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Abstract: In this paper, a new sensor network design methodology has been proposed to improve the 
performance of ICA-based process monitoring approaches. Design procedure incorporates sensor cost, 
fault detectability and fault detection rate in the design formulation. The design problem has been 
transformed into an optimization problem. A genetic algorithm (GA) solver has been employed to yield 
optimal sensor locations for improved process monitoring. The proposed design methodology is 
evaluated on the Tennessee Eastman (TE) challenge benchmark problem. The simulation results 
demonstrate the effectiveness of the design procedure to enhance the process monitoring tasks with the 
less number of sensors for ICA approach. 
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1. INTRODUCTION 
 
Statistical process monitoring provides an efficient data 
analysis approach to identify any unusual conditions in 
chemical process operation and control. Process plants 
now routinely have large volumes of historical data. The 
exploitation of these data is a critical task in successful 
operation of any industrial process over long term. For 
more than a decade, considerable research efforts have 
been focused on developing statistical monitoring methods 
which can extract original information sources inherent in 
the multivariate measured data. Independent component 
analysis (ICA) is a recently developed statistical method 
for revealing independent latent variables that drive a 
process but are not directly measurable. Therefore, it is 
natural to infer that monitoring based on ICA model can 
give efficient process monitoring. On the other hand, 
whenever a process encounters a fault, the effect of this 
fault is propagated to all or some of the process variables. 
Efficient observation of these fault symptoms through a 
measurement system to determine the root cause for the 
observed behaviour necessitates a well-designed sensor 
network. Thus, the efficiency of the diagnostic monitoring 
system depends critically upon the location of the sensors 
to monitor the most fault relevant process variables. With 
hundreds of process variables available for measurement 
in any chemical plant, selection of crucial and optimum 
sensor positions poses a unique problem. A number of 
applications of the ICA-based approaches have been 
reported in the literature. Lee et al. (2003) proposed a new 
statistical monitoring method that uses ICA methodology. 
The method is, however, based on the assumption of an 
already available sensor network in place. To the best of 
out knowledge, the relationship between sensor location 
and ICA-based monitoring performance has not addressed 

yet in the literature. The emphasis of most of the works on 
the fault monitoring has been more focused on procedures 
to perform fault detection and diagnosis for a given set of 
sensors and less on the actual location of sensors for 
efficient monitoring and identification. Wang et al. (2002) 
has utilized the digraph-based approach proposed by 
Raghuraj et al. (1999) to optimize sensor locations for 
improved PCA-based monitoring in fault detection and 
isolation. Recently, Musulin et al. (2004) have presented a 
design method for sensor placement to improve fault 
detection monitoring based on principle component 
analysis (PCA) approach. Their design method formulates 
an optimization problem to minimize the sum of sensor 
cost and cost due to the relative impact of faults to locate 
the sensors. The proposed method, however, does not 
consider the cost due to the detection rates of faults. In this 
paper, a sensor network design method is presented for 
ICA-based monitoring approaches. The proposed method 
incorporates the sensor cost, the cost due to the relative 
impact of different faults and the cost due to the fault 
detection rates in the criteria of locating the sensors. In this 
way, design procedure is formulated in terms of an 
optimization problem. The inclusion of fault detection 
rates in the design procedure enhances the detectability of 
faults in the designed sensor network. The optimization 
problem is then solved using a genetic algorithm (GA). 
Finally, the effectiveness of the proposed design method is 
validated on the Tennessee Eastman (TE) challenge 
process.  
 

2. ICA PROCESS MONITORING 
 
ICA is a statistical technique to reveal hidden independent 
components (ICs) that underlie sets of process 
measurements. In this technique, it is assumed that the 
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observed d-dimensional measured data at time k, i.e. 
T

d kxkxkx )](),...,([)( 1= , can be expressed as a linear 
combination of m dm ≤ unknown ICs, i.e. 

