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Abstract: In this paper, a new process monitoring methodology is presented to detect fault occurrence. 
The proposed methodology incorporates a wavelet de-noising approach based on the fast wavelet 
transform (FWT) to extract the embodied fault dynamics from the noisy measured data. A level 
dependent soft thresholding technique using Daubechies 3 with three levels of decomposition is utilized. 
An appropriate sliding window scheme is presented to enable on-line implementation of wavelet de-
noising filtering. An ICA statistical monitoring technique is employed to detect fault. To enhance ICA 
monitoring capability, a new statistic measure is developed to cater for monitoring the excluded part 
which has not been captured by the main dominant part. An approach based on cumulative percent 
variance (CPV) is presented to mechanize the selection of dominant independent components in the 
presented monitoring methodology. The effectiveness of the proposed wavelet-ICA approach will be 
demonstrated by applying on the Tennessee Eastman challenge process plant. 
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1. INTRODUCTION 
 
The ever-increasing complexity of modern chemical plants 
and the continuously and tightly environmental regulations 
are pushing the process industries to optimize their 
production systems against any process abnormality. This 
forces the process operators to carefully monitor and 
analyze operational data in order to identify the early 
detection of unusual conditions as they develop and 
responding rapidly and effectively by taking corrective 
actions. This is a challenging task because of the 
overwhelming volume of the data that operators have to 
deal with. Thus, there have been extensive research efforts 
in the last two decades on developing automated fault 
detection methods. Multivariate statistical process control 
(MSPC) provides data-driven techniques which enable the 
on-line monitoring of chemical processes. This is done by 
reducing the high dimensionality of the original measured 
data to a smaller number of latent variables which embody 
the major sources of inherent variability within the data. 
Principle component analysis (PCA) is one of the most 
popular data-driven MSPC techniques for this purpose. 
Recently, appearing to be the new computational non-
demanding MSPC approach, independent component 
analysis (ICA) has shown rich potential capabilities. Both 
PCA and ICA are used to identify certain components 
existing in the multivariate process history data. However, 
they follow different rules. PCA is based on orthogonal 

decomposition of the covariance matrix of the process 
variables along directions that have the maximum data 
variance while for ICA, each of the components are 
extracted such that they are independent with one another. 
Statistically speaking, PCA procedure can only impose 
independence up to the second order statistics information 
(i.e. mean and variance) whereas ICA has no orthogonality 
constraint and hence accomplishes higher order statistics. 
Therefore, the ICA features that capture the higher order 
statistics provide more informative factors or components 
characterizing the fault dynamics inherent in the 
multivariate process data. Reliability and accuracy of the 
sensor measurement data are essentially important for 
process monitoring performance. Thus, using raw field 
operation measurements directly for ICA modelling can 
deteriorate the useful generated fault features, preventing 
effective process fault detection. The reason is that these 
operation data embody background noises and dynamics 
covering the effect of process faults. It’s, therefore, 
desirable to extract the true fault dynamic signal from the 
noise corrupted operational data prior to carrying out any 
detailed statistical analysis. Wavelet analysis is used in this 
paper to decompose the raw field operation measurements 
in order to separate background noises from the true fault 
dynamics and in this way the process monitoring 
performance is improved. In this paper, an integrated 
framework has been presented for process monitoring 
which combines wavelet analysis for de-noising and ICA 
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for feature extraction purposes. This wavelet-ICA based 
approach presents a robust fault detection methodology. 
This paper is organized as follows. The theoretical 
background of wavelet-denoising and ICA are outlined in 
Sections 2 and 3, respectively. The proposed fault 
detection system framework, based on the integration of 
ICA and wavelet, is presented in Section 4. Section 5 gives 
the simulation results obtained by the application of the 
proposed methodology to Tennessee Eastman (TE) 
challenge process as a complex industrial benchmark 
problem. Finally, Section 6 concludes with an assessment 
of the presented approach and points to the further 
research issues. 
 
