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Abstract: The aim of this paper is to present a mini tilt-rotor unmanned aerial vehicle which is
capable to perform hover flight. Unlike conventional full-scale tiltrotors, in our design we avoid
the use of swashplate and we propose a simpler mechanical design which use only the tilting
rotors to stabilize the vehicle dynamics. A detailed mathematical model is derived via the
Newton-Euler formalism. A nonlinear control scheme, incorporating bounded smooth function,
is obtained from the decoupled dynamics and applied to real prototype for controlling hover
flight.

1. INTRODUCTION

Nowadays, the Unmanned Aerial Vehicle (UAV) develop-
ments represent an appealing research area due to its wide-
range application field. In terms of military application
it might be mentioned: hostile zone reconnaissance, haz-
ardous biological or chemical agent detection, etc. Within
civilian field, we can cite the natural disaster support,
assistance for earth science research, agricultural support,
etc.

Conventional tiltrotor vehicles, such as the Bell Boeing V-
22 Osprey, are mechanically complex systems since it em-
ploys a swashplate and differential rotor tilting to control
pitch and yaw, respectively. This represents a drawback
in terms of maintenance and replacement cost. Moreover,
these vehicles may not be a handy tool for repetitive test
flights due to its crash vulnerability. For these reasons we
propose a configuration, called T-Phoenix (see Fig. 1),
which copes with the pitch-yaw motion using a simpler
mechanical system based on rotors (noncyclic propellers)
tilting. This paper describes the first stage of an undergo-
ing project to develop an aircraft that blends the vertical
lift capability of a helicopter with the horizontal flight
performance of an airplane. This kind of vehicles does
not requires a run-way or an auxiliary launch/recovering
device, such as catapultes or parachutes, because of its
vertical take-off/landing capabilities.

In Gress [2002] and Gress [2003] the author proposes
and implements a relative complex configuration to carry
out hover flight taking advantage of the gyroscopic effect
provided by the tilting rotors. It is worth pointing up that
driving the pitch angle, represents a challenge because the
contribution of gyroscopic-based on torque is not strong
enough to cope with the pitch dynamics. In Kendoul et al.
[2002] the authors present the mathematical model and
simulation results of a backstepping algorithm in order to
stabilize a tilt-rotor vehicle inspired by Gress’s mechanism.

The main contribution of this paper is the design and
implementation of a simple tilting mechanism to perform
hover flight. In addition, we present a detailed mathemat-
ical model based on the Newton-Euler formulation and
we propose a control strategy that consists in decoupling
the 6-DOF dynamics in three independent subsystems,
simplifying the control task. It is also proposed a nonlinear
control algorithm to deal with a chain of integrators using
bounded smooth functions.

The paper outline is: Section 2 provides the description of
the T-Phoenix and also presents the equations that models
the translational and rotational motion. The controller de-
sign which stabilizes the dynamics of the UAV is presented
in section 3. Section 4 reports the experimental setup and
depicts the experimental results. Finally some concluding
remarks and perspectives are given in section 5.

Fig. 1. T-Phoenix autonomous hovering

2. T-PHOENIX UAV

Before providing the dynamical equations of the T-
Phoenix UAV, it results interesting to illustrate the way
as the UAV drives the attitude based on rotors tilting.

Roll motion and Altitude: The roll motion of the vehicle
is regulated by the difference in the angular velocity of
rotors (see Fig. 2). The altitude is controlled by increasing
or decreasing the thrust of the rotors.
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Fig. 2. Roll motion and altitude.

Pitch motion: The advantage of this configuration is the
addition of an extra mass, besides the ones of the ro-
tors, which is placed down enough to provide a weight-
based torque, obtaining then, a pendular damped effect
(naturally stable), see Fig. 3. To counteract this pendular
motion, the rotors tilt parallel (at the same time) in op-
posite sense of the pitch motion maintaining the upwards
position, emulating a mobile pivot, and moreover behaving
as damping factor.
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Fig. 3. Pitch motion.

Yaw motion: The yaw motion is driven via the rotors’ dif-
ferential tilting generating the required torque to provoke
a rotation (see Fig. 4).
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Fig. 4. Yaw motion.

2.1 Dynamical model

Let I={iIx , jIy , kI
z } denote the right handed inertial frame,

B={iBx , jBy , kB
z } denotes frame attached to the body’s air-

craft whose origin is located at its center of gravity (see
Fig. 5). Two auxiliary frames are obtained from the tilting
motion. The first tilting, to drive the yaw motion, produces
the frames Y1=

{

iY1

x , jY1

y , kY1

z

}

and Y2=
{

iY2

x , jY2

y , kY2

z

}

. Af-

terwards, the frame P=
{

iPx , jPy , kP
z

}

appears at regulating
the pitch motion.

Let the vector q = (ξ, η)T denotes the generalized coor-
dinates where ξ = (x, y, z)T ∈ ℜ3 denotes the transla-
tion coordinates relative to the inertial frame, and η =
(ψ, θ, φ)T ∈ ℜ3 describes the vehicle orientation expressed

Fig. 5. T-Phoenix model.

in the classical yaw, pitch and roll angles (Euler an-
gles).The orientation of the convertible UAV is given by
the orthonormal rotation matrix RB→I .

