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Abstract: In this paper we address the development of a single-rotor tail-sitter Unmanned
Aerial Vehicle (UAV), whose configuration provides structural benefits for flight stabilization.
The mathematical model of the vertical take-off landing (VTOL) aircraft is obtained through
the Newton-Euler approach. In order to stabilize the vehicle we employ a control algorithm
based on separated saturation functions. To perform an on-board control, we have designed and
manufactured a customized embedded system. The simulation and experimental results show
the good performance of the aircraft in autonomous hover flight, even in the presence of external
perturbations.

1. INTRODUCTION

Recently, mini Unmanned Aerial Vehicles or UAVs have
became an interesting topic among scientific community
due to the wide variety of applications, either military or
civilian. Concerning the military applications, they can be
highlighted the data collection of sensible areas (hostile
zone, toxic environments, ports, and borders). For the
civilian field an important application is natural disaster
assessment(earthquakes, floods, and tornados), as well as
search and rescue operations.

There exists a wide number of applications for mini UAVs,
with great interest on reconnaissance and surveillance mis-
sions. Indeed, the nature of the mission to be accomplished
defines the operational profile (design) of the UAV. This
reveals the impact of vehicles that offers a wide opera-
tional scope to perform different kinds of missions. Opera-
tional flexibility is provided by convertible UAVs (CUAVs),
since they blend the helicopter capabilities (vertical take-
off/landing, hover) with airplane advantages (range, en-
durance). Naturally, the flight performance in both modal-
ities decreases due to the structural trade-off in this type
of vehicles.

Tail-sitter UAVs have a number of advantages compared
to other configurations (Stone [2002]). In comparison to
conventional designs they don’t require a runway for
launch and recovery because they possess much greater
operational flexibility and can operate from any small
clear space. While other conventional designs partially
overcome this limitation via the use of takeoff and landing
aids such as catapults and parachutes, these all entail
extra system complexity and logistic support. Although
helicopter UAVs share the same operational flexibility as
the tail-sitter, they suffer from well-known deficiencies in
terms of range, endurance and forward speed limitations
due to the lower efficiency of rotor-born, rather than wing-
born flight. Lastly, other configurations that have been

developed to achieve the same goals as the tail-sitter,
such as the tilt-wing, tilt-rotor and tilt-body, do so at the
expense of significantly increased mechanical complexity
compared to a tail-sitter that uses propeller wash over
normal aircraft control surfaces to effect vertical flight
control. By joining the takeoff and landing capabilities of
the helicopter with the forward flight efficiencies of fixed-
wing aircraft in such a simple way, the tail-sitter promises
a unique blend of capabilities at lower cost than other UAV
configurations.

During the hover-flight regime, most single-rotor aircrafts
employ the propeller to provide thrust and air slipstream
to control surfaces (elevator, ailerons, rudder), as a result,
the dynamics stabilization is totally based on the aero-
dynamic torques. In the present paper we are interested
in the stabilization of a single-rotor tail-sitter CUAV (see
Fig. 1) at hover flight. The proposed configuration is based
on a reduced mechanics, which simplifies its maintenance
and replacement. In addition, we have incorporated certain
structural features to improve the stability of the aircraft
with respect to external perturbations. The operation
description and dynamic model are presented in section
2. The control algorithm based on separated saturation

Fig. 1. Experimental prototype.
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functions is described in section 3. In the section 4 we
show the simulation results of full system and the section
5 shows the experimental results in real time of the vehicle.
Conclusions are given in the section 6.

2. THE T-PLANE: A TAIL-SITTER TILTROTOR UAV

This section describes the operational description of the
aircraft, and the structural advantages to improve the
flight stability. Furthermore, the mathematical model of
the vehicle is obtained using the rigid-body equations
(Goldstein et al. [1983]).

2.1 Description

Our prototype reduces the aerodynamic dependence by
incorporating a tilting rotor. This modification improves
the robustness of the hover flight with respect to external
perturbations. In order to control the roll motion, the
aircraft tilts the propeller proportionally to the roll-angle
feedback so that the vehicle can maintain the vertical
position. This fact will provide a pendulum-like behavior,
i.e. the propeller acts as the pendulum’s screw while the
fuselage represents the rod-bob. Furthermore, we intro-
duce a transversal surface (see Fig. 2) in the same axis of
the vertical air-slipstream vector, as a result, the surface
will tend to remain inside of the air trajectory, damping
the possible perturbations (mechanical gyro). The parallel
deflection of the ailerons controls the pitch motion, while
the differential deflection controls the yaw motion (see Fig.
3 and Fig. 4). The altitude of the T-Plane is driven by
decreasing or increasing the propeller thrust.