 

2. ON-LINE WAVELET DE-NOISING METHOD 
 
First, a very brief introduction of wavelet transform (WT) 
theory is presented. Then, the method employed in this 
paper for de-noising is presented. 
 
 
2.1 A brief introduction to wavelet transform theory 
 
Wavelet transformation is designed to address the problem 
of non-stationary signals. It involves representing a time 
function in terms of simple, fixed building blocks, termed 
wavelets. These building blocks are actually a family of 
functions which are derived from a single generating 
function called the mother wavelet by translation and 
dilation operations. Dilation, also known as scaling, 
compresses or stretches the mother wavelet and translation 
shifts it along the time axis. This transformation is 
achieved by projecting the original measured signal down 
onto wavelet basis function, defined by: 
 

)(1)(, b
at

a
tba

−
Ψ=Ψ                                                    (1) 

 
Where a and b represent the dilation or scaling and 
translation parameters, respectively and )(tΨ is the mother 
wavelet satisfying the following equation: 

∫
+∞

∞−
=Ψ 0)( dtt                                                                  (2) 

 The factor a/1 is used to ensure that the energy of the 
scaled and translated versions is the same as the mother 
wavelet. WT can be categorized into continuous (CWT) 
and discrete (DWT). CWT implies that the scaling and 
translation parameters (a, b) change continuously. 
However, calculating wavelet coefficients for every 
possible scale can represent a considerable effort and result 
in a vast amount of data. Therefore, discrete parameter  

wavelet transform (DWT) is often used. The DWT uses 
scales and translation values based on powers of two, so 
called dyadic scales and translations (i.e., ma 2= and 

nb m2= , where m and n are integers). This makes the 
wavelet analysis much more efficient whilst remaining 
accurate. 
Mallat (1989) developed an efficient recursive algorithm 
for implementing a fast computation of DWT by a 
successive low pass and high pass filtering of a discrete-
time data signal of dyadic length. In the wavelet analysis, 
the low frequency content is called approximation while 
the high frequency content is named as the detail. For 
many practical data signals, the low frequency content is 
the most important part. Thus, the decomposition can be 
iterated with successive approximations being decomposed 
in turn, so that a signal can be broken into many lower 
resolution components. This recursive multiscale wavelet 
decomposition of a signal constitutes the Mallat’s fast 
wavelet transform (FWT) which is extremely efficient for 
on-line implementation in this work since it only requires 
of the order N operations to transform an N-sample length 
signal. 
To implement the Mallat’s FWT algorithm, the 
Daubechies family are used as the chosen wavelet in this 
paper. This is due to the fact that these wavelets benefit the 
compact support of time-domain and good frequency 
domain decay characteristics. 
 
 
2.2 Online wavelet de-noising algorithm 
 
This section presents an on-line de-noising algorithm 
based on the Mallat’s FWT decomposition and a level 
dependent thresholding scheme to eliminate those 
components in the wavelet coefficients that are attributed 
to the noise. For implementing the wavelet de-noising 
algorithm in real- time, a new approach based on a sliding 
window of dyadic length (N) is introduced in this paper to 
enable the development of the on-line process monitoring 
system.  
In the sliding window, the latest several data samples carry 
the most up-to-date information on any change in the 
measured signals due to the fault occurrence. 
Consequently, this up-to-date data should be utilized to 
capture the variable changes in time. For this purpose, the 
concepts of sliding windows and the latest data zone 
(LDZ) are defined as shown in Fig. 1. The sliding window 
consists of two different data zones. 
 
 
 
 
 
 

Fig.1. Sliding window for on-line wavelet de-noising 
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The latest data zone (LDZ), representing the updated 
operating information on any fault induced transients, 
includes the operational data sampled at the recent two 
time samples while the history data zone (HDZ) contains 
all the recorded sample data. 
As new sampled data become available through the 
measurement system, the sliding window is moved 
through the time. This procedure eliminates the predefined 
number of sampled data from the last recorded data in 
HDZ while adding an equal number of lately attained 
sampled data to the window. Thus, the on-line wavelet de-
noising algorithm can be summarized by the following 
steps: 

1- Construct the up-to-date sliding window from the 
new selected samples data of the noisy 
multivariate measured signals. 

