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Abstract: This paper presents a new self-repairing control system (SRCS) for unknown stable
multiple-input-multiple-output (MIMO) plants with sensor failures. The proposed method can
automatically switch from the faulty sensors to the healthy ones if the sensor failures occur. Only
the artificial test signals and the integrators are utilized to detect the sensor failures. Hence,
the SRCS requires no mathematical model of the plant. Furthermore, the adaptive λ-tracker
is introduced not only to cope with uncertainties in parameters but also to eliminate the bias
effects of the injected test signals.

1. INTRODUCTION

Sensor failure accommodation is one of the most difficult
problems in fault-tolerant control. A wrong feedback signal
from a faulty sensor sometimes makes the control system
unstable even if the controlled plant is stable. In addition,
if the faultily measured output is stuck on just a desired
reference input in the steady state, then it is extremely
difficult to know whether the sensor failure occurs or not.

Fundamentally, to recover from the effects of the sensor
failures, all the failed sensors have to be exactly detected
and repaired. However, most existing fault detectors have
been based on observers, multiple models and accurate
mathematical models of the plants (e.g. R. Isermann,
R. Schwarz, and S. Stölzl [2002], R. Isermann [1997] and P.
M. Frank [1990]). Hence, because their structures depend
on the structures of the plants, they become excessively
complex for the plants with large orders.

As a remedy, this paper presents a new simple self-
repairing control system (SRCS) for unknown stable
multiple-input-multiple-output (MIMO) plants with sen-
sor failures, which can automatically detect the sensor
failures and switch from the failed sensors to the healthy
ones. The fault detector in the SRCS exploits only the
artificial test signals and the integrators. The test signals
are well designed so that the outputs of the integrators
grow “large” to hit the thresholds if the measured outputs
of the plant are stuck due to the failures. Thus, no mathe-
matical model of the plant is required to detect the failure,
and so one can construct the simple fault detector whose
structure does not depend on the order of the plant.

Unfortunately, injecting the test signal for fault detection
might degrade the tracking performance. To cope with
this problem, we introduce the adaptive λ-tracker with
the switched feedback gain. The concept of the λ-tracking
has been presented by A. Ilchmann and E. P. Ryan [1994]
and D. E. Miller and E. J. Davison [1994]. The adaptive
λ-tracker forces the tracking error to enter the prescribed

ball with arbitrarily small radius λ in the presence of the
external disturbance including the test signal.

Throughout this paper, R, R+, I and I+ denote real
numbers, non-negative real numbers, integers and non-
negative integers, respectively. For each vector v ∈ Rn, its
norm is defined by ‖v‖ ,

(
vT v

) 1
2 , and for any function

v(t) ∈ Rn, its ∞-norm is defined by

‖v(t)‖∞ , sup
s∈[t0, t]

‖v(s)‖.

2. PROBLEM STATEMENT

In this paper, we consider the n ∈ I+-th order controllable
and observable linear time invariant MIMO plant:

ΣP : ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) (1)
where y(t) ∈ Rm and u(t) ∈ Rm are the actual output
and the control input respectively. Furthermore, yi(t) ∈ R
and ui(t) ∈ R are the i ∈ {1, 2, · · · ,m}-th elements of
y(t) and u(t). The unknown disturbance w(t) ∈ Rn is
supposed to be bounded. Here, we assume that the plant
ΣP is stable, minimum-phase and its high-frequency gain
is positive definite, i.e., K , CB > 0.

To measure each output yi(t), the two sensors are exploited
as shown in Figure 1.

ŷi(t) = σi(t)y1
i (t) + (1− σi(t)) y2

i (t) (2)
where ys

i (t) ∈ R, s ∈ {1, 2} is the output measured by the
corresponding sensor ]s. If there is no sensor failure then
we have ys

i (t) = yi(t). Unfortunately, for each i, one of the
i-th sensors fails in the following way:

yfi

i (t) = yi(tFi), t ≥ tFi (3)
where fi ∈ {1, 2} is the index corresponding to the failed
sensor and tFi ≥ t0 is the failure time. Suppose that fi

and tFi are unknown.

