot is
at location A, from SI the robot directly perceives the
obstacles in the surroundings and produces an avoidance
action from a candidate list. If from SII the robot senses
some obstacles in the adjacent positions, however it can
not know their exact location. Data from both groups
of sensors is added to the knowledge base so that the
robot is able to judge which adjacent position is safe
according to the inference rules. Finally using the route
search algorithm the robot determines a safe and complete
action to take and adds its action to its knowledge base.

Procedure below describes how the robot determines its
action according to its inputs from sensors. Two distinct
procedures shown in two blocks produce actions due to
the different objectives of the robot. In the first process
the main objective of the robot is to find its goal and
gain information about its environment. It is similar to
a map building problem but it has an unpredictable goal
position. Line 4 means that SI get positions of obstacles
and then the robot remembers their positions. Line 6 to 10
describe that if SII do not get any information about OII ,
depending on its knowledge base and its previous routes
the robot determines its next action. From Line 11 to 14, if
SII percepts the signals then it needs to logically judge the
surrounding environment and determines the candidates
for action depending on the adjacent safe positions. There
are two important functions to be designed. For function
inference(), we use a DPLL algorithm to deduce the
safe positions around the current location, which we will

describe in Section 4. For chooseAction(), we propose
a search algorithm to make safe and complete action
decisions when the environment is unknown and location
of the goal is unpredictable in Section 3.

In the second process the objective of the robot is to go
back the entrance after it achieves the goal. This procedure
can use any classical search algorithms such as A* graph
search algorithm (cf. Nilsson [1971]; Russell [2003]) and
dynamic A* (D*) (cf. Stentz [1995]), D* Lite (cf. Koenig
[2005]).

Procedure Robot (Sense) returns Action

1. while (! Find(Goal))

2. Update x, y; //the robot’s position

3. KB←add(Sense) ; //update new knowledge Base

4. if (SI in points (x + J, y + J)) then j = J ;

5. if (!SII) SafePoints ← put(x+ i, y + i) i = 0, 1, i! = j;

6. CandidateAction ← relation((x + i, y + i) ,(x, y));

7. Action ← chooseAction(KB,Route(x, y,Action),
SafePoints);

8. update.Route (x, y,Action);

9. return Action ;

10.if (isSafe((x + i, y + i) i = 0, 1, i! = j) ← infer-
ence(KB,(x + i, y + i)))

11. SafePoints ← put(x + i, y + i);

12.CandidateAction ← relation((x + i, y + i) ,(x, y);

13.Action ← chooseAction((x, y) ,Route ,SafePoints);

14. update.Route (x, y ,Action);

15. return Action;

16.ReturnRoute ← A*-Graph-Search (SafePoints,
Goal,Start);

3. SEARCH ALGORITHMS IN UNKNOWN
ENVIRONMENT

In this section we propose a search algorithm and its
refined version to navigate a mobile robot in unknown
terrain where the goal location is unpredictable and the
locations of some obstacles are determined by inference.
Soundness and completeness are main concerns for de-
signing a search algorithm. Soundness means all actions
determined by this algorithm are safe, whereas the com-
pleteness means that algorithm would find an accessible
goal that is located anywhere.

3.1 The Proposed Search Algorithm

To clearly explain the proposed algorithm we impose the
grids on the terrain, however the algorithm also can be
used to any other geometrical graphs such as the triangles
and Voronoi diagrams in Choset [2005]. Fig. 2 illustrates
a simple grid world for the terrain and its corresponding
graph, with the assumption that the robot can move to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13702

Fig. 2. Illustration of grid world and graph for the search
algorithm

any safe one of four adjacent grids with the same cost and
it only can sense the information for these four grids.

The algorithm 1 shows the procedure that a robot chooses
the action at location si depending on its knowledge on
terrain. SafePoint is the set of all the known locations
that are traversable. First we put the action-location pair
< ai,j , si,j > to the set Fringe, where si,j is accessible
by the robot takes ai,j from si shown in Fig. 2 (b). In
order to guarantee that the algorithm is complete in lower
execution cost we put the action-location pair in the fixed
order rather than a random order. For instance, in our
experiments, we used the action order as ”up-left-right-
down”. Line 2-line 7 show that the robot determines the
acceptable action in a given order if the action corresponds
to an adjacent safe unvisited location. Line 8 and 9 show
that if there is no unvisited safe location for the robot, it
will choose to track back to previous route until it finds
the new location. si−(c+1) is the location that the robot
moves back and begins to explore the new location where
c remembers how far it goes backward.