RB→I =

(

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

)

where sa = sin(a) and ca = cos(a).

Regulating yaw, implies the knowledge of two matrices,
since the vehicle tilts differentially, these matrices are given
by

RY1→B =

(

cα 0 sα

0 1 0
−sα 0 cα

)

, RY2→B =

(

cα 0 −sα

0 1 0
sα 0 cα

)

Notice that both matrices tilt about jBy axis.

The associated matrix to the pitch control is written as

RP→B =

(

cβ 0 −sβ

0 1 0
sβ 0 cβ

)

The Newton-Euler formulation provides the overall motion
equations of a rigid body, which are given by the following
expressions

m̄V̇ B + Ω × m̄V B = FB (1)

IΩ̇ + Ω × IΩ = ΓB (2)

where FB ∈ ℜ3 and ΓB ∈ ℜ3 are, respectively, the total
force and torque applied to the aircraft’s center of gravity
(CG), m̄ = diag(m) ∈ ℜ3×3 , m ∈ ℜ denotes the

vehicle’s mass, Ω = (p, q, r)
T

is the body frame angular
velocity, V B = (u, v, w)T is the translational velocity of the
aircraft’s center of mass, I ∈ ℜ3×3 contains the moments
of inertia about B.

Translational motion In this subsection, we derive the
translational and rotational dynamics, via the Newton-
Euler formalism.

Body frame: The tilting motion splits the thrust up in
several components, affecting the translational and rota-
tional motion. The following transformation provides the
total rotors’ thrust in terms of the body frame

TB
1 = RY1→BRP→Y1TP

1

TB
2 = RY2→BRP→Y2TP

2
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the translation motion of the UAV is described by the
following vectorial equation

m̄V̇ B + Ω × m̄V B = RI→BmGI + TB
1 + TB

2

where GI ∈ ℜ3, GI = (0, 0,−g) is the gravity vector.

Inertial frame: The translation dynamics relative to the
inertial frame is provided by the following expression

{

V I = ξ̇

mV̇ I = mGI + RB→I(TB
1 + TB

2 )
(3)

Rotational motion The RHS terms of (2) correspond to
the applied torques on the rigid-body, involving the ones
provided by the propeller, these are described next:

Actuators torque: The actuators torque is given by

Γc = ℓ
B
m1 × TB

1 + ℓ
B
m2 × TB

2 (4)

where ℓ
B
m1 = (0, ℓm, ℓp), ℓ

B
m2 = (0,−ℓm, ℓp) are the

distances from the CG to the rotors.

Weight torque:

The torque provided by the pendular mass

Γp = ℓ
B
p × RI→BmGI (5)

where ℓ
B
p = (0, 0,−ℓp)

Gyroscopic torque: In the yaw control, the gyroscopic
terms caused by tilting rotors may be modeled as

{

ΓY1

Gα1
= Ip(V

Y1

α1 × ωY1

p1 )

ΓY2

Gα2
= Ip(V

Y2

α2 × ωY2

p2 )
(6)

and the one provided by the pitch regulation is

ΓP
Gβ

=
2

∑

i=1

Ip(V
P
β × ωP

pi
) (7)

where V Y1

α1 = (0, α̇, 0)T , V Y2

α2 = (0,−α̇, 0)T , ωY1

p1 =

(0, 0, ωp1) and ωY2

p2 = (0, 0, ωp2). The final expression that
models the total gyroscopic torque relative to the body
frame can be written as

ΓB
G = RP→BΓP

Gβ
+ RY1→BΓY1

Gα1
+ RY2→BΓY2

Gα2

where Ip is the inertia moment of the propeller.

Drag torque: Finally, considering the same blade’s geome-
try, the drag torque may be modeled as

ΓB
D = ℓBD × (RY1→BRP→BDP

1 ) + ℓBD × (RY2→BRP→BDP
2 )
(8)

where DP
1 = kDω2

p1 and DP
2 = kDω2

p2 denote the drag
force of each propeller. kD represents the blade’s aero-
dynamic parameters, involving the blade profile, surface
and pitch and ℓBD denotes the distance from the vehicle’s
gravity center to the point where the drag is exerted.

Reduced model For further control analysis, let us shape
a reduced model by introducing the following assumptions
and facts:

A1. The gyroscope effect (ΓY1

Gα1
and ΓY2

Gα2
) generated dur-

ing the counter-rotating propellers combined with differ-
ential tilt of the rotors is self-compensated.

A2. During the pitch control, the inherent gyroscopic
caused by the slight tilting rotors is disregard.

A3. We have normalized the inertial tensor matrix I and
the vehicle mass m.

