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Abstract: As major experimental modeling methods, static soft-sensing methods have been widely used in 
modern chemical production process now. In fact, for the sampling frequency to output variable by laboratory 
analyzer off-line is rather low and uniform, the computed results, which gained from those methods or the existed 
major dynamic methods such as neural networks, are difficult to satisfy the requirements of dynamic control 
on-line. A dynamic soft-sensing method (DSSM) based on impulse response template (IRT) and parameter 
estimation using differential evolution (DE) optimization is presented in this paper. However, for a multi-variables 
system, learning of template parameters still takes large computational cost, and is not only slow in the con- 
vergence speed but also easy to be trapped into local optima so as to enlarge the modeling errors. To account for 
these problems, the original DE (ODE) is modified in the aspects of scaling factor and crossover rate, which could 
dynamically change with iterative loops. Subsequently, a complete implementation of the modified DE (MDE) is 
presented. Experiment based on hysys simulation of a primary tower system to build a three-inputs-single-output 
model is carried out, under various impulse response length and noise standard, and the final comparison results 
demonstrate the effectiveness and robustness of this method. 

 

1. INTRODUCTION 

With the increasing demanding on production control in 
modern chemical process industry, the problem of on-line, 
real-time and precise measurement to some crucial 
variables, which effecting the productivity and the product 
quality, is essential. Thus, soft-sensing methods (van den 
Bos, 1977) and related applied technology are put forward 
to solve the problem. The latest researches show that 
soft-sensor has become a hotspot and major developing 
trend in the fields of process control and process examining 
(McAvoy, 1992). 

At present, static soft-sensing methods such as learning 
network (Willis et al., 1992; Assis and Filho, 2000) have 
been widely used as basic experimental modeling methods. 
The main reasons are that the sampling frequency to output 
variables is too low to meet dynamic modeling, for they can 
usually be obtained from laboratory analyzer off-line only. 
However, due to the dynamical behavior in practical 
production process, the static models using only few of 
samples of the input variables are easy to be over-learned 
for the noise and difficult to satisfy the requirements of 
dynamic control on-line. Meanwhile, various dynamic 
models such as time-delay network, recurrent neural 
network (Adali et al., 1997; Shaw et al., 1997; Shi et al., 
2003; Fortuna et al., 2005) are also introduced into 
dynamical soft-sensing modeling, which basically are 
converted into static networks in form by adding time-delay 
units to both sides of network to introduce dynamic process 
information. Yet, in practice, these time-delay signals are 
hard to be obtained due to sparse or uniform sampling, 

especially to output. Ma et al. (2005) introduces a dynamic 
soft-sensing method based on impulse response (IR), but in 
which the IR is simplified to few broken lines, and this 
brings biggish errors for discarding the practical profile. To 
account for these problems, in this paper a novel dynamic 
soft-sensing method (DSSM) is present, which is based on 
impulse response template (IRT) and parameter estimation 
by modified differential evolution (MDE) optimization. 

The remainder of this paper is organized as follows. In 
section 2, a detailed analysis of typical chemical production 
process system is first given. Then, on the basis of IRT and 
parameter optimization, a dynamic soft-sensing model is 
built. At last, a complete implementation of this model 
using MDE is shown. In section 3, numerical simulation, 
comparison and discussion are involved. In final section 4, 
we conclude with a brief summary of experimental results. 

2. MODEL 

2.1 Building a dynamic soft-sensing system 

A typical chemical production process system with multi- 
inputs-multi-outputs could be decomposed into several 
multi-inputs-single-output sub-systems and each sub- 
system is made up of several control modules which are 
independent with each other. Then, a typical soft-sensing 
process system with multi-inputs-multi-outputs could be 
depicted in Fig. 1. 
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Fig. 1. A typical chemical production process soft-sensing 
system with multi-inputs-single-output 

In Fig.1, u1, u2, …, un denote input variables, which are 
inherently sensitive to output, and can be measured directly 
by on-line sampler at the same sampling instant k (about 
several seconds). o denotes output variable, which is the 
crucial unobserved variable to be estimated and only be 
measured by off-line analyzer with uniform sampling 
interval Pj (about several hours). )( sΩΦ  denotes sub unit s 
of the system, which could be characterized by the transfer 
function. vj denotes the noise. M is the sampling times to 
output. 