2- Apply the FWT to the noisy sampled data 
structure collected in the up-to-dated sliding 
window 

3- Threshold the elements in the wavelet coefficients 
which are attributed to the noise. 

4- Apply the inverse FWT to the thresholded signal 
in real time. 

5- Return only the last reconstructed points 
corresponding to the predefined number of the 
new sampled data collected in LDZ. 

 
3. ICA- BASED PROCESS MONITORING 

 
3.1 ICA basic fundamentals 
 
ICA is a statistical data–processing technique to reveal 
hidden underlying features or components from measured 
operational data. Hence, ICA is a generative model which 
can describe how the observed data are generated by a 
process of mixing the hidden independent components. In 
other words, ICA is based on the assumption that the 
measured d-dimensional data vector 

T
d kxkxkx )](),...,([)( 1= can be expressed as a linear 

combination of dm ≤ hidden independent components, 
i.e. T

m ksksks )](),...,([)( 1= , yielding the following 
representative model: 
 

)()()( kekAskx +=                                                         (3) 
 
Where A in an unknown full-rank matrix, called the 
mixing matrix ( mdRA ×∈ ), and e is the residual of fitting 
error vector to be minimized. The basic essence of ICA is 
to estimate the matrix A and then compute its inverse say 

1−= AW , referred to as the demising matrix ( dmRW ×∈ ), 
so that the hidden features or components obtained by: 
 

)()(ˆ kWxks =                                                                    (4) 
 
become statistically independent or as independent as 
possible. Several algorithms have been developed for 
performing ICA. One of the best methods is the fixed-

point FastICA algorithm (Hyävrinen, 1999), where the 
negentropy is used as the criterion to estimate )(ˆ ks .  
The initial step in ICA computation is whitening, which 
eliminates most of the cross-correlation between observed 
variables. This is done by )()( kQxkz = with: 
 
 IksksE T =))()((                                                  (5) 
 
The whitening matrix Q is given by TVDQ 2/1−= where 
D is a diagonal matrix with the eigenvalues of the data 
covariance matrix ))()(( kxkxER T

x =  and V is a matrix 
with the corresponding eigenvectors as its columns. The 
whitening transformation yields: 
 

)()()()( kBskQAskQxkz ===                                (6) 
 
Where B is an orthogonal matrix (i.e., IBBT = ) thus 

)(ks can be estimated by the following relation: 
 

)()()()(ˆ kWxkQxBkzBks TT ===                            (7) 
 
To calculate B, each column vector ib is initialized and 
then updated so that the independent component 

)()(ˆ kzbks T
i=  may have great non-Gaussianity. This 

paper uses FastICA algorithm to estimate B and hence the 
demixing matrix W. FastICA is a fast and robust algorithm 
that iterates to find directions in which the negentropy is 
maximized under the constraint of 1=ib .  
 
3.2 Process monitoring using ICA statistical measures 
 
To perform on-line process monitoring, the measured 
variables should be continuously analyzed to detect faults. 
To implement this monitoring objective with the ICA 
approach, the monitoring statistic measures of ICA should 
be estimated. The ICA model is determined based on the 
historical data collected during normal process operation. 
Then, future process behaviour is compared against this 
normal or in-control model representation. Thus, W and 

)(ks are obtained in the normal operating condition by 
applying the ICA procedure using the FastICA algorithm. 
To reduce the data dimension, a few rows of W is only 
selected based on the assumption that the rows with the 
largest sum of squares coefficients have the most effect on 
the variation of the corresponding elements of the 
independent component vector. The p selected elements of 
W make a reduced matrix dW (dominant part of W) and the 
rest of W constitutes the matrix eW  (excluded of non-
dominant part of W). 
Lee et al. (2003) proposed three monitoring statistics 
measures ( SPEII e ,, 22 ) for process monitoring based on 