Algorithm 1. chooseAction (si, Route, SafePoint)

1.Fringe ← put< ai,j , si,j >;

2.while(¬ Fringe.isEmpty())

3. < ai,j , si,j > ← Fringe.pop();

4. if (si,j /∈ V isited)

5. c = 0;

6. Route ← < si, ai,j >;

7. return Action = ai,j ;

8. Route ← < si−(c+1), ai−(c+1) >;

9. return Action =ai−(c+1)

3.2 The Completeness of the Proposed Search Algorithm

Theorem 1. The proposed search algorithm is complete;
that is, it is guaranteed to achieve any accessible goal.

Proof. The algorithm is complete if the robot can search
all accessible locations. Because there are two types of
obstacles: OI and OII , all possible environments can
be categorized into two situations. Fig. 3 (a) illustrates
the route of the robot in the first situation, where the
convex OII (such as B11 and D4) can be avoided and no
unnecessary repeat route, whereas for concave OI (such as
(F4, F5, G5)) the robot would enter the caves of obstacles
and then return along the same way. But when the SII

Fig. 3. (a)Routes of the robot without the missed area;
(b)Routes of the robot with the missed area in the
first round

receives the signals at the current location (such as B1),
the OII (C1) may be located at any adjacent position,
so the robot returns along the way that it comes. Once
it comes back to the safe place (B2), then it explores
the certain safe places (C2). These situations are very
amenable for the search algorithm, which is complete and
effective for finding the goal.

However, Fig. 3 (b) shows the situation in which some safe
locations are missed when the robot first passed by them,
which are called the missed area. It happens because of
the existence of OII . When the robot is located at E7 it
senses OII near to it. Because it does not make sure the
exact positions of the obstacles so it returns to E6. If the
goal is located at this area, the robot has to return back
after it finishes the first round for searching all unvisited
certain safe terrain. So the algorithm is complete. 2

It is necessary to note that in some scenarios there are
some locations which the robot would never achieve at,
such as C15 in this example. But C15 is not accessible
because the robot cannot judge whether C15 is safe. It is
caused by the limitation of the sensors but unrelated to
the completeness of the algorithm.

3.3 Execution Convergence Cost of the Search Algorithm

We introduce the notion of execution convergence cost to
measure the performance of our algorithm in the worst
case. Suppose there are n safe locations in a given terrain
and the number of OII is m. The execution convergence
cost is the sum of execution costs of the actions taken by
the robot during the convergence process. The convergence
process requires that the robot searches all safe positions.
Theorem 2. The execution convergence cost of the pro-
posed search algorithm is O(2mn).

Proof. From the proof of theorem 1 we can see that the
execution cost of the algorithm increases when the robot
has searched most positions in the given environment but
the accessible goal is located at the missed area. From
Fig. 3 (b) and also refer to the below simulation results
we can see that the missed area exists because the robot
has no chance to approach all adjacent positions of OII in
the first round. This round means the robot travels from
an end of the terrain to the other end. In this example
two ends are A1 and I15. Moreover each OII corresponds
to at most one missed area. No matter how large of its
area, once the robot comes back to it will cover all missed
safe area. So in the worst case, the goal is located at
the mth missed area that the robot searches the area

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13703

at last time. In first round the execution cost c0 is less
than n. Because the algorithm drives the robot along the
coming way until it finds the unvisited position, in order
to visit the first missed area, the number of all searched
nodes c1 < 2c0. Then we get ci = 2ci−1, i = {1, · · · ,m}.
Therefore the execution convergence cost of the proposed
search algorithm is O(2mn). 2

3.4 Refinement of the Search Algorithm

Although the search algorithm is complete, its execution
convergence cost is high. Suppose its planning cost is
much cheaper than its execution cost and m is large
in the environments, so we can refine it. Algorithm 2
describes the procedure of the chooseAction() for this
refined algorithm. We set up a data structure MP to
store the missed positions whose safety is known by the
robot, and V isited stores all visited points. Note that
MP ∩ V isited = ∅ and MP ∪ V isited = SafePoint.
After the robot determines MPoint, the classical search
algorithms such as A* and D* Lite algorithms can be used
to navigate the robot from the current position to a missed
area or an MPoint.