T
m ksksks )](),...,([)( 1= , given by the following model:  

 
)()()( kekAskx +=                                                        (1) 

 
Where mdRA ×∈ is the unknown mixing matrix and e(k) 
denotes the residual model error. The objective of ICA is 
to find a demising matrix W so that the components of the 
reconstructed data vector )()(ˆ kWxks = become 
independent of each other. W can be calculated 
by QBW T= , where B is an orthogonal matrix 

(i.e., IBBT = ) and Q is the whitening matrix, given 
by TVDQ 2/1−= , where V is the orthogonal matrix of 
eigenvectors of the data covariance matrix 

))()(( kxkxER T
x =  as its columns,  and D is the diagonal 

matrix of its corresponding eigenvalues. Lee et al. (2003) 
proposed three statistic measures ( SPEII e ,, 22 ) for ICA-
based process monitoring, defined as follows: 
 

)(ˆ)(ˆ)(2 kskskI newd
T

newd=                                       (2) 

)(ˆ)(ˆ)(2 kskskI newe
T

newee =                                       (3) 

))(ˆ)(())(ˆ)(()( kxkxkxkxkSPE newdnew
T

newdnew −−=                                                                                    
                                                                                         (4) 
   
Where: 
 

)()(ˆ)(ˆ 11 kxWBQksBQkx newddnewddnewd
−− ==              (5)   

 
Where dW represents dominant part of W and 

T
dd QWB )( 1−= while eW and T

ee QWB )( 1−= indicate their 
excluded counterparts. Thus, the independent data vectors, 

)(ˆ ksnewd and )(ˆ ksnewe , can be obtained when new 
data, )(kxnew , becomes available at sample time k through 
the demixing matrices dW and eW as follows: 
 

)()(ˆ kxWks newdnewd =                                            (6) 
)()(ˆ kxWks newenewe =                                                     (7) 

 
Similar to the above reasoning for the SPE statistic, 
another new statistic measure can be proposed as follows 
to take care of monitoring the excluded part of the ICs: 
 

))(ˆ)(())(ˆ)(()( kxkxkxkxkSPE newenew
T

newenewe −−=        
                                                                                        (8) 
 
Where )()(ˆ 1 kxWBQkx neweenewe

−= . Once the ICA model 
has been developed in terms of the four statistics 
( SPEII e ,, 22 and eSPE ), any departure from the process 
normal operating condition can be detected using 

corresponding confidence limit values, adjusted similar to 
the method adopted by Chiang et al. (2001). In this wok, 
FastICA algorithm, presented by Hyväarinen (1999), is 
used to perform ICA which entails maximizing the 
negentropy under the constraint of 1=ib ( ib is the ith 
column of matrix B). 
 

3. DERIVATION OF FAULT DETECTION LIMITS 
FOR ICA MODEL 

 
Wang et al. (2002) derived sufficient conditions so that a 
fault is detectable in PCA-based monitoring approach. 
Muslin et al. (2004) utilized the same results in their 
sensor network design method for PCA-based monitoring 
application. The same reasoning is employed in this paper 
to derive the required conditions so that a fault can be 
detected in ICA-based monitoring approach. Suppose that 
there exists a set of J important faults, denoted by J

jjF 1}{ = , 
in the process to be monitored. Each fault can be described 
in a fault subspace )( n

j RF ∈ by a set of orthogonal basis 

represented by jln
j R ×∈θ . Where jl represents the number 

of process variables affected by the fault jF . Thus, when a 
fault )( jF  occurs, the vector of measured deviated process 
variables x′ can be expressed by:  
 

jj fxx θ+=′ 0                                                                 (9) 
 
Where 0x denotes the process measurements under normal 
operating conditions and jj fθ represents the induced fault 
deviation. In this formulation, each column of jθ is zero 
except for the affected process variable which is 1 or -1 
depending on the sign of deviation. jl

j Rf ∈ indicates the 
magnitude of the derivations caused by jF in the 
corresponding process variable. Projecting every 
normalized measured data vector )(kx′ in the ICs space, 
leads to the ICA statistic model, defined by the following 
measures: 
 