The switching function σi(t) ∈ R+ in (2) takes values in
a set {0, 1}. The switching logic for the switching function
σi(t) can be arbitrarily designed by the designers. If the
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Fig. 1. The two sensors to measure the i-th output yi(t).

switching function σi(t) is set as σi(t) = 1 then the first
sensor is utilized. Otherwise, the second sensor is utilized.

The aim of this paper is to design the SRCS which can
automatically switch from the faulty sensors to the healthy
ones and attain tracking of the output y(t) to an arbitrary
bounded reference input r(t) ∈ Rm with bounded ṙ(t).

In order to explain the concept of the self-repairing control,
we define the switching function matrix S(t) ∈ Rm×m by

S(t) , diag[σ1(t), σ2(t), · · · , σm(t)]. (4)

The switching function matrix S(t) takes matrices in the
following set M of 2m distinct diagonal matrices whose
diagonal elements are either 1 or 0 (see Remark 1).

M , { M1, M2, · · · , ML }, L = 2m. (5)
Notice that the set M is known because the number m of
the outputs is known.

With the switching function matrix S(t), the vector form
of (2) can be represented as

ŷ(t) = S(t)y1(t) + (Im − S(t))y2(t) (6)
where ŷ(t) ∈ Rm and ys(t) ∈ Rm, s ∈ {1, 2} are given by

ŷ(t) = [ŷ1(t), ŷ2(t), · · · , ŷm(t)]T (7)

ys(t) = [ys
1(t), ys

2(t), · · · , ys
m(t)]T . (8)

Therefore, all the failed sensors are replaced if the switch-
ing function matrix S(t) can find an appropriate matrix
M∗ ∈M so that

y(t) = M∗y1(t) + (Im −M∗)y2(t). (9)
In other words, if S(t) = M∗ then the actual output y(t)
can be successfully measured, i.e., ŷ(t) = y(t). This is the
key idea of the repairing control against sensor failures.

Remark 1. For example, we consider the case where m = 2.
Then, the set M has the four elements.

M =





[
1 0
0 1

]

︸ ︷︷ ︸
M 1

,

[
1 0
0 0

]

︸ ︷︷ ︸
M 2

,

[
0 0
0 1

]

︸ ︷︷ ︸
M 3

,

[
0 0
0 0

]

︸ ︷︷ ︸
M 4





.

If the first sensor for the first element y1(t) and the second
sensor for the second element y2(t) fail then the matrix
M∗ to be found is given by M∗ = M3.

3. SELF-REPAIRING AND TRACKING

For the plant ΣP , we construct the SRCS based on the
adaptive PI controller as shown in Figure 2.

ΣP

γc

s
Im

ŷ

r
τ

ê

+

+

−

u

+

+

+
p

Bank of
sensors

y

ΣA

Fig. 2. The proposed SRCS with a PI control structure.

u(t) = p(t)ê(t) + γcv(t), γc > 0 (10)

v̇(t) = p(t)ê(t) + τ (t), v(t0) = 0 (11)

where ê(t) ∈ Rm is the tracking error between the
measured output ŷ(t) and the reference input r(t), which
is defined by

ê(t) , r(t)− ŷ(t) (12)
and p(t) ∈ R+ is the adaptive gain tuned by

p(t) = gp(γp)k, t ∈ [tk, tk+1) (13)
with any positive constants gp > 1 and γp > 1. For every
k ∈ I+ for which tk < ∞, the switching time tk+1 is
given by the supremum value of time t satisfying both
the following inequalities:

‖ê(t)‖ < λ + (γσ)kπ(tk)e
− 1

(γσ)k (t−tk)
(14)

‖θ(t)‖ < (γσ)kπ(tk) (15)

where γσ > 1 is an any constant and λ ∈ R+ is an
arbitrarily small radius of the ball to which the tracking
error ê(t) asymptotically enters. The signals θ(t) ∈ R2m

and π(t) ∈ R+ are defined by

θ(t) ,
[

ê(t)T , v(t)T
]T

(16)