2.2 Dynamic model

Let I={iIx , jIy , kI
z } denote the righthanded inertial frame

and B={iBx , jBy , kB
z } denotes frame attached to the aircraft

body whose origin is located at its center of gravity (see
Fig. 2). The frame R=

{

iRx , jRy , kR
z

}

is considered during
the tilting motion at regulating the roll motion.

Let the vector q = (ξ, η)T ∈ R
6 denote the general-

ized coordinates where ξ = (x, y, z)T ∈ R
3 denotes the

translation coordinates relative to the inertial frame I,
and η = (φ, θ, ψ)T ∈ R

3 describes the vehicle orientation

Fig. 2. Tail-sitter Tiltrotor UAV.
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Fig. 3. Front view of the mini UAV.

Fig. 4. Lateral and top views of the mini UAV.

expressed in the classical roll, pitch and yaw angles(Euler
angles) (Goldstein et al. [1983]). The transformation ma-
trix representing the orientation of this convertible UAV
is given by RB→I .

RB→I =

(

cθcψ −cθsψ sθ

cφsψ + sφsθcψ cφcψ − sφsθsψ −sφcθ

sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ

)

where sa = sin(a), ca = cos(a). In this system the order of
the rotations is considered as roll, pitch and yaw (φ, θ, ψ)
(Stengel [2004]). For the roll motion, it is used an auxiliary
rotation matrix RR→B. This rotation matrix results of the
tilting motion about iRx axis and is given by

RR→B =

(

1 0 0
0 cγ sγ

0 −sγ cγ

)

where γ is the tilting angle and is related to the roll angle.

The Newton-Euler formulation provides the overall equa-
tions of motion of a rigid body which are given by the
following vectorial expressions

m̄v̇B + Ω × m̄vB = FB (1)

IΩ̇ + Ω × IΩ = ΓB (2)

where FB ∈ R
3 and ΓB ∈ R

3 are, respectively, the
total force and torque applied to the center of gravity
of the aircraft (CG), m̄ = diag(m) ∈ R

3×3 , m ∈ R

denotes the mass of the vehicle, Ω = (p, q, r)
T

∈ R
3

is the angular velocity of the vehicle from the center of
mass, vB = (u, v, w)T ∈ R

3 is the translational velocity of
the center of mass of the vehicle, I ∈ R

3×3 contains the
moments of inertia of the aircraft.
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Translational motion The components of the thrust
vector T are related to the angle γ, which denotes the
tilt of the rotor. The vector thrust in terms of the body
frame is described by

TB = RR→BT γ

where T γ = (0, 0, Tr)
T
∈ R

3 is thrust vector of the rotor.

The translation motion relative to the body frame of the
UAV is described by the following vectorial equation

m̄v̇B + Ω × m̄vB = RI→BmGI + TB (3)

where GI ∈ R
3, GI = (0, 0,−g) is the gravity vector.

The translation dynamics relative to the inertial frame is
provided by the following expression

ξ̇ = vI

mv̇I = mGI + RB→ITB (4)

then
ẍ = Trcγsθ − Trsγcθsψ

ÿ = Trsγcφcψ − Trsγsφsθsψ − Trcγsφcθ

z̈ = Trsγsφcψ + Trsγcφsθsψ + Trcγcφcθ − mg
(5)

Rotational motion The RHS terms of (2) correspond to
the applied torques on the rigid body, these torques are
the following

Actuator torque The torque provided by the actuators is
described by the following vectorial expression

−→
Γ c =

−→
ℓ × F (6)

then

Γc =

(

−ℓrTrsγ

ℓp(fa1 − fa2)
ℓa(fa1 + fa2)

)

where fa1 and fa2 represent the aileron lift forces of the
vehicle.

Gyroscope torque The gyroscope torque caused by the
tilting rotor is given by the following vectorial expression

−→
Γ g = −Ir(Ω × ωr) (7)

then

Γg =

(

rwrsγ − qwrcγ

pwrcγ

−pwrsγ

)

where Ir is the inertia moment of the propeller and wr

denotes the angular velocity of the rotor.