222 )()(ˆ)( kxWkskI dd ′==                                     (10) 
222 )()(ˆ)( kxWkskI eee ′==                                      (11) 

212 )()()(ˆ)()( kxWBQkxkxkxkSPE ddd ′−′=′−′= −  

                                                                                      (12)                    

)()()(ˆ)()(
212 kxWBQkxkxkxkSPE eeee ′−′=′−′= −

                                                                                      (13) 
 
Consequently, the corresponding detection limit for 2I  
can be evaluated using the following expression: 
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Using the following inequality expression: 

jjddd fWxWxW θ−≥′ 0                                         (15) 

 
and the expression 20 Id xW δ≤ which is valid for normal 

operating condition (where 2Iδ is the control confidence 

limit of 2I statistic), the following sufficient condition for 
detectability of fault jF based on 2I measure can be 
concluded: 
 

22 Id xW δ>′                                                                 (16) 
 
Using the foregoing inequality, it can be written: 
 

22. Ijjdjjd fWfW δθθ ≥≥                                     (17) 
 
The result can be expressed in the following restrictive 
sufficient condition corresponding to the fault magnitude 

jf in the 2I statistic monitoring measure: 
 

22 )(2 1
max IjdIj Wff

j
δθσ ×=≥ −                                (18) 

 
Following the same reasoning for the other statistics in the 
ICA-monitoring, leads to: 
 

22 )(2 1
max

eje IjeIj Wff δθσ ×=≥ −                               (19) 

SPEjddSPEj WBQIff
j

δθσ ×−=≥ −− ))((2 11
max   

                                                                                      (20)  
          

SPEejeeSPEej WBQIff
j

δθσ ×−=≥ −− ))((2 11
max  

                                                                                      (21) 

Where 
jjej

SPEII fff ,, 22 and 
jSPEef are the critical 

fault magnitudes (CFMs). That is, they represent the 
minimum fault magnitude jf detectable by the four 

statistic measures ( SPEII e ,, 22 and eSPE ) for ICA-based 

process monitoring. SPEII e
δδδ ,, 22 and SPEeδ represent the 

control confidence or threshold limits corresponding to the 
individual ICA statistic measures for normal operation. 
 
 
4. FORMULATION OF SENSOR NETWORK DESIGN 

FOR IMPROVED ICA-BASED PROCESS 
MONITORING 

 
The problem of sensor design location for improving the 
efficiency of fault detection in ICA-based process 
monitoring can be formulated in forms of an optimization 
problem. For this purpose, the following important design 
factors are considered in this work: 

1- The sensor cost 
2- The critical fault detectability condition 

determined by CFMs. 
3- The fault detection rates determined by the ICA 

statistical charts. 
Consider a process with N number of process variables to 
be measured. A binary vector iQ is used to define ith 
sensor network design candidate, as follows: 
 

],...,,[ 21 Ni qqqQ =                                                        (22) 
 
Each element of iQ will be either 0 or 1 to represent the 
absence or presence of sensor. Similarly, the cost of ith 
sensor network design can be defined by the following 
vector: 
 

],...,[ 2,1 iNiii cccC =                                                      (23) 
 
Where ),...,1( Nkcik = indicates the cost of kth selected 
sensor in the ith sensor network design. Thus, the sensor 
network cost ( iSNC ) for the ith design solution can be 
obtained as follows: 
 

∑
=

=
N

k
ikki cqSNC

1

                                                           (24) 

 
To evaluate the performance of the ith sensor network 
design candidate, the following minimum critical fault 
magnitude (MCFM) concept is defined for the jth fault: 
 

},,,min{
,,2

,
2
,

, jijijieji
SPEeSPEIIji ffffMCFM =   

                                                                                       (25) 
 

