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Abstract: This paper presents a new online statistical monitoring based on dynamic independent 
component analysis (DICA) to detect the Tennessee Eastman challenge process faults. The proposed 
method employs dynamic feature extraction approach to capture most of the inherent dynamic fault 
information. This leads to an efficient fault detection with superior performance compared to independent 
component analysis (ICA) approach in both detection rate and number of false alarms. A new statistic 
measure has been introduced to enhance the monitoring capabilities of ICA and DICA. An approach 
based on cumulative percent variance (CPV) has been incorporated to mechanize the selection of 
required number of independent components in both ICA and DICA online monitoring methods. To 
choose the best time-lag order for each fault dynamic model in the DICA augmented data matrix, a 
multivariate auto regressive exogenous (ARX) model structure has been adopted by validating the 
minimum Akaike’s information criterion (AIC) index. An online procedure based on a multi-class 
support vector machine (SVM) with Gaussian kernel function, being set by sub-optimal width 
parameters, is employed to classify and isolate each fault. The SVM uses one against all (OAA) 
algorithm for fault classification and sequential minimization optimization (SMO) to solve the 
classification problem. Performances of the developed process monitoring methods (ICA-SVM, DICA-
SVM) are evaluated on the Tennessee Eastman challenge process (TE).  
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1. INTRODUCTION 
 
Occurrence of any abnormal situation or fault in modern 
chemical plants can lead to serious safety, environmental 
and economical implications. The exploitation of the 
enormous and highly correlated operational data by simple 
visual inspection to detect any possible fault is a difficult or 
impossible task. As a consequence, automatic online process 
monitoring approach is gaining great importance in the large 
complex chemical, oil and gas plants. Early and reliable 
fault detection and diagnosis is not only desirable but also 
crucial to minimize down-time, increase the operation 
safety, and to reduce the production costs. Research efforts 
for more than a decade have focused on models created with 
process history data based on statistical analysis tools. 
Principle component analysis (PCA) is the most widely 
data-driven technique for monitoring industrial processes. It 
is based on orthogonal decomposition of the covariance 
matrix of the process variables along directions that explain 
the maximum variation of the observed data. However, this 
method ignores the serial correlation among measurements 
at different times and assumes the monitored latent variables 
to be normally distributed. These characteristics limit the 

monitoring capabilities of the conventional PCA-based 
multivariate statistical approaches. Several extensions of the 
PCA have been developed in the literature (Ku et al., 1995, 
Nomikos et al., 1994; Wold et al., 1996; Bakhshi, 1998) to 
overcome these limitations. ICA is an emerging statistical 
technique which can extract basic underlying informative 
factors or independent components (ICs) from multivariate 
observed data. ICs can reveal more useful monitoring 
information from the observed process data than principle 
components (PCs) in the PCA-based monitoring approaches. 
Because, statistically speaking, PCA procedure can only 
impose independence up to second order statistics 
information (i.e. mean and variance) while ICA has no 
orthogonality constraint and hence accomplishes higher 
order statistics. Lee et al (2003) proposed a new statistical 
monitoring method that uses the ICA methodology. They 
proposed to use 22 , eII and SPE statistics as monitoring 
charts. Lee et al. (2004) introduced DICA as a more 
powerful monitoring approach for dynamic processes. 
In this paper, DICA approach is used to present an integrated 
framework for online monitoring of Tennessee Eastman 
plant. To enhance the monitoring capability of ICA and 
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DICA methods, a new statistic measure eSPE is proposed to 
take care of monitoring the excluded part of the independent 
vectors, which has not been captured by the main dominant 
part. An ARX reference model is used as a preliminary 
modelling study on the individual fault dynamics to 
determine the required number of time-lagged variables for 
developing the DICA models. The results are validated by 
Akaike information criterion (AIC) index. After the fault 
modelling step, the ICA procedure is performed on the 
lagged observed variables, stacked in the data matrix, using 
the FastICA software algorithm. The paper uses the statistics 
derived from the normal operating condition in the process 
data training data set to determine the 99% confidence limits 
for the four monitoring charts, SPEII e ,, 22 and eSPE , by 
the kernel density estimation. Then, an automatic selection 
procedure is adopted to select the appropriate number of the 
ICs using a cumulative percent variance (CPV) measure. 
Finally, the SVM approach is utilized to classify and isolate 
the TE fault sources in an online manner. The paper is 
organized as follows. In Section 2, ICA and DICA 
monitoring approaches are developed. The ICA DICA 
monitoring approaches are then applied to TE process for 
fault detection. Following a brief review of SVM theory in 
Section 4, the proposed ICA and DICA combined with the 
SVM are utilized for TE fault diagnosis. Finally, some 
important conclusion remarks will be summarized in Section 
5.  
 