Weight torque The torque provided by the pendular mass
is described by the following vectorial expression

−→
Γ w =

−→
ℓr × RI→BmGI (8)

then

Γw =

(

−mgℓr(cψsφ + cφsθsψ)
−mgℓr(cφsθcψ − sφsψ)

0

)

Then, The total external torque in the body frame is
written by the following expression

ΓB = Γc + Γg + Γw =

(

τM

τL

τN

)

Therefore, the rotational dynamics in terms of the gener-
alized coordinates is given by

η̈ = (IWn)−1(−IẆnη̇ − Ω × IΩ + ΓB) (9)

where Wn ∈ R
3 is a non-orthonormal transformation and

Ω is the result of the projection of the vector η̇ generated
in each rotation.

The equation (9) can be rewritten as

φ̈ =
1

cθcψ

(sθcψφ̇θ̇ + cθsψφ̇ψ̇ − cψ θ̇ψ̇ − sψ θ̈)

+
1

Ixcθcψ

[−qr(Iz − Iy) + τM ]

θ̈ =
1

cψ

(−sθsψφ̇θ̇ + cθcψφ̇ψ̇ + sψ θ̇ψ̇ + cθsψφ̈)

+
1

Iycψ

[−pr(Ix − Iz) + τL]

ψ̈ = −cθφ̇θ̇ − sθφ̈ +
1

Iz

[−pq(Iy − Ix) + τN ]

(10)

with

τM = uφ + (qwrcγ − rwrsγ) − mgℓr(cψsφ + cφsθsψ)

τL = uθ − pwrcγ − mgℓr(cφsθcψ − sφsψ)

τN = uψ + pwrsγ

where uφ = −ℓrTrsγ , uθ = ℓp(fa1−fa2) and uψ = ℓa(fa1+
fa2).

2.3 Reduced model

For purposes of control analysis, the full nonlinear 6-DOF
model (4) and (9) is reduced by introducing the following
assumptions and facts:

A1. The magnitude of the drag force is smaller than the
magnitude of the lift and thrust forces.

A2. The lift force of the wing is neglected, due to the
combination of the symmetric aerofoil of the wing and the
direction of the air flow generated by the propeller which
coincides with the zero-lift line of the wing.

A3. The unique aerodynamic force is generated by the
deflexion of the control surfaces.

A4. The gyroscope torque generated by the tilt-propeller
during the roll control is neglected.

A5. The inertial tensor matrix I and the vehicle mass m
are normalized.

Considering the previous assumptions and facts the full
nonlinear 6-DOF system (4) and (9) is partitioned into
three sets of equations: lateral, longitudinal and axial
subsystems.

Lateral subsystem This set of equations with (θ = 0,
ψ = 0) results of regulating the roll angle φ, and is given
by

ÿ = −Tr sin (φ − γ)
z̈ = Tr cos (φ − γ) − mg

φ̈ = uφ − mgℓr sin(φ)
(11)
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Longitudinal subsystem The longitudinal subsystem is the
result of controlling the pitch angle θ with (φ = 0, ψ = 0,
γ = 0) and is given by

ẍ = Tr sin (θ)
z̈ = Tr cos (θ) − mg

θ̈ = uθ − mgℓr sin(θ)
(12)

Axial subsystem In this subsystem, the set of equations
that results of controlling the yaw angle ψ with (φ = 0,
θ = 0, γ = 0) is described by

ψ̈ = uψ (13)

3. CONTROLLER DESIGN

This section presents the control strategy to stabilize the
T-Plane UAV in hovering flight. This controller is based
on separated saturation functions (A.R. Teel [1992]).

For simplicity, we develop a control algorithm for the
lateral, longitudinal and axial subsystems which lead to
the control strategy for the full nonlinear 6-DOF system.

Analyzing the longitudinal subsystem (12), we propose a
control input to stabilize the vertical position. This control
input is described by

Tr =
(r + mg)

cos (θ)
(14)

where
r = −kz1ż − kz2(z − zd) (15)

m = 1, zd is desired altitude and kz1, kz2 are positive
constants.

Substituting (14) and (15) into (12), and considering that
z → zd, ż → 0 and r → 0 as t → ∞ , we get the following
reduced subsystem

ẍ = g tan (θ)

θ̈ = uθ − gℓr sin(θ).
(16)

Assuming that tan (θ) ≈ θ and sin (θ) ≈ θ, the equations
(16) are reduced to

ẍ = gθ

θ̈ = uθ − gℓrθ
(17)

which can be rewritten as














ẋ1 = x2

ẋ2 = gθ1

θ̇1 = θ2

θ̇2 = uθ − gℓrθ1

(18)

Now, we propose the following control input

uθ = gℓrθ1 − σb4(k4θ2) − ξ1 (19)

where ση(s) is a ram-shaped saturation function which
satisfies | ση(s) |≤ η for some constant η > 0 and ξ1 is
a bounded function | ξ1 |≤ bξ1

> 0 which will be defined
later.