Where 
jijieji

SPEII fff
,2

,
2
,

,,  and 
jiSPEef

,
 represent the 

CFMs corresponding to jth fault )( jF when ICA 
monitoring is performed based on the measured variables 
dictated by the ith sensor network design ( iQ ). It is 
evident that jiMCFM ,  indicates the lower fault magnitude 
of jF  to be detected by any of the ICA statistic charts 

( SPEII e ,, 22 and eSPE ).  A fault size penalization iFSP is 
defined to infer the performance of the candidate sensor 
network ( iQ ), as follows: 
 

∑ ∑
= =

==
J

j

J

j
jijijii MCFMwFSPFSP

1 1
,,,                          (26) 

 
Where jiw ,  denotes a weighting factor which reflects the 
importance of fault jF in process monitoring. The size of 

jF  varies between two limit bounds. The upper bound 
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ji
f

,sup  determines the compulsory level at which the jth 

fault has to be detected by sensor network iQ . Otherwise, 
the process encounters with shutdowns or hazardous 
situations while, the lower bound 

ji
f

,inf is considered as 

the lowest significant level to be monitored for fault 
detection. Thus, the jiFSP , can be modelled by the 
following expression: 
             

⎪
⎪
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                                                                                        (27) 
 
To calculate

ji
f

,sup , the process data matrices jx  should be 

inspected to determine the process data vectors when any 
measured process variable exceeds the well-known 
“ δ3 edit rules” (Chiang et al, 2003) as the normal pre-
specified limits. Thus, considering 0

jx as the process data 
vectors under such fault situation, its normalized version 
represents the relevant fault parameter vectors ( 0

jf ) at 
which the fault should be compulsory detected. Therefore, 

ji
f

,sup can be calculated by: 

 

ij Qff
ji

*0
sup ,

=                                                           (28) 

 
Where * indicates an element by element multiplication 
while, the lower limit 

ji
f

,inf can be obtained by considering 

the variance of individual columns of normalized data 
matrix under normal operating condition as follows: 
 

iN Qf
ji

*],...,[ 1inf ,
σσ=                                               (29) 

 
Where kσ denotes the variance of the kth column of 
normalized data matrix. So (31) is transformed to: 
 

iQf
ji

*]1,...,1[
,inf =                                                       (30) 

 
Noting that each fault )( jF should have a constant 
maximum fault size penalization ( jMFSP ) which is 
defined as the fault size penalization ( jiFSP , ) assigned to 

iQ when
ji

fMCFM ji ,sup, = . Therefore, the penalization 

weights can be defined as follows: 
 

jiji
ff

MFSP
w j

ji
,, infsup

, −
=                                                     (31) 

 

Another important factor to be considered in the design 
procedure is due to the fault detection rate penalization 
( jiFDRP , ) which is defined as follows for the jth fault 

)( jF in terms of an economic penalization term: 

jideeji tSPESPEIIFDRP
,

cos}],,,max{1[ 22
, ×−=        (32) 

 
Where 

jidt ,
cos represents the cost penalization of jF  with 

zero fault detection rate in all the ICA statistic measures 
provided by the candidate sensor network iQ . Therefore, 
the sensor network design problem can be translated into 
the following objective function: 
 

iiii FDRPSNCFSPJ ++=                                           (33) 
 
in which jMSFP should be expressed in terms of an 
equivalent economic penalization. Thus, the sensor 
network design for improved ICA-based process 
monitoring is formulated as the following optimization 
problem: 
 

}{ i
i

JMinimize                                                               (34) 

 
5. OPTIMAL SENSOR NETWORK DESIGN USING GA 

ALGORITHM 
 
 
A GA algorithm is used in this work to solve the 
optimization design problem, formulated by (36). In GA, 
the potential solution or individual is coded as a vector, 
called as chromosome. In the proposed algorithm, each 
chromosome denotes a sensor network design which is 
codified as iQ . The individuals are then evaluated based on 
the penalty index ( iJ ). Thus, the individuals with lower 
 iJ are selected as the most fitted solution in each 
generation. First, a set of indN candidate solutions or 
population are generated randomly. The goodness of each 
candidate solution or individual is evaluated by iJ as the 
fitness criterion. Then, a new generation of individuals is 
created from the most fitted chromosomes using the 
roulette-wheel selection, crossover and mutation operators 
(Goldberg, 1989). The GA algorithm can be stopped when 
the number of generations reaches a predefined maximum 
value or when the current population does not give 
sufficient improvement compared with the previous 
generation. 
 