 

2. DEVELOPMENT OF ICA AND DICA 
 
2.1 ICA approach  
 
ICA is a generative model which can describe how the 
observed data are generated by the process of mixing the 
hidden ICs. In the ICA algorithm, it is assumed that the 
measured d-dimensional vector at time instant k, i.e., 

T
d kxkxkx )](),...,([)( 1= can be expressed as a linear 

combination of dm ≤ hidden ICs, denoted 
by T

m ksksks )](),...,([)( 1= , which can be represented by 
the following model: 
 

)()()( kekAskx +=                                                           (1) 
 
Where mdRA ×∈ is an unknown full-rank matrix, called the 
mixing matrix and e is the residual or fitting error vector. 
The basic problem of ICA is to estimate the original 
 component )(ks  or to estimate the unknown mixing matrix 
A from the measured data vector )(kx . Alternatively, the 
main objective of ICA is to estimate a demixing matrix 
where dmRW ×∈ so that components of the reconstructed 
data vector )(ˆ ks , given by )()(ˆ kWxks = , become as 
independent of each other as possible (i.e. 

IksksE T =))()(( ). The problem of estimating a full-rank 
matrix A can be reduced to the problem of estimating )(ks , 
as follows: 

)()(ˆ kQxBks T=                                                       (2) 
 
Where B is an orthogonal matrix (i.e. IBBT = ) and Q is the 
whitening matrix, given by TVDQ 2/1−= , where V is the 
orthogonal matrix of eigenvectors of the data covariance 
matrix, ))()(( kxkxER T

x = , and D is the diagonal matrix of 
its corresponding eigenvalues. Comparing (2) and equations 
stated, leads to the following expression: 
 

QBW T=                                                             (3) 
 
Hyvärinen (1999) presented a fast and robust fixed-point 
algorithm, called as FastICA, to perform ICA which entails 
maximizing the negentropy under the constraint of 

1=ib (i.e., ith column of B). Finding B, the demixing 
matrix W is obtained from (3). 
 
 
2.2 DICA approach 
 
ICA approach assumes implicitly that the observations at 
one time instant are statistically independent of the 
observations at past time instances. This leads to neglecting 
of any useful serial correlation information in the 
observation. One simple approach to address this issue is to 
augment each observation vector with the previous l 
observations and stacking them in the data matrix as 
follows: 
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Where T

kx denotes the d-dimensional observation vector in 
the training set at time interval k, (p+1) is the number of 
samples and l is the number of time-lagged measurements 
by performing the ICA algorithm on the augmented data 
matrix in (4). A DICA model is obtained which can extract 
ICs based upon both the cross-correlated and auto-correlated 
properties of the observed variables. The only major 
problem associated with the DICA approach is the 
appropriate selection of the number of the required time 
lags. Because, the number of time lags included in the DICA 
model may substantially affect its monitoring performance. 
In this paper, a procedure is presented which follows the 
idea of selecting the number of lags l to minimize the AIC 
criterion based on the following final prediction error (FPE) 
measure, using as ARX reference model: 
 

)
/1
/1(
Nd
NdVFPE

−
+

=                                                            (5) 
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Where V is the loss function, d is the estimated parameters 
and N denotes the number of estimation data. 
 