Suppose unit s is a linear, time-invariant and causal system 
and its impulse response function is hs(i). Then, unit s could 
be described as the following discrete-time equation: 

0
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Considering causality and stability of the system, thus hs(i) 
should meet the following equations 
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For a stable system in practice, after Ls (>>1) steps, hs(Ls) is 
approximately approach to zero. So, (2) can be written for  
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Similarly, we can establish equation as (3) for each unit. 
Then, the final model of the system can be described as 
follows: 
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From (4), it is easy to be seen that the dynamic relations 
between inputs and output are established by means of the 
impulse response. Equation (4) exactly represents the 
dynamic soft-sensing model in training mode. Assume that 
the value of the impulse response series have been achieved, 
the unmeasured variable can be estimated easily using the 
following model in applied mode. 
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Consequently, the key to implement the dynamic model is 
how to solve or estimate the impulse response series of (4). 

2.2 Impulse response template and parameter optimization 

The common method to solve the impulse response series is 
using system identification method based on least square 
(LS) principle. In the following, we will exhibit a novel 
solution using IRT and parameter optimization. 

It is well known that the impulse response is a complete 
characterization of the system. From the past experiences of 
modeling chemical production process system, the order of 
each sub model of the system can be decreased to 2 
approximately. Consequently, the impulse response series 
in (4) could be written as 
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where 4
21 ),,,( +∈= Rss

p
ss

s KTTΩ τ  denotes the unit’s para- 
meters, which represent the first time-constant, the second 
time-constant, steady-state gain, and pure delay constants in 
turn. These parameters should meet the following constraint 
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where Es means the subspace of the corresponding model in 
the 4-dimention positive real number space, while min

sjξ , 
max
sjξ (j=1,2,3,4) represent the lower and upper bounds of 

each parameters. 

By (6) or (7), the relations between the system’s parameters 
and the impulse response series to be estimated are built. 
Suppose a set of original impulse response series is pro- 
duced by (6) using a set of original parameters satisfying 
(7). After that, another set of parameters in the given 
bounds is chosen to produce the corresponding set of series 
in the same way. As a result, it can be seen that the profile 
of the obtained series is similar to that of the original set, 
and which is just transformed by horizontal movement, 
horizontal scaling or vertical scaling in form. So, in a sense, 
the obtained series may be derived from some certain tem- 
plate, or from the original impulse response series. Here, we 
call the original parameters as template parameters (TP), 
and the impulse response series produced by which is called 
as impulse response template (IRT). Obviously, if TP and 
its subspace are given, the impulse response series to be 
identified in (4) would be confined. Consequently, to a 
multi-variables system, which has many impulse response 
series parameters to be identified, By IRT and TP, the 
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complex learning problem would be easily transformed into 
a simpler learning problem to finite template parameters 
and the number of the learning parameters are shorten 
dramatically, obviously, the derived benefits of which are 
that the poor generality of the model aroused by over- 
learning is improved efficiently, as well as the consuming 
time to learn parameters is decreased greatly. 

From the analysis above, the key to implement dynamic 
soft-sensing model is to obtain excellent template para- 
meters. From the viewpoint of optimization, it is a problem 
of parameter optimization. The principle of parameters 
estimation for the model in sense of optimization could be 
illustrated with the following Fig. 2. 
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Fig. 2. The principle of parameter estimation for dynamical 
soft-sensing model 

In Fig. 2, the problem of template parameters estimation 
could be formulated as the following optimization problem 
by searching suitable sΩ  
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where J is the minimum objective function to be optimized. 

2.3 Model implementation with Modified differential 
evolution optimization  

DE, which is gaining much research interests recently, is a 
novel intelligent optimization method. Various studies have 
shown that DE has efficient globally searching ability and 
robust performance (Bhat et al., 2006; Liu et al., 2007). 
Compared with other optimization methods such as particle 
swarm optimization (PSO) and genetic algorithm (GA), DE 
has simpler concept and easier implementation. Con- 
sequently, a DE approach is introduced into searching the 
best template parameters to implement the dynamic 
soft-sensing model in this paper. 

However, for a complicated system with multi-variables, 
learning of lots of template parameters still takes large 
computational cost, and is easy to be trapped into local 
optima to enlarge the modeling errors. To account for the 
problems, the original DE (ODE) is modified in the aspects 
of scaling rate and crossover rate, which are substituted by 

variables changing dynamically with iterative loops. A 
complete solution of MDE is formulated as follows: 

1) Randomly initialize the population of individual. 
Suppose the size of the population is NP, the kth individual 
Xk is a vector of 4n-dimension and denotes a potential 
solution of sΩ  to be decided. Here, Xk is written as 
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Each element in the trial vector should satisfy the limitation 
],[ maxmin

rrkr xxx ∈ (r=1,2,…,4n), where maxmin , rr xx  denote the 
lower and upper bounds in search space respectively, and 
their values have been given by (7). 