π(t) , p(t) (‖θ(t)‖∞ + 1) . (17)

Furthermore, in (11), τ (t) ∈ Rm is the artificial test signal
to find the failed sensors, and each element τi(t) ∈ R is
identically given by

τi(t) = τ(t) , τ

(
1 + (−1)κ

2

)
, t ∈ [Tκ, Tκ+1),

κ = 0, 1, · · · (18)

where τ ∈ R is an any non-zero constant. For every κ ∈ I+,
the switching time Tκ is given by

Tκ = t0 +
κ(κ + 1)

2
. (19)

Notice that κ is quite different from k defined in (13).

Finally, the switching function matrix S(t) is given by
S(t) = M l, l = (k mod L) + 1, t ∈ [tk, tk+1). (20)
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S = M1, k = 0
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Fig. 3. The computational diagram of the switching logic.

The switching function matrix S(t) changes its values as
· · · → M1 → M2 → · · · → ML → M1 → · · · .

The computational diagram of the switching logic is shown
in Figure 3. The gain-tuning (13) and the sensor-switching
(20) are performed simultaneously if one of the inequalities
(14) and (15) does not hold. If the tracking error ê(t) does
not enter the small ball with radius λ asymptotically, then
the inequality (14) does not hold. Furthermore, whenever
the SRCS becomes the open-loop system by selecting the
failed sensors, the use of the test signal τ (t) and the
integrators (the I controllers) makes the signal v(t) “large”
(see Lemma 1). Hence, the inequality (15) breaks if the
failed sensors are selected (S(t) 6= M∗). Thus, the gain-
tuning and the sensor-switching will be performed until
the healthy sensors are all selected (S(t) = M∗) and the
tracking error ê(t) asymptotically enters the prescribed
small ball.

As mentioned above, to detect the failures, the I controllers
are necessary. This is the reason why we exploit the
adaptive λ-tracker with the PI control structure.

Remark 2. At the switching time tk+1, at least one of the
following equations holds.

‖ê−(tk+1)‖ = λ + (γσ)kπ(tk)e
− 1

(γσ)k (tk+1−tk)

‖θ−(tk+1)‖ = (γσ)kπ(tk)

where ê−(tk+1) and θ−(tk+1) are defined by

ê−(tk+1) , lim
t→tk+1−0

ê(t)

θ−(tk+1) , lim
t→tk+1−0

θ(t).

Remark 3. From the viewpoint of computational imple-
mentation, we cannot directly utilize (19), because Tκ →
∞ as κ →∞. To avoid this problem, we find the switching
time Tκ+1 with the bounded signals as follows: the switch-

ing time Tκ+1 is defined by the minimum time t ∈ R+

satisfying
α(t) = β(κ)α(Tκ), t ≥ Tκ

where α(t) ∈ R+ and β(κ) ∈ R+ are generated by

α(t) = e−(t−t0), β(κ) = e−(κ+1).

The above switching time Tκ is equivalent to (19).

4. MAIN RESULTS

4.1 Preliminaries

To derive the main results, we need the following lemmas.
Lemma 1. For arbitrary positive constants ε ∈ R+ and
tS ≥ t0, we consider a signal v(t) generated by

v̇(t) = ε + τ(t), v(tS) = vS (21)
where the signal τ(t) is the same signal as the test signal
given by (18) and (19). Then, we always have

lim
t→∞

|v(t)| = ∞. (22)

Proof. From (21), it can be easily verified that

v(t) = vS +
∫ t

tS

εds +
∫ t

t0

τ(s)ds−
∫ tS

t0

τ(s)ds

= εt + τ̃(t) + ϕ(tS) (23)

where ϕ(tS) , vS − εtS − τ̃(tS), and for every κ and
t ∈ [Tκ, Tκ+1), τ̃(t) ∈ R is successively given by