 
2.3 Process monitoring with ICA and DICA 
 
In order to perform online process monitoring, the measured 
variables should be continuously analyzed to detect faults. 
To implement the process monitoring, the monitoring 
statistics of ICA or DICA should be estimated. Three types 
of statistics ( SPEII e ,, 22 ) have been already proposed by 
Lee et al. (2003) for process monitoring. The ICA or DICA 
model is determined based on the historical data collected 
during the normal operating condition (NOC) using the 
FastICA algorithm. Then, future process behaviour is 
compared against this normal or in-control model 
representation. To reduce the data dimensions, however, a 
few rows of W are only selected to make a reduced 
dominant part dW . As a consequence, by collecting new 
data, )(kxnew at every time instant k, the new decomposed 
independent data vectors can be obtained as follows in terms 
of the dominant and excluded parts: 
 

)()(ˆ kxWks newdnewd =                                                (6) 
)()(ˆ kxWks newenewe =                                                          (7) 

 
Where eW denotes the excluded part of W. Then, the three 
statistical monitoring measures are defined as follows:  
 

)(ˆ)(ˆ)(2 kskskI newd
T

newd=                                         (8) 

)(ˆ)(ˆ)(2 kskskI newe
T

newee =                                         (9) 

))(ˆ)(())(ˆ)(()( kxkxkxkxkSPE newdnew
T

newdnew −−=   
                                                                                          (10) 
Where:  
  

)()(ˆ)(ˆ 11 kxWBQksBQkx newddnewddnewd
−− ==               (11)    

 
Noting that dB is a reduced matrix of B whose indices 
correspond to the indices of dW and can be computed 

directly by T
dd QWB )( 1−= . Similarly, the excluded or non-

dominant part of B can be computed as T
ee QWB )( 1−= . 

Similar to the above reasoning for the SPE measure, 
suggested by Lee et al. (2003), another new statistical 
monitoring measure is proposed in this paper to take care of 
monitoring the excluded part of the independent vectors, 
defined by: 
 

))(ˆ)(())(ˆ)(()( kxkxkxkxkSPE newenew
T

newenewe −−=        
                                                                                         (12) 
Where: 
 

)()(ˆ)(ˆ 11 kxWBQksBQkx neweeneweenewe
−− ==                   (13) 

 
Where )(ˆ kxnewd represents the main data captured by the 
dominant part of ICA or DICA model while 

)(ˆ kxnewe indicates the excluded part of the data sample time 
k. Thus, the new )(kSPEe is a useful measure to monitor the 
variation due to the excluded part which has not been 
captured by the main dominant part. Once the ICA or the 
DICA model has been developed in terms of the four 
statistics ( SPEII e ,, 22 and eSPE ), any departure from the 
process NOC can be detected using the corresponding 
confidence limit values.  
 
 
3. ONLINE FAULT DETECTION OF THE TE PROCESS 

USING ICA AND DICA 
 
3.1 The TE process description 
 
The Tennessee Eastman (TE) challenge process is a plant-
wide process control problem which has been proposed by 
Downs and Vogel (1993) as a hypothetical challenge test 
problem for control and monitoring approaches. The 
flowsheet diagram of the TE process is depicted in Fig.1. 
The original process has 12 manipulated variables and 41 
measurements (22 continuous process measurements and 19 
composition measurements). The details on the process 
description are well explained in a book by Chiang et al 
(2001). In this research study, the same simulation data 
generated by Chiang et al. (2001) and used by Lee et al. 
(2004) has been employed for the sake of comparison. A 
total of 33 variables including manipulated variables and 22 
measured variables as listed by Lee et al. (2004), have been 
selected to be used as monitoring variables. The study does 
not include the 19 composition measurements data to 
provide a more realistic monitoring problem. The set of used 
programmed faults, i.e. faults 1-21 has been introduced in 
Table 1. Each fault record consisted of 480 and 960 
observations in the training and testing data sets, 
respectively. All faults in the testing data set were 
introduced from time sample instant of 151 (the instant of 
fault occurrence has been changed in this work). 
 