Substituting (19) into (18), we have

θ̇2 = −σb4(k4θ2) − ξ1 (20)

Consider the following positive definite function

V4 =
1

2
θ2

2
(21)

then
V̇4 = −θ2(σb4(k4θ2) + ξ1) (22)

we assume that b4 > bξ1
. Then | k4θ2 |> bξ1

implies V̇4 < 0.
There exists a time t1 such that

| θ2 |≤
bξ1

k4

∀t > t1 (23)

This implies that

θ̇2 = −k4θ2 − ξ1 (24)

We propose ξ1 as

ξ1 = σb3(k3θ1) + ξ2 (25)

where | ξ2 |≤ bξ2
for some positive constant bξ2

.

Consider
z3 = k4θ1 + θ2 (26)

then
ż3 = −σb3(k3θ1) − ξ2 (27)

Consider the following positive definite function

V3 =
1

2
z2

3
(28)

then
V̇3 = −(k4θ1 + θ2)(σb3(k3θ1) + ξ2) (29)

We assume that b3 > bξ2
. Note that when | θ1 |>

bξ1

k2

4

implies

k4 | θ1 |>| θ2 |⇒ sgn(k4θ1 + θ2) = sgn(θ1) (30)

on the other hand, if | θ1 |>
bξ2

k3

implies

| σb3(k3θ1) |>| ξ2 |⇒ sgn(σb3(k3θ1) + ξ2) = sgn(θ1) (31)

then for | θ1 |>
bξ2

k3

>
bξ1

k2

4

implies V̇3 < 0. There exists a

time t2 > t1 such that

| θ1 |≤
bξ2

k3

∀t > t2 (32)

This implies that

θ̇2 = −k4θ2 − k3θ1 − ξ2 ∀t > t2 (33)

We propose ξ2 as

ξ2 = σb2(k2x2) + ξ3 (34)

where | ξ3 |≤ bξ3
for some positive constant bξ3

.

Consider

z2 =
k3

g
x2 + z3 (35)

then
ż2 = −σb2(k2x2) − ξ3 (36)

Consider the following positive definite function

V2 =
1

2
z2

2
(37)

then

V̇2 = −

(

k3

g
x2 + k4θ1 + θ2

)

(σb2(k2x2) + ξ3) (38)

We assume that b2 > bξ3
. Similarly as above procedure for

| x2 |>
bξ3

k2

>
k4gbξ2

k2

3

+
gbξ1

k3k4

implies V̇2 < 0. There exists a

time t3 > t2 such that
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| x2 |≤
bξ3

k2

∀t > t3 (39)

This implies that

θ̇2 = −k4θ2 − k3θ1 − k2x2 − ξ3 ∀t > t3 (40)

We propose ξ3 as

ξ3 = σb1(k1x1) (41)

Consider
z1 = k2x1 + z2 (42)

then
ż1 = −σb1(k1x1) (43)

Consider the following positive definite function

V1 =
1

2
z2

1
(44)

then

V̇1 = −

(

k2x1 +
k3

g
x2 + k4θ1 + θ2

)

(σb1(k1x1)) (45)

We assume that b1 > 0. For | x1 |>
k3bξ3

gk2

2

+
k4bξ2

k2k3

+
bξ1

k2k4

implies V̇1 < 0. There exists a time t4 > t3 such that

| x1 |≤
k3bξ3

gk2

2

+
k4bξ2

k2k3

+
bξ1

k2k4

∀t > t4 (46)

then if
k3bξ3

gk2

2

+
k4bξ2

k2k3

+
bξ1

k2k4

≤
b1

k1

(47)

that implies that

uθ = gℓrθ1 − k4θ2 − k3θ1 − k2x2 − k1x1 ∀t > t4 (48)

The system (18) reduces to








ẋ1

ẋ2

θ̇1

θ̇2









=







0 1 0 0
0 0 g 0
0 0 0 1

−k1 −k2 −(gℓr + k3) −k4













x1

x2

θ1

θ2







Choosing k1, k2, k3 and k4 such that the previous matrix is
Hurwitz. This implies that the state vector (x1, x2, θ1, θ2)

T

is stable.