Algorithm 2. chooseAction (si, Route, SafePoint)

1. if (¬MRoute.isEmpty())

2. {Action←MRoute.getF irst();

3. MRoute.removeF irst();}
4. Fringe ← put< ai,j , si,j >;

5. MP.remove(si);

6. while (¬ Fringe.isEmpty())

7. { < ai,j , si,j >← Fringe.getF irst();

8. Fringe.remove()

9. if (si,j /∈ V isited)

10. {Route←< si, ai,j >;

11. if (si,j ∈ Fringe ∧ si,j /∈ V isited()

12. MP.add(si,j)

13. return Action = ai,j}}
14. if (¬MP.isEmpty())

15. { Mpoint← determp(si,MP)

16. MRoute← searchM(recentPoint, V isited, Mpoint)}

Note that our first proposed search algorithm is the real
time planning with the minimal local search algorithm,
whereas the refined search algorithm is the planning with
the maximal local search algorithm when it returns back
to the missed areas.
Theorem 3. The execution convergence cost of the refined
search algorithm(Algorithm 2) is O(n) in the worst case.

Algorithm 2 makes the robot effectively find MPoint such
that it can return to the missed area with the minimal
execution cost. Even in the worst case the execution
convergence cost of the refined search algorithm is less
than 2n. However, the data structure MP increases the

planning cost that includes the manage cost of data
structure MP and local search cost when the robot has
to return.

4. LOGICAL REASONING UNDER CONSTRAINT

We use propositional clauses and literals as the knowledge
base representation language. For example Sx,y denotes
that the robot perceives signals at (x, y), then we can
reason that there is a kind of OII (denoted by P) in
the adjacent positions: i.e. Sx,y ⇔ Px,y+1 ∨ Px+1,y ∨
Px,y−1 ∨ Px−1,y. If the robot perceives Sx,y, it needs to
judge whether (x, y + 1) is safe. This can be regarded
as a satisfiability problem (SAT). We take the knowledge
base as a formula (F) and put the clause ¬Px,y+1(there
is no P at location (x, y + 1)) to the formula. So if F is
satisfiable then ¬Px,y+1 is true. DPLL algorithm Ouyang
[1999] is a complete, highly efficient procedure for solving
the SAT problem. But the complete DPLL procedure is
too complex for a real time navigation of a robot. Then
we introduce the simplified DPLL algorithm for complex
environment and also ensure the completeness of DPLL.

Algorithm 3. Simplified DPLL algorithm

DPLL(F)

if (F includes unit clause {υ})
F = F |υ ;

if F has an empty clause return UNSATISFIABLE;

return SATISFIABLE;

The simplified DPLL algorithm above allows the robot to
judge the safety of its surroundings. In this procedure F
includes the knowledge base and the states of surrounding
points which the robot deduces. Let υ is a unit clause inF .
F |υ denotes the operation that removes all the clauses
that contain υ , deletes ¬υ from all the clauses that contain
¬υ and removes both υ and ¬υ from the list of literals. The
empty clause {} is achieved by υ ∧ ¬υ , that implies F is
unsatisfiable, otherwise it returns satisfiable.
Theorem 4. Simplified DPLL algorithm is complete and
sound.

Proof. : From Ouyang [1999] we know that F is satisfiable
if and only if F |υ is satisfiable. Suppose {υ} = {Px+1,y},
then only useful knowledge is a set that includes all clauses
that contains υ and ¬υ , such as {{Px,y+1 ∨ Px+1,y ∨
Px,y−1 ∨ Px−1,y}, {¬Px+1,y}, {υ}}. If υ ∧ ¬Px+1,y = {},
then F is unsatisfiable and the position (x + 1, y) is safe.
If there is no {} after the operation of F |υ , the robot
cannot tell whether (x+1, y) is safe. In order to ensure the
safety, we return satisfiable and pass around the location
(x + 1, y) . Therefore this simplified DPLL algorithm is
complete. 2

Next we describe the memory rules for speeding up plan-
ning and reasoning. If the robot remembers all things it
used and all the produced knowledge it will become very
slow in its thinking and response. Checking the knowledge
base of the robot there are two kinds of clauses, the uncer-
tain information such as {Px,y+1∨Px+1,y∨Px,y−1∨Px−1,y}

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13704

Fig. 4. (a)The completeness of the search algorithm;
(b)The navigation of the robot with two types of
sensors searching for an unpredictable goal

which means there are at least one P in these four locations
and certain information {¬Px+1,y} which means no P at
(x+1, y). Using simplified DPLL the uncertain information
is only useful in its own inference round. But the robot
remembers all certain information but forgets all uncertain
information.