τ̃(t) =
∫ t

Tκ

τ(s)ds +
∫ Tκ

t0

τ(s)ds

= τ(t)(t− Tκ) + τ̃(Tκ). (24)
From (18) and (19), the signal v(t) at the switching time
t = Tκ can be expressed as follows: for κ = 2ι, ∀ι ∈ I+,

v(Tκ) = (τ + 2ε) ι2 + ει + εt0 + ϕ(tS) (25)
and for κ = 2ι + 1, ∀ι ∈ I+,

v(Tκ) = (τ + 2ε) ι2 + (2τ + 3ε) ι

+τ + ε(t0 + 1) + ϕ(tS). (26)
Clearly, in both (25) and (26), the coefficients of ι2 and ι
do not become zero simultaneously for any ε. Therefore,
we have |v(Tκ)| → ∞ as κ →∞.

Thus, we can conclude that Lemma 1 is true. ¥

Let G(s) be the transfer function matrix of the plant ΣP ,
and let Ga(s) denote the transfer function matrix of the
augmented system ΣA (the part indicated by the dashed
line in Figure 2). Then we have

Ga(s) = G(s)
(
1 +

γc

s

)
. (27)

Therefore, the augmented system ΣA has the same prop-
erties as the plant ΣP , that is, the augmented system is
minimum-phase and its high frequency gain is the same as
the plant ΣP . Hence, we obtain the following result.
Lemma 2. For the augmented system ΣA, there exists a
non-singular matrix T ∈ R(np+m)×(np+m) such that[

y(t)
z(t)

]
= T

[
xp(t)
v(t)

]
(28)
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and we have the following representation of the augmented
system ΣA.

ẏ(t) = Ayy(t) + Kp(t)ê(t) + Czz(t) + wy(t)

ż(t) = Azz(t) + Bzy(t) + wz(t) (29)
where Az ∈ Rnp×np is the stable matrix, and wy(t) ∈ Rm

and wz(t) ∈ Rnp are the bounded disturbances which
include the disturbance w(t) and the test signal τ (t).

Proof. This lemma can be directly derived from the result
by A. Ilchmann and E. P. Ryan [1994] ¥

Here, define the actual tracking error as
e(t) , r(t)− y(t). (30)

Furthermore, define the set K∗ ⊂ I+ as
K∗ , { k | M l = M∗, l = (k mod L) + 1 } . (31)

From (20), for all defined number k ∈ K∗ of switches, we
have ê(t) = e(t), t ∈ [tk, tk+1).

Because Az is the stable matrix, a positive definite matrix
P z ∈ Rnp×np exists so that

AT
z P z + P zAz = −Qz (32)

for an arbitrary positive definite matrix Qz ∈ Rnp×np .
Then, for a number k ∈ K∗ of switches, we construct the
following positive function W (t) ∈ R+ with the matrix P z

and a constant γz ∈ R+.
W (t) , ‖e(t)‖2 + γzz(t)T P zz(t), t ∈ [tk, tk+1). (33)

From (29), (30) and (32), the time derivative of W (t) can
be expressed as

Ẇ (t) = −2e(t)T Kp(t)e(t)− 2e(t)T Aye(t)

−2e(t)T Czz(t) + 2e(t)T ṙ(t)

−2e(t)T Ayr(t)− 2e(t)T wy(t)

−γzz(t)T Qzz(t)− 2γzz(t)T P zBze(t)

+2γzz(t)T P zBzr(t) + 2γzz(t)T P zwz(t). (34)
Recall that p(t) = gp(γp)k, t ∈ [tk, tk+1). By introducing
a constant δ ∈ R+, Ẇ (t) can be evaluated as

Ẇ (t)≤− (
2λmin[K] gp(γp)k − p

) ‖e(t)‖2 + δβ1(t)

−γz (λmin[Qz]− 4) ‖z(t)‖2 + γzβ2(t) (35)
where

p = 3δ−1 + ‖Ay‖+ γ−1
z ‖Cz‖2 + γz‖P zBz‖2

β1(t) = ‖ṙ(t)‖+ ‖Az‖2‖r(t)‖2 + ‖wy(t)‖2
β2(t) = ‖P z‖2‖wz(t)‖2 + ‖P zBz‖2‖r(t)‖2.