Set maxiter as the maximum iterative loops. Take the 
iterative loop iter as 0 and generate randomly the initial 
population by 
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2) By (8), calculate the objective function values iter
kJ  for 

each individual at generation iter, determine the best 
objective value in all generations, which is recorded as 

)min(min
iter
k

iter JJ = , and gBest is the optimal individual which 
produces the best objective value. 

3) If the stopping criterion ε<iterJmin  or iter > maxiter is 
met, then output gBest, otherwise continue. 

4) Mutation. For each individual to perform mutation 
operation according to the following equation 

*
1 2 3( )iter iter iter

k a a aX X F X X= + × −      (11) 

where *
kX  is the mutant counterpart of iter

kX  at generation 
iter, a1, a2, a3 are three integers chosen randomly and be 
mutually different, F denotes scaling factor which controls 
amplification of the differential variation 2 3( )iter iter

a aX X− . As 
a general rule, F is a constant chosen from (0, 2). In MDE, 
F is substituted by a variable which could dynamically 
changing with iterative loops, that is 

max max min[( ) ] /F FF FF FF iter maxiter= − − ×   (12) 

where FFmax, FFmin represent the maximum and minimum 
scaling factors respectively. Obviously, in the initial phase, 
F is bigger and is beneficial to search globally so as to 
diversify the population, while in the latter phase, F is 
smaller, which is advantageous to enhance local searching 
so as to improve the precision and quicken the convergence 
speeding. 

5) Crossover. In order to further increase the diversity of the 
population, perform binary-distribution crossover operation 
at each element of between the mutant vector *

kX  and 
iter
kX  according to 

*

, (0,1)
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where C denotes crossover factor which controls the 
differential degree of each element, and is usually a 
constant chosen from (0, 1). Similarly, in MDE, C is 
substituted by  

min max min[( ) ] /C CC CC CC iter maxiter= + − ×   (14) 

where CCmax, CCmin represent the maximum and minimum 
crossover factors respectively. Apparently, in the initial 
phase, C is smaller, thus the opportunity of crossover is 
greater and it is beneficial to increase the diversity of the 
population and improve the performance of searching 
globally, In the latter C is bigger, so the chance of crossover 
is smaller and is advantageous to improve the precision and 
quicken the convergence speeding. 

6) Bounds check (Bhat et al., 2006). For the values of 
partial elements of the new individuals may be out of the 
prescribed bounds, then we should force it to lie within the 
given bounds according to the following judgments 
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where max
kr krp x xΔ= −  and min

kr krq x xΔ= − . 

7) Competition. The objective function value of the new 
individual Δ

kX  is not always better than that of the former 
iter
kX . So both of them should compete the opportunity of 

producing the next generation by the following competitive 
operation 
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8) iter = iter+1, and goto step 2. 

3. EXPERIMENTAL 

3.1 Experimental design 

In simulation, HYSYS, well-known simulation software for 
chemical production process, is used to produce the datasets. 
A primary tower of the crude distillation unit is simulated 
as the object, and the inputs are the reciprocal of top 
absolute pressure, top temperature and the character factor 
of the tower, while the output is the 100% cut point (ASTM 
D86) of the top product, naphtha. To test the ability of 
anti-disturbance of the model, we add white noises to all the 
measurements, including the inputs, according to the 
precision of common instruments. 

In the following, we produce three training datasets as 
Train1, Train2 and Train3, to train model, and one testing 
dataset as Test, to test the performance of generalization of 
the model. Before training, all the inputs and output is zero- 
mean transformed and the transformation parameters are 
parts of the final model. All datasets are shown in Table 1: 

 

Table 1. Experimental datasets 

Data
sets 

Input Output 
Available Type Cycle Available 

Train1 48000 Sparse 480 100 
Train2 10000 Sparse 100 100 
Train3 100000 Sparse 100 1000 
Test 300 Continuous 1 300 

 

Three experimental models are included for comparison: (1) 
DSSM based on IRT and MDE, which simply marked as 
MDE_IRT; (2) DSSM based on IRT and ODE, simply 
marked as ODE_IRT; (3) DSSM based on LS and IR, 
simply marked as LS_IR. To distinguish between MDE, 
ODE and LS, MDE and ODE are uniformly defined as DE. 