6. SIMULATION CASE STUDY 
 
6.1 ICA-based process monitoring study 
 
The proposed sensor network design approach for 
improving the ICA-based process monitoring is used in 
this simulation case study to investigate its effectiveness to 
monitor the Tennessee Eastman (TE) challenge process, 
shown in Fig.1, as a well-known plant-wide benchmark 
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problem. The process consists of five major unit 
operations; a continuous stirred tank reactor (CSTR), a 
condenser, a compressor, a flash drum separator and a 
stripper. It involved the production of two main products, 
G and H and an undesired by-product F from four reactants 
A, C, D and E. More details on the process description are 
well explained in a book of Chiang et al. (2001). In this 
research study, the same simulation data generated by 
Chiang et al. (2001) has been used. A total of 33 variables 
including 11 manipulated variables and 22 measured 
variables have been selected to be used as monitoring 
variables (as listed in Table 1). Table 2 summarizes an 
estimation of the costs ( jMFSP )considered for all 18 TE 
faults excluding the faults 3, 9 and 15, charging more the 
faults which can lead to shut down situation. Table 3 lists 
the estimated cost for the process and the manipulated 
instruments except for the sensors that have already been 
used for control purposes which are considered of null 
cost.  
The GA algorithm in the MATLAB GA Toolbox has been 
used in which the initialization parameters have been set as 
follows: 
 

• Population size= 10*33=330 
• Population type: Bit string 
• Scaling function: Rank 
• Selection function: Roulette-wheel 
• Reproduction elite count= 120, crossover 

fraction=80% 
• Mutation function: uniform with rate=0.02 
• Crossover function: scattered 
• Stall generations=5 
• Function tolerance=$1 
• Stall time limit=1e4 seconds 
• Number of generations=50 
 

Table 4 (left section) summarizes the ICA-based fault 
monitoring results for the designed sensor network with 19 
selected sensors as specified in Table 5. The cost 
penalization of all faults (

jidt ,
cos ) has been assumed to be 

equal to $2*1e+6. The obtained losses for this design 
sensor network are 1.05842e+07 due to fault penalization, 
$13800 for sensor cost and $4554375 for detection rates. 
Comparing the obtained detection rates for all 18 TE faults 
in Table 4 with those of Lee et al. (2004) with 33 sensors 
indicates a significant achievement in fault detection with 
only 19 sensors. Fig. 2. demonstrates how the sensor 
network design has made the resulting monitoring 
approach to detect fault 5 clearly. 
 
6.2 Filtered ICA-based (f-ICA) monitoring 
 
The presence of noise in the data matrix often induces 
undesirable deviations in the measurements which might 
be attributed to the process faults in ICA-monitoring. To 

alleviate the noise influence, the following filtered versions 
of the original measured signals, stored in the normalized 
data matrices, can be employed:      
 

)]5(),...,2(),(),([)( TtxTtxTtxtxmeantx −′−′−′′=′′    (35) 
 
The previous simulation study in subsection 6.1 was 
repeated for this filtered-ICA (f-ICA) version under the 
same settings. Table 4 (right section) summarizes the fault 
detection rates for the designed sensor network with 16 
selected sensors as specified in Table 5. Evaluating the 
obtained results indicates much more improvement in the 
fault detection rates with respect to the ICA-based 
approach. Whereas, this result has been achieved with only 
16 sensors compared to 19 sensors in the previous study. 
The estimate losses for this designed sensor network are 
$1.0317e+07 due to fault penalization, $10200 due to the 
sensor cost and $4409375 for fault detection rates. These 
outcomes indicate the capability of the f-ICA technique to 
yield better results with lower number of sensors and fewer 
losses. Fig. 3. illustrates the efficiency of the resulting 
monitoring system to detect fault 10 better than the 
previous test study. 
 