3.2 Time-lag order determination in the DICA monitoring 
approach 
 
To apply the DICA monitoring approach, the number of 
required time-lagged observation (l) in (4) should first be 
determined. For this purpose, the following multivariate 
ARX model structure is considered for each individual TE 
fault dynamic modelling: 
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Fig. 1 Control system for the Tennessee Eastman process 

 
Table 1. Process faults for Tennessee Eastman process 

 
No Fault Type 
1 A/C feed ratio, B composition constant (str.4) Step 
2 B composition, A/C feed ratio constant (str.4) Step 
3 D feed temp. (str.2) Step 
4 Reactor Cooling water inlet temp. Step 
5 Condenser cooling water inlet temp. Step 
6 A feed loss (str.1) Step 
7 C header press. Loss-reduced availability (str.4) Step 
8 A,B,C feed co position (str.4) Random variation 
9 D feed temp. (str.2) Random variation 
10 C feed temp. (str.4) Random variation 
11 Reactor Cooling water inlet temp. Random variation 
12 Condenser cooling water inlet temp. Random variation 
13 Reaction kinetics Slow drift 
14 Reactor cooling water valve Sticking 
15 Condenser cooling water valve Sticking 
16 Unknown  
17 Unknown  
18 Unknown  
19 Unknown  
20 Unknown  
21 Unknown  
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In this way, each of the 22 measured output time responses 

)(tyi can be described by linear combination of their 
previous outputs )( jtyi − and the previous manipulated 
inputs )( jtu jm − where 111 ≤≤ m . Assuming 
that { }11,...,1,max nnnyLu = , (18) can be rewritten as 
follows: 
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Thus, without the loss of generality, the modelling problem 
now leads to estimation of a time-lag order ( uL ) and two 
sets of model coefficients ( jnj βα ′′ , ) in (15). In this study, 
the search for obtaining the best number of lags ( uL ) was 
conducted in order interval of 1 through 8 (i.e. 81 ≤≤ uL ). 
Higher orders are practically undesirable in model 
identification application since it requires more 
computational time and might be in the favour of noise 
enhancement rather than the useful fault diagnostic data 
modelling. For any time-lag order, the ARX model 
parameters are estimated for each specific fault time-series 
pattern by the least squares solution of the over-determined 
system of equations, resulting from applying the relevant 
data samples of the output and input available in the TE  
training data set. In each test, the model mean squared error 
(MSE) and the Akaike’s final prediction error (FPE) are 
computed. Finally, the best time lag order ( uL ) for each 
fault model is determined on the basis of the minimum AIC 
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of all the performed time-lag tests. Table 2 summarizes the 
best obtained results for identification of all the fault 
models. However, a fixed number of time-lag order ( uL ) 
should be selected for each output and manipulated variable 
to implement the DICA fault model in the proposed online 
process monitoring application. Table 3 shows the resulting 
average and selected time-lag orders. 
It should be noted that the order of lags for the manipulated 
variables is set to the average of all lags in Table 3, resulting 
in selection of 4 lags for the all 11 manipulated variables. 
 
3.3 Implementation of the proposed ICA and DICA 
monitoring  
 
To obtain the ICA and DICA models for online TE process 
monitoring, the number of dominant ICs should be selected. 
Lee et al. (2003) suggested a graphical method to determine 
the number of dominant ICs by looking at the resulting ICs 
contribution bar graph, which is not appropriate for an 
online monitoring approach. Therefore, an automatic 
selection method is required for online monitoring purposes. 
In this paper, a measure based on the following cumulative 
percent variance (CPV) (Malinowski, 1991), captured by the 
first kI independent components, is employed: 
 

∑

∑

=

== m

j
j

I

j
j
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λ

                                                            (16) 

Where sj 'λ   are the eigenvalues of the covariance 
matrix xR , sorted in the decreasing order: 
 

1
.