The control input uθ is given by (19), (25), (34) and (41)

uθ = gℓrθ1−σb4(k4θ2)−σb3(k3θ1)−σb2(k2x2)−σb1(k1x1)
(49)

In order to stabilize the lateral subsystem (11), we assume
that Tr ≈ g. Also we consider sin(φ) ≈ φ and sin(γ) ≈ γ
since φ and γ are relatively small.

ÿ = −gφ

φ̈ = uφ − gℓrφ
(50)

To obtain the control input that renders the previous
dynamics (50) to the origin, we recall the control method-
ology employed to stabilize the longitudinal dynamics (12).
Thus, the control input is given by

uφ = gℓrφ1−σb4(k4φ2)−σb3(k3φ1)−σb2(k2y2)−σb1(k1y1)
(51)

On the other hand, analyzing the axial subsystem (13), we
propose a control input which is described by

uψ = −kψ1ψ̇ − kψ2ψ (52)

where kψ1 and kψ2 are positive constants.

Substituting (52) into (13), we have

ψ̈ = −kψ1ψ̇ − kψ2ψ (53)

therefore ψ̇ → 0 and ψ → 0 as t → ∞.

It is important to point out that experimentally the
proposed nonlinear control laws (49) and (51) perform well
even in presence of significant disturbances.

4. SIMULATION RESULTS

In this section, we present the simulation results of the
the full nonlinear 6-DOF model in hovering flight. Simu-
lations show the performance using a controller based on
separated saturation functions to stabilize the orientation
and position of the T-Plane UAV. The parameters used
for the simulations are kz1 = 5, kz2 = 6, kψ1 = 4, kψ2 = 4,
k1 = 0.16, k2 = 1.06, k3 = 3.51, and k4 = 2.60.

The initial conditions for the simulations are x(0) = 0.1,
y(0) = 0.1, z(0) = 0.1, φ(0) = π

15
, θ(0) = π

15
, ψ(0) = π

15

and the desired altitude is zd = 2m. The position response
of the closed loop system is depicted in Fig. 5a. We can
observe that the vehicle is stable during the vertical flight.
The behavior of the attitude using the nonlinear controller
based on separated saturation functions is illustrated in
Fig. 5b. The Fig. 6 shows the control inputs of the T-Plane
UAV using the nonlinear controller.
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Fig. 5. Position and attitude of the T-Plane.
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Fig. 6. Control inputs of the T-Plane.

5. EXPERIMENTAL RESULTS

In this section we present the detailed experimental plat-
form (T-Plane UAV) built at the Heudiasyc Laboratory.
In addition, the experimental results are shown to validate
the nonlinear controller in the T-Plane UAV.

5.1 Experimental platform

The main frame of the vehicle is made of carbon fiber and
flat foam sheet. The aircraft is driven by one brushless
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motor. The vehicle is operated by a low-cost embedded
microcontroller and a homemade inertial measurement
unit(IMU). The microcontroller is a Rabbit RCM3400
microcontroller with a 512 Kb flash memory, a 29.4 MHz
processor and a 12 bit Analog-Digital converter. This
microcontroller is used to store the control algorithm
implemented in dynamic C environment. The IMU has a
dual-axis accelerometer sensor (accelerometer ADXL203)
and three angular rate sensors (gyroscope ADXRS150)
arranged in orthogonal position. The IMU provides two
angular position (φ, θ) and three angular rates (φ̇, θ̇, ψ̇).

The Analog-Digital converter receives the IMU signals,
then the microcontroller processes that information and
sends the control inputs (Pulse-width modulation signals)
to the actuators.

5.2 Experimental test

This section shows the experimental results in hovering
flight of the T-Plane UAV. The Fig. 7 shows the T-Plane
UAV hovering autonomously. As can be seen from Fig. 8, 9
and 10 the proposed controller stabilizes the aircraft even
in presence of disturbances.

Fig. 7. The T-Plane UAV hovering autonomously.
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Fig. 8. Roll angle and roll control.

6. CONCLUDING REMARKS AND PERSPECTIVES

We have presented in detail the dynamic model of a tilting
single-rotor vehicle (T-Plane UAV). We have contributed
with a single-rotor configuration that shows a robust
behavior with respect to external perturbation. In terms
of control, we have used an on-board saturation-based
algorithm that provides a stabilized hover flight. The
challenge arising from this kind of vehicles (CUAVs) is to
provide a control algorithm for the whole flight envelope
(both modalities), as well as a reliable position sensor
(GPS, optic flow).
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Fig. 9. Pitch angle and pitch control.
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Fig. 10. Yaw angular rate and yaw control.
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