ICA approach. The 2I  measure is used to monitor the 
systematic part of process variation which is defined as 
follows: 
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)(ˆ)(ˆ)(2 kskskI newd
T

newd=                                       (8) 
 
Where )()(ˆ kxWks newdnewd = is the dominant part of the 
new decomposed independent data vectors after collecting 
new data )(kxnew at every time instant k.  Similarly, 2

eI  
measure is defined based on the excluded independent 
components )(ˆ ksnewe ,    as follows: 
 

)(ˆ)(ˆ)(2 kskskI newe
T

newee =                                               (9)  
 
Where )()(ˆ kxWks newenewe = . This statistic measure is 
used to monitor non-systematic part of measurements, 
providing an additional fault detection tool for those 
special events that have not been captured by 2I .  Finally, 
SPE measure is used to monitor the residual part of the 
process variation which is defined as follows at time 
constant k: 
 

))(ˆ)(())(ˆ)((

)()(

kxkxkxkx

kekeSPE

newdnew
T

newdnew

T

−−

==
                  (10) 

 
Where: 
 

)()(ˆ)(ˆ 11 kxWBQksBQkx newddnewddnewd
−− ==           (11) 

 
 
Noting that dB is a reduced matrix of B whose indices 
correspond to the indices of dW and can be computed 
directly by: 
 

T
dd QWB )( 1−=                                                    (12) 

 
Similar to the above reasoning for the SPE statistical 
measure, another new statistical measure is proposed in 
this work to take care of monitoring the excluded part of  
the independent vectors, defined by: 
 

))(ˆ)(())(ˆ)((

)()(

kxkxkxkx

kekeSPE
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T

newenew

T
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−−
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                   (13) 

 
Where: 
 

)()(ˆ)(ˆ 11 kxWBQksBQkx neweeneweenewe
−− ==              (14) 

 
Where )(ˆ kxnewd denotes the main data captured by the 
dominant part of ICA model while )(ˆ kxnewe  represents the 
excluded part of the data as sample k.  
Once the ICA model in terms of the four statistic measures 
( SPEII e ,, 22 and eSPE ) has been developed, any 
departure from the process normal operation can be 
detected using the corresponding confidence values as the 
latent variables in many industrial processes that rarely 

follow a multivariate Gaussian distribution. Thus, these 
confidence limits can not be determined directly from the 
particular approximate distribution. However, in this work 
the confidence levels are selected in a similar manner to 
Lee et al. (2004) and Chiang (2001) which also guarantees 
the 99% confidence limits. 
 
 

4. ON-LINE WAVELET-ICA BASED FRAMEWORK 
FOR FAULT DETECTION OF TENNESSEE 

EASTMAN PROCESS 
 
The joint implementation of wavelet de-noising filter and 
ICA statistical technique for process fault monitoring is 
illustrated by application to the Tennessee Eastman (TE) 
challenge process as a typical chemical plant. 
 
 
4.1 TE challenge process description 
 
The TE challenge process is a plant-wide process control 
problem which has been proposed by Downs and 
Vogel(1993) as a hypothetical challenge test problem for a 
number of control related topics including monitoring 
approaches. The process, presented in Fig. 2, consists of 
five major unit operations; a continuous stirred tank 
reactor (CSTR), a product condenser, a vapour-liquid flash 
drum separator, a recycle compressor and a product 
stripper. The original process has 12 manipulated variables 
and 41 measurements (22 continuous process 
measurements and 19 composition measurements). The 
complete details on the process description are well 
documented in a book by Chiang et al. (2001). In this 
research study, the same simulation data generated by 
Chiang et al. (2001) has been employed which can be 
downloaded from http://brahms.scs.uiuc.edu. A total of 33 
variables including 11 manipulated variables, where 
agitator speed is excluded from manipulating variables, 
and 22 measured variables have been selected to be used 
as monitoring variables (as listed in Table 1). 
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Fig 2. Control system for the Tennessee Eastman process 
 