−
=

n
xxR

T

x                                                                       (17) 

 
x denotes the normalized version of the data matrix x 
corresponding to n samples of m measured variables. In this 
paper, the number of dominant ICs is chosen when the CPV 
measure reaches a predetermined limit of 97%, leading to 78 
ICs for DICA monitoring. For ICA monitoring, however, 9 
ICs where selected for the sake of comparison with the Lee 
et al. (2004). The 99% confidence limits for each monitoring 
statistics were also determined by the kernel density 
estimation method from the NOC in the training data set. 
This is due to the fact that there is no a priori knowledge of 
data in the testing set at this stage. However, Lee et al. 
(2004) adjusted the confidence limit of each statistic to its 
tenth highest value for the NOC of the testing data set. Table 
4 shows the resulting false alarm rates due to the application 
of the proposed ICA and DICA monitoring procedure in the 
testing data set. 
Comparing the corresponding results with those recorded in 
Lee et al. (2004), shows better false alarm rates 
achievements. Table 4 summarizes the obtained detection 
rates for all the 21 TE faults. In comparison with the 
corresponding Lee et al. (2004), results, the DICA method 
shows much better results with higher detection rates in 

almost all the TE faults especially for fault numbers 3, 9, 10, 
11, 15, 16, 19 and 20 which demonstrates a considerable 
difference. This is mainly due to the fact that the proposed 
DICA uses the appropriate number of time-lagged measured 
variables information to extract the process dynamicity. The 
resulting DICA charts show that all the statistic measures 
can successfully detect all the TE faults except for the 
difficult faults 3, 9 and 15. The monitoring results for fault 5 
have been illustrated in Fig. 2. Comparing the obtained 
monitoring charts with the corresponding charts presented 
by Lee et al. (2004) demonstrates that the effect of this fault 
is magnified more in our statistic measures. As shown, the 
new eSPE statistic chart in Fig. 2 is an additional useful 
fault detection tool which can provide efficient information 
quite similar to the SPE statistic measure. Fig. 3 
demonstrates the monitoring results for fault 10. Comparing 
the obtained DICA results with those recorded in Lee et al. 
(2004), shows a better fault detection rates for all the 
statistic measures. The detection rate for 2I statistic is 95.5% 
while that of the Lee et al. (2004) is 87.84%. Similarly, the 
detection rate of 2

eI  and SPE statistics have increased from 
94.36% and 74.19% to 96% and 89.88%, respectively. 
Inspecting the corresponding SPE monitoring chart of Lee et 
al. (2004) reveals that although the chart is able to detect the 
start of fault occurrence successfully, it can not show the 
persistent presence of the fault at many other samples, 
because the chart is below the confidence limit for those 
samples, giving the process operator an incorrect picture of 
the process status. While, all the obtained DICA monitoring 
charts in Fig. 3 successfully illustrate the detection effect up 
to the end of the processing time interval. 
 

4. ONLINE TE PROCESS FAULT DIAGNOSIS USING 
SVM 

 
Observing the multivariate monitoring charts 
( SPEII e ,, 22 and eSPE ) simply indicates the presence of a 
process fault. These measures can not give any information 
about the root-cause fault diagnostics. Thus, once a fault is 
detected by the statistical ICA or DICA monitoring 
approach, a fault classification is required to perform fault 
diagnostics. In this paper, a SVM technique is presented for 
this classification purpose.  
 