7. CONCLUSIONS 
 
 
The design of sensor location issue has not yet been paid 
enough attention in most process monitoring applications. 
To the best of our knowledge, this is the first contribution 
paper which addresses this important issue for the ICA-
based process monitoring approaches. A new design 
methodology has been proposed which incorporates fault 
detection rate factor with both the sensor cost and fault 
detectability conditions. The design problem has been 
expressed in form of an optimization formulation. Then, a 
standard genetic algorithm (GA) has been employed to 
yield an optimal sensor network design solution. The 
simulation studies demonstrate the effectiveness of the 
proposed design scheme to improve the capabilities of the 
resulting ICA and f-ICA-based monitoring methods to 
detect TE faults with more efficiency and lower number of 
required sensors. 
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Fig. 1 Control system for the Tennessee Eastman process 

 
Table 1. Process monitoring variables in TE Process 

 
No. Process Measurements No. Manipulated Variables 
1 A feed (str.1) 23 D feed flow valve (str.2) 
2 D feed (str.2) 24 E feed flow valve (str.3) 
3 E feed (str.3) 25 A feed flow valve (str.1) 
4 Total feed (str.4) 26 Total feed flow valve (str.4) 
5 Recycle flow (str.8) 27 Compressor recycle valve 
6 Reactor feed rate (str.6) 28 Purge valve (str.9) 
7 Reactor pressure 29 Sep. pot underflow valve (str.10) 
8 Reactor level 30 Stripper under flow valve (str.11) 
9 Reactor temperature 31 Stripper steam valve 
10 Purge rate (str.9) 32 Reactor Cooling water flow 
11 Product sep. temp. 33 Condenser cooling water valve 
12 Product sep. level   
13 Product sep. pressure   
14 Product sep. underflow (str.10)   
15 Stripper level   
16 Stripper pressure   
17 Stripper underflow (str.11)   
18 Stripper temperature   
19 Stripper steam flow   
20 Compressor work   
21 Reactor Cooling water outlet temp.   
22 Sep. cooling water outlet temp.   

 
Table 2. Estimation of the costs considered for all 18 TE faults 

 
No Fault Type Cost 
1 A/C feed ratio, B composition constant (str.4) Step $7500 
2 B composition, A/C feed ratio constant (str.4) Step $25000 
3 D feed temp. (str.2) Step 0 
4 Reactor Cooling water inlet temp. Step $2500 
5 Condenser cooling water inlet temp. Step $10000 
6 A feed loss (str.1) Step $500000 
7 C header press. Loss-reduced availability (str.4) Step $500000 
8 A,B,C feed co position (str.4) Random variation $15000 
9 D feed temp. (str.2) Random variation 0 
10 C feed temp. (str.4) Random variation $5000 
11 Reactor Cooling water inlet temp. Random variation $15000 
12 Condenser cooling water inlet temp. Random variation $35000 
13 Reaction kinetics Slow drift $1000 
14 Reactor cooling water valve Sticking $3750 
15 Condenser cooling water valve Sticking 0 
16 Unknown  $24000 
17 Unknown  $6000 
18 Unknown  $500000 
19 Unknown  $40000 
20 Unknown  $500000 
21 Unknown  $2500 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5467



     