 

Table 1. Process monitoring variables in TE Process 
 

No. Process Measurements No. Manipulated Variables 
1 A fed (str.1) 23 D feed flow valve (str.2) 
2 D fed (str.2) 24 E feed flow valve (str.3) 
3 E fed (str.3) 25 A feed flow valve (str.1) 
4 Total fed (str.4) 26 Total feed flow valve (str.4) 
5 Recycle flow (str.8) 27 Compressor recycle valve 
6 Reactor feed rate (str.6) 28 Purge valve (str.9) 
7 Reactor pressure 29 Sep. pot underflow valve (str.10) 
8 Reactor level 30 Stripper under flow valve (str.11) 
9 Reactor temperature 31 Stripper steam valve 
10 Purge rate (str.9) 32 Reactor Cooling water flow 
11 Product sep. temp. 33 Condenser cooling water valve 
12 Product sep. level   
13 Product sep. pressure   
14 Product sep. underflow (str.10)   
15 Stripper level   
16 Stripper pressure   
17 Stripper underflow (str.11)   
18 Stripper temperature   
19 Stripper steam flow   
20 Compressor work   
21 Reactor Cooling water outlet temp.   
22 Sep. cooling water outlet temp.   

 
 
 
The study does not include the 19 composition 
measurements data to provide a more realistic problem. A 
sampling interval of 3 minutes was used to select the 
simulated data for both the training and testing sets. The 
set of used programmed faults, i.e. faults 1-21, has been 
introduced in Table 2. One more testing set (fault 0) was 
generated to indicate no fault condition. Each fault consists 
of 480 and 960 observations in the training and testing 
data sets, respectively. Moreover, all faults in the testing 
data set were introduced from time sample instant of 160. 
 
 

 
 
 
4.2 Implementation of on-line wavelet-ICA monitoring 
approach 
 
4.2.1 Wavelet de-noising implementation 
 
The ultimate goal of utilizing wavelet de-noising in this 
work is to gain richer signals in order to improve the 
detection rates of faults while keeping the real dynamic of 
faults untouched. For this purpose, both hard and soft 
global and level-dependent thresholding were tested using  
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Table 2. Process faults for Tennessee Eastman process 

 
No Fault Type 
1 A/C feed ratio, B composition constant (str.4) Step 
2 B composition, A/C feed ratio constant (str.4) Step 
3 D feed temp. (str.2) Step 
4 Reactor Cooling water inlet temp. Step 
5 Condenser cooling water inlet temp. Step 
6 A feed loss (str.1) Step 
7 C header press. Loss-reduced availability (str.4) Step 
8 A,B,C feed co position (str.4) Random variation 
9 D feed temp. (str.2) Random variation 
10 C feed temp. (str.4) Random variation 
11 Reactor Cooling water inlet temp. Random variation 
12 Condenser cooling water inlet temp. Random variation 
13 Reaction kinetics Slow drift 
14 Reactor cooling water valve Sticking 
15 Condenser cooling water valve Sticking 
16 Unknown  
17 Unknown  
18 Unknown  
19 Unknown  
20 Unknown  
21 Unknown  

 
 
different types of wavelet and the best results were 
obtained with the level dependent soft thresholding using 
Daubechies 3 (db3) with three levels of decomposition. 
The threshold value for each decomposition level was 
selected to be equal to the highest absolute value of the 
corresponding detail coefficients in the same 
decomposition level for each measure variable in the 
normal operating condition of training data set. It should 
be noted that no thresholding was applied to the 
approximate coefficients. Authors also tested other 
standard level-dependent thresholding methods including 
universal threshold, SURE, Heuristic SURE and Minimax 
but no better results were achieved in the detection phase. 
The main drawback of the classical wavelet de-noising 
methods, however, is that they can not be implemented 
online because they all need a series of already collected 
sampled data as a minimum length size to operate whereas 
only one new sample data is available in real time 
monitoring. To overcome this problem, a new approach 
based on a sliding window of dyadic length was presented 
in Section 2.2.  
For the purpose of avoiding computational complexity and 
excessive computation time, the sliding window frame can 
be moved when more than one new sampled data is 
collected. This may result in adding lags in the on-line 
detection phase. For the TE process, the window size of 32 
samples and the movement of 2 sampled data leaded to the 
best results regarding high fault detection rate and 
preserving the on-line characteristic of wavelet-ICA 
monitoring approach. 
 