4.1 A brief introduction to SVM 
 
SVM is a relatively new computational learning method 
which is gaining more popularity in machine learning 
community due to its excellent generalization ability. SVM 
is based on the so-called structural risk minimization 
principle. The basic idea of applying SVM for solving 
classification problem can be stated briefly in two steps. 
First, SVM maps the input space to a higher dimensional 
feature space through the use of a nonlinear kernel function. 
Then, it seeks for an optimized linear division within the 
feature space. In this study, a Gaussian radial basis function 
(RBF), i.e. }/exp{)( 22 σϕ ii xxx −−= , was used as the 
kernel function which maps the input data vectors ( ix ) onto  
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Table 2. Number of lags determined by modelling  
(Fault no. in rows and output number in columns) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
F1 6 3 6 3 1 2 6 4 3 5 8 1 8 1 1 6 1 7 8 6 4 8 
F2 5 7 3 2 6 1 6 3 3 3 7 1 4 1 1 6 1 7 3 3 4 8 
F3 5 3 3 2 1 1 4 1 6 4 5 1 6 1 1 6 1 4 2 3 2 4 
F4 3 3 3 1 1 1 4 1 4 3 2 1 4 1 1 8 1 3 3 5 2 2 
F 5 3 4 3 6 1 1 8 7 2 5 8 1 5 1 1 4 1 4 4 8 3 8 
F 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
F 7 3 2 1 4 1 2 5 8 6 3 6 1 4 1 1 2 1 6 7 5 4 8 
F 8 5 4 3 3 1 4 7 3 4 3 5 1 8 1 1 7 1 5 8 4 6 5 
F 9 4 4 3 5 1 1 7 2 4 3 2 1 7 1 1 7 1 4 2 2 3 1 
F10 3 3 3 2 1 1 4 2 5 5 4 1 5 1 1 4 1 2 3 4 3 1 
F11 5 3 2 5 1 1 4 1 3 6 5 1 4 1 1 4 1 6 2 3 4 5 
F12 3 2 8 4 1 3 3 4 5 5 3 1 5 1 2 5 2 6 7 5 3 2 
F13 4 3 3 3 1 1 8 7 2 3 8 1 8 1 2 4 1 8 8 7 3 8 
F14 3 8 3 1 2 2 8 6 4 5 2 1 8 1 2 4 1 5 2 8 6 1 
F15 5 3 3 2 1 1 2 2 2 5 2 1 4 1 1 4 1 4 1 3 2 3 
F16 5 3 3 3 1 1 4 3 4 3 3 1 4 1 1 4 1 3 3 8 3 3 
F17 4 3 3 6 1 1 6 2 2 3 7 1 6 1 1 6 1 7 2 8 3 8 
F18 7 6 7 8 6 8 3 8 3 8 7 1 4 7 6 8 2 5 7 8 5 5 
F19 3 4 3 3 1 3 5 1 6 5 8 1 2 1 1 5 1 3 1 3 2 5 
F20 7 2 3 7 1 1 4 3 4 7 6 2 2 1 1 7 2 5 3 3 3 4 
F21 3 3 3 1 1 1 3 2 2 4 2 1 5 1 1 3 1 3 1 3 3 3 

 
Table 3. Number of lags selected for the DICA monitoring  

 
Variable 
 No.  

Average 
 Lag 

Selected  
Lag 

Variable  
No.  

Average 
 Lag 

Selected 
 Lag 

1 4.4762 5 12 1.381 2 
2 3.8571 4 13 5.2857 6 
3 3.6667 4 14 1.619 2 
4 3.7619 4 15 1.7143 2 
5 1.8571 2 16 5.3333 6 
6 2.1429 3 17 1.4762 2 
7 5.1905 6 18 5 5 
8 3.7143 4 19 4.0476 4 
9 3.9048 4 20 5.0952 5 
10 4.5714 5 21 3.619 4 
11 5.1429 6 22 4.7619 5 

 
Table 4. Detection rates percentage of ICA and DICA statistics for the Tennessee Eastman process 