Table 3. List of estimated cost of instruments 
 

No Process Meas. Cost No MV Cost 
1 A feed (str.1) 0 23 D feed flow valve (str.2) $700 
2 D feed (str.2) 0 24 E feed flow valve (str.3) $700 
3 E feed (str.3) 0 25 A feed flow valve (str.1) $700 
4 Total feed (str.4) 0 26 Total feed flow valve (str.4) $700 
5 Recycle flow (str.8) 0 27 Compressor recycle valve $700 
6 Reactor feed rate (str.6) $2100 28 Purge valve (str.9) $700 
7 Reactor pressure $1600 29 Sep. pot underflow valve (str.10) $700 
8 Reactor level 0 30 Stripper under flow valve (str.11) $700 
9 Reactor temperature 0 31 Stripper steam valve $700 
10 Purge rate (str.9) 0 32 Reactor Cooling water flow $700 
11 Product sep. temp. $600 33 Condenser cooling water valve $700 
12 Product sep. level 0    
13 Product sep. pressure $1600    
14 Product sep. underflow (str.10) $2100    
15 Stripper level 0    
16 Stripper pressure $1600    
17 Stripper underflow (str.11) 0    
18 Stripper temperature 0    
19 Stripper steam flow 0    
20 Compressor work $3000    
21 Reactor Cooling water outlet temp. 0    
22 Sep. cooling water outlet temp. $600    

 
 

 
 
 
 

Table 4. Detection rates for ICA and ICA with filtered data matrices (f-ICA) 
 

Faults ICA 
2I  

ICA 
2
eI  

ICA 
SPE  

ICA 

eSPE  

f-ICA 
2I  

f-ICA 
2
eI  

f-ICA 
SPE  

f-ICA 

eSPE  

1 100 99.75 99.75 99.75 99.625 99.75 99.625 99.5 
2 95.50 96.75 95.125 94.625 95.5 96.25 95 94 
3 1.875 3.5 4.375 1.875 1.375 2.125 0.875 0.375 
4 100 29.375 27.25 95.375 98.25 99.25 94.75 75.125 
5 99.875 99.875 99.875 99.875 99.875 99.75 99.625 99.875 
6 100 100 100 100 100 100 100 100 
7 100 100 93 100 100 100 100 98.625 
8 96.625 96.75 95.5 92.625 96.75 92.75 88.75 92.375 
9 1.375 2.375 2.625 2.125 1.625 3.5 2.25 0.5 
10 40.625 48.5 36.625 29.625 83.125 61.375 49.5 49.875 
11 61.125 28.625 26.25 52.375 64 74.375 69 53.75 
12 99.875 99.75 98.75 96.5 99.5 98.625 96 95.125 
13 95 95 94.375 94.25 94.875 94.25 92.125 94.5 
14 100 99.875 99.875 100 80.625 87.625 87.5 79.875 
15 4 11.125 10.125 2.625 7.25 3.375 1.625 5.125 
16 77.25 80.125 69.625 65 83.375 60.375 48.25 44.875 
17 87.5 82 75.5 74.125 65.375 65 63.25 57.5 
18 89.75 89.5 89 89.25 89.5 89.875 89.25 88.375 
19 83.625 72.875 60.375 61.875 60.25 78.875 56 21.375 
20 81.125 64.625 53.125 50.125 81 70.625 59.875 52.625 
21 60.5 52 42.875 39.75 60.25 35.625 23.5 32.625 
False alarm 1 1.125 1.125 1.125 1.125 1 1.125 1.125 
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Table 5. Sensor locations for ICA and ICA with filtered data matrices (ICA-f) 
 

Sensor 
No. 

ICA ICA-f Sensor No. ICA ICA-f 

1 true true 18 false true 
2 true false 19 true false 
3 false true 20 true false 
4 false false 21 true false 
5 true true 22 false false 
6 false true 23 true false 
7 false true 24 false false 
8 true false 25 true true 
9 false true 26 true true 
10 false false 27 true true 
11 true false 28 false false 
12 false false 29 false false 
13 true false 30 false true 
14 true false 31 true true 
15 false false 32 true true 
16 true true 33 true true 
17 true true    

 
 

 

 
Fig. 2 Detection of fault 5 by ICA 
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