 
 
 

 
 
4.2.2 ICA monitoring implementation 
 
To implement the process monitoring, the required ICA 
model matrix first should be determined using the 
whitening and FastICA algorithm based on the historical  
data corresponding to the normal operating condition in 
the training data set. Then, the resulting ICA model matrix  
can be utilized for on-line monitoring of the TE process 
recorded in the testing data set. To obtain the required ICA 
model, however, the number of dominant independent 
components (ICs) should be selected. Lee et al. (2003) 
suggested a graphical inspection method to determine the 
number of dominant ICs by looking at the resulting bar-
graph which is not automated and is subject to operator 
error in decision making. Therefore, an automatic 
selection method should be adopted for this purpose. In 
this paper, an approach based on cumulative percent 
variance (CPV) (Malinowski, 1991), captured by the first 

kI independent components has been presented as follows 
to mechanize the ICs selection procedure: 
 

100)(

1

1 ×=

∑

∑

=

=
m

j
j

I

j
j

k

k

ICPV
λ

λ

                                               (15)   

 
Where sj 'λ   are the eigenvalues of the covariance matrix 

xR sorted in the decreasing order. Noting that: 
 

1
.
−

=
n

xxR
T

x                                                                     (16) 
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Where x is the normalized version of data matrix mnx × , 
containing n sample of m variables with zero mean and 
unit variance. Thus, the number of dominant ICs was 
chosen when the CPV measure riches a predetermined 
limit of 97%.  
 
 
4.3 Simulation results and discussions 
 
Many simulation tests were conducted to evaluate the 
performance of the on-line ICA monitoring approach using 
simple processing of measurements directly, and the 
performance of the on-line wavelet-ICA monitoring 
approach. The resulting detection rates of all the 21 TE 
faults have been computed and summarized for both 
monitoring approaches in Table 3 in terms of each 
monitoring statistic measure. Comparing the results in 
Table 3, demonstrates the superiority of the wavelet-ICA 
approach. As illustrated, the wavelet-ICA approach shows 
much better results with more detection rates in almost all 
the faults especially for fault numbers 4, 7, 11, 16, 20 and 
21. As shown, the detection rates for the difficult faults 3 
and 9 have increased as well. The resulting wavelet-ICA 
charts illustrate that all the statistic measures can 
successfully detect all the TE faults except for the difficult 
faults 3, 9 and 15 from approximately time sample 160 up 
to the end of the processing time. The monitoring results 
for fault 4 have been shown in Fig.3. This fault 
corresponds to the reactor cooling water inlet temperature 
which has been varied by a step change. As demonstrated, 
the fault can fairly be detected by all 4 statistic charts. This 
means that all the SPEII e ,, 22 and the new proposed 
measure  eSPE can detect the fault from the exactly time 
sample 160 and stayed above their confidence limits up to 
the end of the processing time, despite the regulatory 
action of the available process control loops which return 
all the deviated process variables back to their normal set-
points (Chiang et al. 2001). Examining the results in the 
Table 3 demonstrates the superiority of the new measure 

eSPE with respect to SPE measure to provide efficient 

information to enhance the detection in almost majority of 
the faults. The CPV measure shows that 19 dominant ICs 
are required in the wavelet-ICA monitoring approach to 
capture 97% of the covariance in the data, while the ICA 
monitoring approach needs 21 dominant ICs for the same 
value of CPV measure. This observation along with the 
better performance of wavelet-ICA monitoring approach 
to detect the TE faults implies the effectiveness of the 
wavelet denoising to separate the background noise from 
the true informative fault dynamics. The total average 
computation time for processing each sample period is 
0.0015 seconds for the ICA monitoring approach, whereas 
this figure in the wavelet-ICA approach is equal to 0.115 
seconds. Thus, both of the average computation times turn 
out to be quite justified for on-line applications. The 
calculations reported in this paper are performed in 
T2500@ 2.00 GHz Intel Centrino Duo processor with 2.00 
GB RAM. 
 