 
Faults ICA 

2I  

ICA 
2
eI  

ICA 
SPE  

ICA 

eSPE  

DICA 
2I  

DICA 
2
eI  

DICA 
SPE  

DICA 

eSPE  

1 99.75 100 99.5 99.75 99.88 99.75 99.88 99.75 
2 98.00 98.62 98.12 98.00 98.88 98.75 97.75 98.25 
3 0.63 8.13 8.50 0.63 2.25 7.50 7.12 3.38 
4 61.88 100 90.75 57.63 100 100 100 97.12 
5 100 100 100 99.88 100 100 100 100 
6 100 100 100 100 100 100 100 100 
7 91.13 100 100 88.12 100 100 100 100 
8 97.00 98.38 98.38 95.37 98.25 98.38 97.88 98.00 
9 0.63 6.25 5.75 0.37 2.62 7.25 3.88 5.00 
10 80.25 87.38 76.75 68.63 95.50 96.00 89.88 89.88 
11 48.75 78.13 71.00 41.50 93.13 95.13 76.75 75.25 
12 99.75 99.88 99.75 99.12 99.88 99.88 99.88 99.88 
13 94.63 95.25 94.87 94.63 96.00 96.13 95.75 95.50 
14 99.88 100 100 99.88 99.88 100 100 99.88 
15 1.87 16.75 12.13 0.50 25.75 17.13 9.88 7.00 
16 74.00 91.75 69.75 58.63 97.38 98.25 91.50 88.12 
17 84.38 96.25 91.25 84.00 97.88 97.88 97.12 96.63 
18 89.88 90.13 89.50 89.62 90.87 91.00 90.38 91.13 
19 46.50 93.25 43.75 29.25 99.88 99.88 88.75 86.00 
20 88.12 86.88 72.75 71.13 91.13 91.50 80.37 81.87 
21 45.37 63.62 50.50 25.25 53.37 62.50 46.25 42.38 
False  
Alarm 

0.13 4.5 3.62 0.37 1.25 5.12 2.75 2.38 
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Fig. 2.Monitoring results of fault 5 by DICA 

          
a high-dimensional feature space where ix  is called the 
support vector. The optimal hyperplane separating the 
ICA transformed data { }N

iii yx 1),( = (where d
i Rx ∈ is the 

dominant ICs and { }1,1 +−∈ty  is known as binary class 
or target) can be obtained by solving the following 
constrained quadratic problem (QP) (Cristianini et al., 
2000): 
 

Min 2

2
1 W                                                                    (18) 

Subject to: 1))(( ≥+ bxWy i
T

i ϕ  ; i=1,..,N   
 
Thus, the SVM problem has been formulated as an 
optimization problem to find the weighting vector (W) and 
the bias term (b) so that the margin between the two 
classes is maximized. In TE process, however, there are 
several classes of faults to be diagnosed. In this paper, the 
one against all (OAA) approach is used to implement the 
necessary multi-class fault classification objective.  
 
4.2 Implementation of online TE fault diagnosis using 
multi-class SVM classifier 
 
In this work, dominant independent data vectors iŝ (i.e., 
rows of the matrix newdŝ ) corresponding to the first 50 
consecutive samples after the fault occurrence  are used as 
extracted features for the classification purposes. Training 
the multi-class SVM classifier mainly includes 
initialization of parameters such as the width σ of the 
kernel function )( ixϕ . It is not known beforehand which 
values of  σ  are the best. In this paper, a direct searching 
algorithm was used to find the best σ values in a typical 
selected interval of [0,5]. 
 

 
         Fig. 3.Monitoring results of fault 10 by DICA 
 
The following performance function ( iPF ) was employed 
as an assessment measure for the ith TE process fault: 
      

∑
=

−=
18

1j

j
mc

ii NNPF  ;i=1, 2,…,18 , ij ≠                  (19) 

 Where i
cN  refers to the number of correctly classified ith 

TE fault samples and j
mN indicates its misclassified 

samples. In this work, the searching algorithm was 
repeated six times to find the sub-optimal σ values. Then, 
eighteen SVMs were trained with the corresponding 
training data set to generate the final classifier models 
based on the OAA approach. Then, all the 18 trained 
SVMs were tested to evaluate their online classification 
performance using the fault testing data set. A comparative 
result of this study is presented in Table 5. As shown, the 
best classification rates were found in the case of the 
proposed DICA-SVM approach. This characteristic has 
shown itself in the number of required support vectors for 
fault classification where DICA needs fewer number of 
SVs than ICA in majority of cases. The total average 
computation time for each sample in ICA-SVM approach, 
including the average fault detection time and the average 
fault diagnosis, is 0.0363 seconds, whereas this figure in 
DICA-SVM approach is equal to 0.0851 seconds. The 
calculations reported in this paper are performed in 
T2500@ 2.00 GHz Intel Centrino Duo processor with 2.00 
GB RAM. The simulation results indicate that DICA-SVM 
is able to diagnose 11 out of 18 faults without any missed 
rates while that of ICA-SVM is 8 out of 18 faults. The 
DICA-SVM has no false alarm rates for 15 out of 18 faults 
whereas ICA-SVM approach has no false alarm rates for 
11 out of 18 faults.  
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Table 5. SVM training and validation data set properties 
 