5. A SIMULATION EXPERIMENT

We design a computer simulation experiment to show the
effectiveness of the action control presented in section 2
and completeness of the search algorithms presented in
section 3. And at the same time the simplification of DPLL
is verified in a real-time run of program. We suppose a
robot is searching a diamond in a cave where rocks and
walls belong to the OI and pits and water areas belong to
the OII

5.1 Simulation with proposed algorithm in under built
platform

We build the platform in Java shown in Fig. 4 (b) where
the environment is produced randomly, it can form differ-
ent environments using the ”Change Environment” but-
ton. The ”Go” button is pressed to navigate the robot
to search the goal, its track shown in blue lines records
its actions and how it judges the environment. And back
routes showed in red line are designed by A* algorithm to
search the home way after the robot finds the goal.

More than a hundred experiments for random produced
environment show the completeness of proposed algo-
rithms, i.e. if there is a way to be directed to the goal
then it is certain that the robot can find this way. Fig.
4 (a) shows when the goal is inaccessible then the search
algorithm moves the robot to all traversable positions.

Fig. 5 demonstration the simulation results to compare the
performance the Algorithm 1 and Algorithm 2. The black
grids denote the first kind of the obstacles OI and orange
ones are for the second kind of the obstacles OII . The
light gray area is the visited area by two algorithms. Their
features of two algorithms are summarized as following:
Algorithm 2 tends to search more positions in the first
round, because it remembered all the known safe posi-
tion. The Algorithm 2 has good robustness for all kinds
of environment. However the Algorithm 1 is relatively
competitive when the size of environment is small or the

Fig. 5. Simulation results of two algorithms in the same
environment. (a)Result from the first version of the
proposed algorithm; (b)Result from the refined ver-
sion of the proposed algorithm

Table 1. A comparison between the features of
two algorithms

Algorithms
1st algorithm Refined algorithm

Exe
steps

Total
time
(ms)

Visit-
ed
Pos

Exe
steps

Total
time
(ms)

Visit-
ed
Pos

Small
Terrain:
15× 15
11 : OI ;
10 : OII

High
EC

299 6597.3 204 246 5583.3 210

Marginal
EC

310 2103.3 205 232.5 1729.8 209

Low EC 261 754.7 209 239 1127.7 212
Large
Terrain:
30× 30
MEC;
30 : OI ;
40 : OII

Amenable
65.3%

1067 11579.7 789 973 14656.3 828

Worse
32.6%

1804 16928 822 982 13546.8 834

Worst
2.1%

18834 181188 822 930 11719 806

EC: Execution Cost; M:Marginal

execution cost is not relatively much high to the planning
cost.

5.2 Comparison of two proposed algorithms

When the size of unknown terrain is large or the sense
range of sensors is relatively small to the environment,
that is to say that the number of positions becomes large,
we compare the Algorithm 1 and Algorithm 2. Fig. 5 shows
the demonstration of the simulations where the black grids
denote the first kind of the obstacles and orange ones are
for the second kind of the obstacles. The light gray area
is the visited area by two algorithms. Here we assume the
environment is static so we use A* algorithm for function
searchM() in the Algorithm 2.

Table I gives the execution steps, total times and visited
positions for two algorithms in random produced envi-
ronments where each value is the average value for more
than ten times experiments. The first block of experiments
works in a relatively small terrain that is divided by
225 grids,11 OI and 10 OII . Three rows are for different
weights of execution cost relative to the planning cost. The
second row is for marginal execution cost which means
that in this situation the elapsed times of two algorithms
are closed. The second block shows in a lager terrain that

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13705

Fig. 6. The execution steps for two algorithms in 21
different large environments

is divided by 900 grids and under the marginal execu-
tion cost. The three different kinds of environments are
categorized by the performance of the Algorithm 1. The
percentage below each environment means the proportion
of produced environment. Their features of two algorithms
are summarized as following:

A. In general compared with the Algorithm 1, the Algo-
rithm 2 tends to search more positions in the first round,
because it remembered all the known safe position. It is
shown in Fig. 5 and the column 3 and 6 in Table I.