Because ṙ(t), r(t), wy(t) and wz(t) are all bounded, there
exist constants β1 ∈ R+ and β2 ∈ R+ such that β1(t) < β1

and β2(t) < β2.

Now, we choose the constants, γz, δ and the positive
definite matrix Qz so that

α =
(λmin[Qz]− 4)

λmax[Pz]
> 0 (36)

β

α
= λ2, β = δβ1 + γzβ2. (37)

Note that it is not necessary to know these constants when
the controller is designed.

Trivially, if the number k of switches satisfies
2λmin[K] gp(γp)k − p > α (38)

then we have
Ẇ (t) ≤ −αW (t) + β, t ∈ [tk, tk+1) (39)

which implies
W (t) ≤ λ2 + W (tk)e−α(t−tk), t ∈ [tk, tk+1). (40)

From this result, we can obtain the following lemma.
Lemma 3. If a defined number k ∈ K∗ of switches satisfies
(38) then for such k ∈ K∗ and t ∈ [tk, tk+1)

‖e(t)‖ ≤ λ + c1π(tk)e−
α
2 (t−tk) (41)

‖θ(t)‖ ≤ c2π(tk) (42)

where the positive constants c1, c2 ∈ R+ and α ∈ R+ are
independent of the number k.

Proof. Clearly, because the number k satisfies (38), we
can verify that (40) holds.

From (28) and (33) it follows that
W (t) ≤ ‖e(t)‖2 + γz‖P z‖‖T ‖

(‖xp(t)‖2 + v(t)2
)
. (43)

Because Ap is the stable matrix, we can see that
‖xp(t)‖ ≤ cp (p(t)‖e(t)‖+ ‖v(t)‖) , t ≥ t0 (44)

where cp ∈ R+ is an appropriately defined constant.
Substituting (44) into (43) gives

W (t) ≤ c′1π(t)2, t ∈ [tk, tk+1) (45)
where c′1 ∈ R+ is a suitably defined constant.

Thus, from (40) and (45), we obtain

‖e(t)‖ ≤ λ + (c′1)
1
2 π(tk)e−

α
2 (t−tk) (46)

which yields (41).

On the other hand, from (45) there exists a constant
c′2 ∈ R+ such that

‖θ(t)‖2 ≤ c′2 (1 + W (tk)) , t ∈ [tk, tk+1). (47)
Taking π(t) > 1 into account, we have from (43)

‖θ(t)‖2 ≤ 2(c2)2π(tk)2, t ∈ [tk, tk+1) (48)

with c2 =
(
c′2(1 + c′1)

) 1
2 . This implies that (42) holds. ¥

4.2 Main results

The main results of this paper can be summarised in the
following theorem.

Theorem 1. For the plant ΣP , we construct the SRCS
by (10)-(20). Then, the following three properties hold:
(P1) the gain-tuning (13) and the sensor-switching (20)
cease within a finite number of switches, (P2) at the last
switching time, all the healthy sensors are successfully
selected, i.e., S(t) = M∗, and (P3) the λ-tracking can
be achieved, that is,

lim
t→∞

‖e(t)‖ ≤ λ. (49)

Proof. First of all, we consider the case where there exists
a finite number k∗ ∈ I+ of switches such that the following
inequality and (38) hold simultaneously.

(γσ)k∗ > max
[

2
α

, c1, c2

]
. (50)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8946



f -th failed sensor

p

rf

1
s +

−vf
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p(tk∗)êf (tFf )

+

+

τf

Fig. 4. The f -th failed sub-system with the stuck signals.

If k∗ ∈ K∗ then we can verify from Lemma 3 that for
t ∈ [tk∗ , tk∗+1)

‖e(t)‖ ≤ λ + c1π(tk∗)e−
α
2 (t−tk∗ ) (51)

‖θ(t)‖ ≤ c2π(tk∗). (52)

Here, we assume that the next switching time t = tk∗+1

exists. Define constants ρ1(ξ1) ∈ R+ and ρ2(ξ2) ∈ R+

which are determined by positive constants ξ1 ∈ R+ and
ξ2 ∈ R+ respectively.