 ICA-SVM DICA-SVM 
 σ  Training 

CR % 
Testing 
CR % 

No. of 
SVs 

CT 
In sec. 

σ  Training 
CR % 

Testing 
CR % 

No. of 
SVs 

CT 
In sec. 

1 0.8 100 100 131 .0018 2 100 100 48 .0017 
2 0.52 100 100 269 .0024 1.12 100 100 180 .0025 
4 0.96 100 100 21 .0013 2 99.56 98 27 .0026 
5 0.65 100 100 226 .0022 1.76 100 100 168 .0048 
6 1.92 100 100 50 .0027 4.8 100 100 57 .0018 
7 0.68 100 100 220 .0022 2.97 100 100 102 .0021 
8 0.6 100 100 220 .0022 1.38 100 100 95 .002 
10 0.64 98.89 94 175 .0020 2.42 99.78 98 128 .0023 
11 0.9 98.67 94 44 .0014 2.15 99.56 96 75 .002 
12 1.15 99.78 98 93 .0017 2.9 100 100 95 .0019 
13 2.3 100 100 24 .0014 1.3 100 100 47 .0018 
14 1.04 98.89 96 110 .0017 2.78 100 100 127 .0025 
16 0.63 99.11 92 194 .0020 1.53 99.78 98 189 .0029 
17 1.2 99.56 96 91 .0016 3.7 99.33 96 81 .0019 
18 1.14 99.56 96 92 .0016 3.97 100 100 73 .0019 
19 0.52 98.44 90 229 .0023 1.53 98.89 92 211 .0029 
20 0.64 99.11 92 210 .0021 1.78 99.11 92 161 .0027 
21 0.4 99.13 96 33 .0014 1.35 100 100 31 .0016 

CT: Classification Time, CR: Classification Rate 
 

5. CONCLUSIONS 
 
A new online statistical approach has been proposed in 
this paper to detect and diagnose the TE process faults. In  
order to enhance the monitoring capabilities of the ICA 
and DICA, a new statistic measure eSPE  has been 
presented to take care of monitoring the excluded part of 
the independent vectors, which has not been captured by 
the main dominant part. A fault modelling procedure 
based on a multivariate ARX reference model and the AIC 
evaluation measure was developed to select the 
appropriate number of time-lagged measured variables in 
the DICA augmented data matrix. To implement the 
online process monitoring, a method based on the CPV 
measure was utilized to choose an appropriate number of 
ICs for DICA monitoring approach so as to capture a 
predetermined variance limit of 97% in the TE fault data. 
The developed ICA and DICA monitoring methods were 
evaluated on the TE process plant for fault detection 
purposes. In comparison with the corresponding Lee et al. 
(2004) results, the DICA method shows much better 
results with higher detection rates for almost all the TE 
faults especially the faults 3, 9, 10, 11, 15, 16, 19 and 20 
which demonstrate considerable achievements. A multi-
class SVM classifier was developed based on the OAA 
approach for online TE fault diagnosis. The SVM 
classifier uses the Gaussian RBF kernel functions with 
sub-optimal width parameters being found by direct 
searching algorithm to map the fault ICs patterns to a 
sufficiently higher dimensional feature space. The 
comparative studies done on 18 TE process faults, 
demonstrates the superiority of the DICA-SVM to the 
ICA-SVM in terms of classification rates, number of 
support vectors, misclassification rates and missed faults 
evaluating measures. 
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