The common parameters in both MDE and ODE are: 
NP=50, maxiter=500, ε =0.5, and the bounds of parameters 
to be estimated are ]90,0[1 ∈sT , ]90,0[2 ∈sT , ]100,0[∈s

pK , 
]15,0[∈sτ (s=1,2,3). In practice, they could be determined 

on the basis of the mechanism analysis of producing 
process or by experiences. In ODE, set F=1.0, C=0.5. In 
MDE, set FFmin=0.1, FFmax=1.8, CCmin=0.1 and CCmax=0.9. 

To evaluate the error of the models, the mean square error 
(MSE) is used as the error criterion 

[ ]2

1

1 ( ) ( )
M

i
MSE o i y i

M =

= −∑      (17) 

where o(i) is the output without normalization, while y(i) is 
the predictive output after inverse normalization. 

3.2 Experimental results and discussion 

In simulation, we build various DE_IRT and LS_IR models, 
of which the forced truncation length of impulse response, 
L(=L1=L2=L3), is chosen respectively from 20, 40, …, 240 
(the step is 20), both with and without noise. Then, under 
the particular L and noise standard, we use three different 
training datasets to train DE_IRT and LS_IR models. The 
MSE results of both train and test datasets are shown from 
Table 2 to Table 4. In these tables, the figures with “  ”, 
“  ”, “  ” denote the minimum MSE value in the located 
column. 

Table 2. Under different noise standards and L, the MSE 
results in “Train1/Test” 

 
L 

Without Noise With Noise 
IRT IR IRT IR 

MDE ODE LS MDE ODE LS 

60 3.77/3.83 4.13/4.10 4.80/4.81 4.07/4.12 4.13/4.09 5.91/6.02

120 3.29/3.32 3.73/4.80 4.26/4.30 5.40/5.41 5.86/5.97 5.95/6.01

180 1.37/1.40 1.39/1.42 4.73/4.84 4.21/4.28 4.41/4.39 5.83/6.05

240 1.07/1.09 1.50/1.52 5.12/5.41 3.16/3.20 3.80/3.77 5.65/5.81
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Table 3. Under different noise standards and L, the MSE 
results in “Train2/Test” 

 
L 

Without Noise With Noise 
IRT IR IRT IR 

MDE ODE LS MDE ODE LS 

60 4.08/4.02 4.19/4.16 5.09/5.18 4.95/4.96 4.96/5.01 5.61/5.85

120 3.22/3.22 3.31/3.38 5.53/5.65 5.92/5.94 5.94/6.03 5.44/5.59

180 1.30/1.32 1.40/1.42 5.57/5.63 3.39/3.44 3.77/3.80 5.75/6.11

240 0.97/0.8 1.46/1.49 5.42/5.72 2.46/2.45 2.53/2.51 5.33/5.59

Table 4. Under different noise standards and L, the MSE 
results in “Train3/Test” 

 
L 

Without Noise With Noise 
IRT IR IRT IR 

MDE ODE LS MDE ODE LS 

60 4.01/3.99 4.14/4.15 3.80/3.79 4.19/4.22 4.23/4.30 5.69/5.72

120 2.96/2.96 3.06/3.11 3.31/3.37 2.87/2.89 3.36/3.34 5.64/6.71

180 0.69/0.70 0.71/0.72 3.94/4.15 1.14/1.16 1.42/1.43 5.73/6.79

240 0.62/0.63 0.87/0.87 4.22/4.48 2.30/2.31 2.40/2.38 5.39/6.01

 

From Table 2 to Table 4, it can be seen that the MSEs of the 
three models are great when L is small and the MSEs of 
DE_IRT models are decreasing gradually with the in- 
creasing L, while the MSEs of LS_IR models are always big 
and the rule is not clear. The decreasing rate of the MSEs of 
DE_IRT models is also decreasing with the increasing L. 
When L and available output number is fixed, the MSEs 
with noise of all are bigger. For LS_IR models, their MSEs 
are relatively smaller when available samples are more and 
there is no noise. But, compared with DE_IRT models 
under equal condition, they are much bigger. 