ρ1(ξ1) , ‖e−(tk∗+1)‖ − ‖e(tk∗+1 − ξ1)‖ > 0 (53)

ρ2(ξ2) , ‖θ−(tk∗+1)‖ − ‖θ(tk∗+1 − ξ2)‖ > 0 (54)

where e−(tk∗+1) = ê−(tk∗+1).

From the left continuities of the signals e(t) and θ(t), there
exist constant ξ1 and ξ2 satisfying

ρ1(ξ1) <
(
(γσ)k∗ − c1e

α
2 ξ1

)
π(tk∗)e−

α
2 (tk∗+1−tk∗ ) (55)

ρ2(ξ2) <
(
(γσ)k∗ − c2

)
π(tk∗). (56)

For such constants ξ1 and ξ2, we obtain

‖e−(tk∗+1)‖ = ‖e(tk∗+1 − ξ1)‖+ ρ1(ξ1)

≤ λ + c1π(tk∗)e−
α
2 (tk∗+1−ξ1−tk∗ ) + ρ1(ξ1)

< λ + (γσ)k∗π(tk∗)e−
α
2 (tk∗+1−tk∗ )

< λ + (γσ)k∗π(tk∗)e
− 1

(γσ)k∗ (tk∗+1−tk∗ )
(57)

‖θ−(tk∗+1)‖ = ‖θ(tk∗+1 − ξ2)‖+ ρ2(ξ2)

≤ c2π(tk∗) + ρ2(ξ2) < (γσ)k∗π(tk∗). (58)

This mean that the next switching does not occur, and
contradicts the above-mentioned assumption. By contra-
diction, the next switching time t = tk∗+1 does not exist
if k∗ ∈ K∗.
If k∗ 6∈ K∗ then at least one failed sensor is selected at
the switching time t = tk∗ . In this case, the SRCS has
at least one open-loop sub-system as shown in Figure 4.
From Lemma 1 and Figure 4 with setting v(t) = vf (t)
and ε = p(tk∗)êf (tFf ) where f ∈ {1, 2, · · · ,m}, we can
verify that the signal vf (t) grows “large” and forces the
signal θ(t) to hit the switching threshold (15). So, the
next switching time t = tk∗+1 exists. Thus, the switching
actions occur until all the failed sensors are replaced, i.e.,
S(t) = M∗. Finally, the switching function matrix S(t)
can take the solution M∗ within at most k∗ + L switches,
and attain S(∞) = S(ts∗) = M∗, k∗ < s∗ ≤ k∗ + L.

On the other hand, in the case where the finite number k∗
satisfying (38) and (50) does not exist, it is clear that the
gain-tuning and the sensor-switching cease within a finite
number (less than k∗) of switches and the healthy sensors
are all selected at the last switching time.

Consequently, the gain-tuning and the sensor-switching
cease within the finite number of switches, and the healthy
sensor is selected at the last switching time. Thus, the
properties (P1) and (P2) hold. Furthermore, after the last
switching, from (14), the error e(t) enters the small ball
with radius λ. The property (P3) holds.

Also clearly, from (13), (15) and (17), for any finite k, the
gain p(tk) and the signal ‖θ(tk)‖∞ are bounded. Notice
that the signals p(tk) and θ(tk) are bounded even if the
failed sensors are selected. Therefore, the signals p(t) and
θ(t) are bounded because the switching actions cease
within the finite number of switches. Hence, taking into
account that the plant ΣP is stable, we can verify that all
the signals are bounded.

Thus, we can conclude that Theorem 1 is true. ¥

5. SIMULATION RESULTS

To show the effectiveness of the SRCS, we explore two
simulations.

Consider the following 2I2O plant ΣP :
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

A =
[−1 0

0 −2

]
, B =

[
1 0
0 1

]
, C =

[
2 0
1 3

]
.