 

5. CONCLUSIONS 
 
A new integrated monitoring approach has been presented 
in this paper for fault detection purposes. The approach 
utilizes the wavelet de-noising for separating useful fault 
dynamics from the background industrial noises to provide 
more informative data for process monitoring. In order to 
achieve this goal, different hard and soft global and level-
dependent thresholdings were examined using different 
types of wavelets. The level dependent soft thresholding 
using Daubechies 3 (db3) with three levels of 
decomposition was found to give the best results for the 
TE process faults. An appropriate sliding window frame 
with a dyadic length of 32 samples and movement of 2 
sampled data were used to implement the wavelet de-
noising in real-time. ICA monitoring technique was then 
used to capture the essential fault dynamic features from 
the filtered process data. To enhance the monitoring 
capability of the ICA, a new statistic measure, ( eSPE ) was 
developed to take care of monitoring the excluded part

  

 
                  
                   Fig.3.1Monitoring results of fault4 by ICA                       Fig.3.2 Monitoring results of fault 4 by wavelet- ICA 
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Table 3. Detection rates of ICA and Wavelet-ICA for TE process (%) 
 

Fault 
No. 

ICA 
2I  

ICA 
2
eI  

ICA 
SPE  

ICA 
eSPE  

WICA 
2I  

WICA 
2
eI  

WICA 
SPE  

WICA 
eSPE  

1 99.875 99.75 99.625 99.625 99.875 99.875 99.75 99.75 
2 97.875 98.625 98.625 97 98.75 98.625 97.75 98.25 
3 3.25 1.125 1.125 0.75 5.5 5 3.5 0.125 
4 98.75 89.875 60.25 72.125 100 100 100 100 
5 100 100 100 99.875 100 100 100 100 
6 100 100 100 100 100 100 100 100 
7 100 99.875 99.875 100 100 100 100 100 
8 97.875 96.875 96.125 96.5 98 98 97.5 98 
9 2.375 0.5 0.5 0.625 5.5 2.375 1.375 2.875 
10 87.25 76.25 68.5 64.125 92.375 85 69.25 74.25 
11 69.75 57.875 47.125 49.875 89 87.5 77.5 87.5 
12 99.875 99 97.75 99.625 99.75 99.625 99.625 99.75 
13 95.125 95 94.125 94.625 95.875 95.125 95.75 95.75 
14 100 99.875 99.875 99.875 100 100 100 100 
15 9.5 2.125 2.25 6.125 7.375 10.5 5.5 0.875 
16 89.75 79.875 68.125 62.875 96 92.125 84.25 86.875 
17 95.75 85.5 81.5 83.5 97.625 97.625 96.75 97.375 
18 89.875 89.875 90 89.5 90.625 90.625 89.5 90 
19 84.25 68.75 49 19.5 83.375 73.75 36.375 47.125 
20 90.75 66.25 60.25 60 92 87.75 79.375 82.325 
21 62.375 39.375 34.375 43.125             64.375 58.125 43.75 52 
False  
Alarm 

1.125 0.875 0.875 1.25 0.875 1.125 1.125 1.25 

 
 
of the independent vectors, which has not been captured by 
the main dominant part. To implement the on-line process 
monitoring, an approach based on the CPV measure was 
used to automatically choose an appropriate number of ICs 
so as to capture a predetermined variance limit of 97% in 
the operational measured data. The developed wavelet-
ICA monitoring methodology was applied to the TE 
process plant for fault detection purposes. The proposed 
method results in much better results with more detection 
rates in almost all the TE process faults with respective to 
the ICA method. 
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