Comparing Table2 with Table3, it can be seen that, when 
available output numbers are fixed and the sampling cycle 
is decreased, although the available inputs are smaller, the 
predictive precisions of DE_IRT models are somewhat 
improved, and a better predictive result can be find in any 
event either with or without noise. Comparing Table 3 with 
Table 4, it can be seen that, when the sampling cycle is 
fixed, the predictive precisions of DE_IRT models are 
somewhat improved with the increasing available output 
numbers. But the degree of improvement is not obvious 
when there is noisy. 

Note that the proper length Ls of the impulse response series 
is determined by characteristic parameters of the given 
system such as time constants and pure delay constant, and 
which is crucial to the performance of the models. In theory, 
with the increase of L, the dynamic process information to 
be used for modeling is more, and then the predictive 
results of the models are relatively better. When L is big 
enough to be able to show all the impulse response series, 
the effect is not obvious.  

Fig. 3 gives a MDE_IRT model in the Train1 without noise 
and L=240. The corresponding comparison of calculations 
and original values of Test is shown in Fig. 4. 

 

Fig. 3. MDE_IRT model in Train1 without noise and L=240 

 

Fig. 4. Comparison of calculations and original value of 
Test 

From Fig. 3 and Fig. 4, the dynamics character of the 
MDE_IRT model is shown expressly, and this result 
accords with the general experience of chemical process. 
From Fig. 4, it can be seen that all the calculations of three 
models have similar trends to the practice and the DE_IRT 
model is much better than LS_IR model. 

Comparing the DE_IRT and LS_IR models in the 
experiment, the results are distinct with increasing L. For 
DE_IRT, the MSEs of all models are smaller comparatively 
when L is bigger. On one hand, for the impulse response 
series are confined to the given template, its performance is 
completely decided by the corresponding template 
parameters and bounds. When L is larger and available 
samples are more, more efficient dynamic information is 
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provided to DE_IRT modeling exactly. On the other hand, 
owing to better performance of searching ability and 
anti-disturbance of DE, so only if the training time is 
enough, the final DE_IRT models would, all the time, give 
a better result. However, the results of the LS_IR models do 
not have the same characters, and the reasons lie in that, 
LS_IR is based on the least square principle, and the 
solution is absolutely depend upon the mutual related or 
correlated information between input and output of 
sampling system. When the sampling cycle is greater or 
there is noise, the accuracy of samples is low so that the 
LS_IR models obtained are distinct from the norm one and 
have enlarged the errors of prediction. Especially, when the 
increasing cumulative computational error results in the 
divergence of the least square solution due to larger L, the 
obtained model is completely different from the true so that 
the results of which is invalid. 

Seen from Table 2 to Table 4, the MSEs of MDE_IRT 
models are somewhat smaller than those of ODE_IRT 
models under the same conditions, for the MDE method can 
increase the searching speed and the ability of preventing 
the optimization object from being trapped into local 
optima. Thus, it is seen that MDE_IRT model has improve- 
ments against ODE_IRT in predictive precision.  

4. CONCLUSIONS 

To the best of our knowledge, this is the first report of 
applying IRT and DE method to the problem of dynamic 
soft-sensing modeling in chemical production process, from 
the viewpoint of optimization. By simulation we could draw 
the following conclusions: 

1) Using IRT and DE in DE_IRT model, the impulse 
response series achieved are more similar to real ones, and 
the estimation error is decreased apparently which is stirred 
by irregularity of the least square solution, especially for the 
system suffering from much disturbances. 

2) The selection of the length L of the impulse response 
series is crucial. L should not be too small in the impulse 
response model. The small one makes much foregone input 
information lost and causes the increase of estimation error. 
Similarly, the length should not too large. On one hand, the 
large one will prolong the training time, and on the other 
hand, for DE_IRT model with larger L, the effect of de- 
grading the errors is not obvious under noisy environment. 
Inversely, some efficient information would be submerged 
by the increasing cumulative computational error as well as 
decreasing the precision of the model. The realistic range of 
length is determined by time constants and pure delay 
constant of the given system. But, in practice, it could be 
determined by trial-and-error approach or the previous 
optimal method automatically. 

3) The model performance is relevant to the amount of 
available modeling data and the sampling frequency. 
Generally speaking, if the sampling frequency is higher, the 
modeling data demanded is more, and vice versa. Only 
considering the side of modeling data, the amount of data 
demanded to train the model based on IRT is smaller than 
those to train the model based on LS and IR, yet the 

predictive precision is higher. This point is of significance 
to practical application. 
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