Here, we suppose that the first sensor for y1(t) and the
second sensor for y2(t) fails at the time 10 sec, that is,

tF = tF1 = tF2 = 10

M∗ = M3 ∈M
where M3 is given in Remark 1.

For this plant ΣP , we construct the SRCS as follows.

The reference input r(t) = [r1(t), r2(t)]T is given by

r1(t) =
{

t/2 (t ≤ 10)
5 (10 < t) , r2(t) =

{
t/5 (t ≤ 10)
2 (10 < t) .

The parameters to be designed are given by

γc = 1, gp = 10, γp = 1.5

γσ = 1.01, λ = 0.05.

To confirm the effect of the test signal τ (t), we explore the
simulations for the following two cases.

Case 1: the test signal τ (t) is injected, i.e., τ = 1.

Case 2: the test signal τ (t) is not injected, i.e., τ = 0.

Figures 5 and 6 indicates the results for the above cases.
Each figure indicates the actual tracking error e(t) =
[e1(t), e2(t)]T and the switching functions σ1(t) and σ2(t).

Figure 5 shows that it takes 0.7 sec to detect the sen-
sor failures, and the SRCS can complete to replace the
failed sensors, i.e., S(t) = diag[σ1(t), σ2(t)] = M∗ =
diag[0, 1], t ≥ 10.7 sec. Furthermore, we can find that
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Fig. 5. Simulation results for Case 1.
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Fig. 6. Simulation results for Case 2.

the actual tracking error e(t) enters the ball with radius
λ = 0.05. Of course, all the signals are bounded.

On the other hand, in Figure 6, the fault detection cannot
be achieved with no use of the test signal τ (t), and
the λ tracking cannot be attained. Hence, comparing the
two results, we can conclude that the test signal τ (t) is
necessary to detect the failures exactly.

6. CONCLUDING REMARKS

This paper has presented the novel SRCS for unknown
MIMO plants with sensor failures, which can automati-
cally replace the failed sensors with the healthy ones and
achieve the λ-tracking. No a priori information about the
plant is required to find the healthy sensors. This is one of
the advantages of the SRCS.

In this paper, we have considered only the case where the
measured outputs are stuck at the last measured values.
Generally, the faulty sensor signal goes to some fixed value
and then sticks at some time. Fortunately, this type of

the failure also can be accommodated directly by the
SRCS. However, there is the other type of the failure –
variation in the sensor gain (e.g. H. Wang, Z. J. Huang and
S. Daley [1997]). If variation is supposed to be piecewise
constant then the SRCS can guarantee boundedness of all
the signals.

The switched adaptive λ-tracker exploited in the SRCS is
based on high-gain feedback. Hence, the SRCS also can
be applied to the nonlinearly-perturbed plants ΣP with
the output-dependent disturbance w(t) = w(t,y(t)) under
the assumption that ‖w(t, y(t))‖ ≤ w1 + w2‖y(t)‖ for
constants w1, w2 ∈ R+. Indeed, according to A. Ilchmann
and E. P. Ryan [1994], the high-gain adaptive λ-tracker of
another type (the continuously tuned adaptive controller)
provides the robust stability and the λ-tracking for the
above-mentioned nonlinearly-perturbed systems.

In the previous work by M. Takahashi [2003], for SISO
systems, the SRCS has been developed against the actua-
tor failures that requires no information about the plants.
To detect the failures, we have exploited the unstable con-
troller – by using the unstable controller, the signals in the
SRCS grow up exponentially to hit the switching threshold
when the the SRCS becomes the open-loop system due
to the failures. Unfortunately, the exact fault detection is
not guaranteed. By contrast, the proposed SRCS utilizes
the test signal τ (t) and the I controllers. From Lemma 1
and Theorem 1, it is theoretically proved that the healthy
sensors are all selected.

The assumptions on the plants might be severe restrictions
in practical cases. To cope with this problem, we can
introduce “a parallel feed-forward compensator” to have
the augmented systems satisfying the assumptions (see e.g.
H. Kaufman, I. Bar-Kana and K. Sobel [1998]).
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