B. When the size of environment is small and the execution
cost is not relatively much high to the planning cost, the
Algorithm 1 is relatively competitive than the Algorithm
2 . It is shown by the third row in Table I and the second
assumption is reasonable when the computation cost is
also expensive for some robots for search mission.

C. The Algorithm 2 is more effective than the first version
when execution cost is relatively high to the planning cost.
It is shown by first row in Table I.

D. The Algorithm 2 has good robustness for all kinds of
environment. In second block data of Table I for three
kinds of environment the performance of the Algorithm
2 does not change, whereas the Algorithm 1 has different
performance in different environment. It is clearly shown
by Fig. 6 in 21 different environments execution steps has
small change for the Algorithm 2, whereas the execution
steps change largely for the Algorithm 1, even there is
one time in the worst situation for the Algorithm 1 the
execution steps is very high.

6. CONCLUSION

This paper describes a system for a mobile robot that
would be able to explore unknown environments for unpre-
dictable goal with its reasoning. Considering the character-
istics of an unpredictable goal position, we have proposed a
search algorithm. This search algorithm gives the unvisited
position high priority and is complete in an unknown
terrain. Moreover we have presented a refined algorithm
to decrease the execution cost from O(2mn) to O(n).

On the other hand, we have applied simplified DPLL algo-
rithm to deduce the environmental information. We have
used propositional clauses and literals as the knowledge-

base representation language and set the memory rules in
order to avoid storage space limitations and to increase
the inference speed. We have proven the simplified DPLL
algorithm is complete and sound.

7. ACKNOWLEDGE

The authors would like to thank Drs. Rhoda E, and
Edmund F. Perozzi for extensive editing and English
language assistance.

REFERENCES

R. Korf. Real-time heuristic search. Artif Intell, 42:189-
211, 1990

S. Koenig, C.Tovey,Y.Smirnov. Performance bounds for
planning in unknown terrain. Artif. Intell, 147:253-279,
2003.

N. Nilsson. Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill. 1971

A. Stentz. The focussed D algorithm for real-time replan-
ning. In Proc. Int. Joint Conf. Artificial Intell. 1652-
1659.1995

S.Koenig,M.Likhachev. Fast replanning for navigation in
unknown terrain. IEEE T Robot [see also IEEE T
Robotic Autom]. 21:354- 363.2005

S.Koenig,M.Likhachev. Incremental A*. In: Dietterich,
T., Becker, S., Ghahramani, Z. (ed) Advances in Neural
Information Processing Systems 14. Cambridge, MA:
MIT Press. 2002

S.Koenig. Agent-Centered Search. AI.MAG. 22:109-
131.2001

A.Pirzadeh,W.Snyder. A unified solution to coverage and
search in explored and unexplored terrains using indirect
control. In Proceedings of the International Conference
on Robotics and Automation. 2113-2119. 1990

V.Bulitko,G.Lee. Learning in Real-Time Search: A Unify-
ing Framework. J. Artif. Intell. Res. 25:119-157. 2006

H.Choset. Coverage for robotics - A survey of recent
results. Ann Math Artif Intel. 31:113-126. 2001

E.Acar,H.Choset,Y.Zhang,M.Schervish Path Planning for
Robotic Demining: Robust Sensor-based Coverage of
Unstructured Environments and Probabilistic Methods.
Int. J. Rob. Res. 22:441-466. 2003

D.Conner,A.Greenfield,P.Atkar,A.Rizzi and H.Choset.
Paint Deposition Modeling for Trajectory Planning on
Automotive Surfaces. IEEE Trans. Autom. Sci. Eng, 2:
381-392. 2005

R.Arkin. Behavior-based robotics. The MIT Press,
Cambridge, MA. 1998

S.Russell,P.Norvig. Artificial Intelligence: A Modern Ap-
proach. 2nd Edition. Prentice Hall. 2003

H.Choset,K.Lynch,S.Hutchinson,G.Kantor,W.Burgard,
L.Kavraki and S.Thurn. Principles of Robot Motion-
Theory: Algorithms, Implementation. The MIT Press.
2005

M.Ouyang. Implementations of the DPLL algorithm.
Ph.D. Dissertation. Rutgers University. 1999

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13706