Based on the previous considerations, we obtain

ẍ = Tcαcβsψsφ + Tcαcβcψsθcφ

+
uφ

ℓm

sαsβsψsφ +
uφ

ℓm

sαsβcψsθcφ

−Tcαsβcψcθ + Tsαcβcψcθ (9)

ÿ =−Tcαcβcψsφ + Tcαcβsψsθcφ

−
uφ

ℓm

sαsβcψsφ +
uφ

ℓm

sαsβsψsθcφ

−Tcαsβsψcθ −
uφ

ℓm

sαcβsψcθ (10)

z̈ = Tcαsβsθ + Tcαcβcθcφ

−
uφ

ℓm

sαcβsθ +
uφ

ℓm

sαsβcθcφ − g (11)

ψ̈ = uφcαsβ − Tℓmcβsα (12)

θ̈ =
uφ

ℓm

ℓpcβsα − Tℓpcαsβ − gℓpsθ (13)

φ̈ = uφcαcβ + Tℓmsαsβ − gℓpcθsφ (14)

where uφ = ℓm (T1 − T2).

In order to simplify the control task, we have split the
6-DOF dynamics up in three subdynamics, which are:

Lateral dynamics:

This dynamics (θ = 0, ψ = 0, α = 0, β = 0) arises from
regulating the roll angle φ, this leads us to the following
scalar expressions:







ÿ = −T sin φ
z̈ = T cos φ − g

φ̈ = uφ − gℓp sin φ
(15)

Longitudinal dynamics:

The result of controlling the pitch angle θ is the longitu-
dinal dynamics (φ = 0, ψ = 0, α = 0), which is described
by

{

ẍ = T sin (θ − β)

θ̈ = −gℓp sin θ − Tℓp sin β
(16)

where β obeys to the pitch control input uθ behavior.

Axial dynamics:

The remaining dynamics (θ = 0, φ = 0, β = 0) is driven
by the differential tilt of the rotors at it may written as

{

ψ̈ = −Tℓm sin α (17)

3. CONTROL ALGORITHM DESIGN

In this section we present the control strategy to drive the
UAV in hover flight. To simplify we deal separately the
lateral, longitudinal and axial dynamics.

To handle the system dynamics we get the corresponding
linear approximation of (15) , therefore we obtain
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

























ẍ = Tθ − Tβ
ÿ = −φT
z̈ = T − g

ψ̈ = −Tℓmα

θ̈ = −gℓpθ − Tℓpβ

φ̈ = −gℓpφ + uφ

First, we tackle the altitude dynamics, proposing the
following control input

T = −k1ż − k2z + g (18)

where k1 and k2 are positive constants. Then, altitude
dynamics is given by

z̈ = −k1ż − k2z

Choosing k1 and k2 such that s2 + k1s + k2 is a Hurwitz
polynomial, therefore ż → 0 and z → 0 as t → ∞. This
implies that there exists a time large enough T1 such that

T = g

for all t > T1. From the latter, we get

ẍ = gθ − gβ (19)

ÿ = −φg (20)

ψ̈ = −gℓmα (21)

θ̈ = −gℓpθ − gℓpβ (22)

φ̈ = −gℓpφ + uφ (23)

Similarly as the altitude dynamics control, the axial dy-
namics is stabilized with the following controller

α = k3ψ̇ + k4ψ (24)

where k1 and k2 are positive constants. Then, equation
(21) becomes

ψ̈ = −gℓmk3ψ̇ − gℓmk4ψ

Now, defining k3 and k4 such that s2 + gℓmk3s + gℓmk4 is
a Hurwitz polynomial, hence ψ̇ → 0 and ψ → 0 as t → ∞.

Theorem 3.1. The origin of the closed-loop system com-
posed by (20) , (23) with the bounded smooth function-
based control input

uφ = gℓpφ−tanh
(

φ̇
)

−a tanh (z1)+b tanh (z2)+c tanh (z3)

(25)
where

z1 = φ + φ̇

z2 = aẏ − gz1 − agφ

z3 = abgy + z2 + bgẏ + abgẏ − bg2φ

a + b + c < 1.

b + c < a

0 < c < b

is asymptotically stable.

Proof 3.2. We propose uφ as

uφ = gℓpφ − tanh
(

φ̇
)

− η1 (26)

where η1 will be deduce later satisfying |η1| ≤ lη1
< 1 with

lη1
is a positive constant. From now on, functions ηi and

constants lηi
> 0 for i = 2, 3 will be obtained throughout

the control synthesis.

Introducing (26) into (23) we obtain

φ̈ = − tanh
(

φ̇
)

− η1

Let

V1 = ln
(

cosh
(

φ̇
))

(27)

then

V̇1 = − tanh
(

φ̇
) (

tanh
(

φ̇
)

+ η1

)

(28)

Note that if
∣

∣

∣
φ̇
∣

∣

∣
> lη1

implies V̇1 < 0. Thus, there exists a

time T2 > 0 such that
∣

∣

∣φ̇
∣

∣

∣ ≤ lη1
∀t > T2

Therefore equation (23) reduces to

φ̈ = −φ̇ − η1 (29)

Let us define
z1 = φ + φ̇ (30)

From (29) and (30) we get

ż1 = −η1 (31)

Let us define η1 as

η1 = a tanh (z1) + η2 (32)

where a is a positive constant, |η2| ≤ lη2
< a and a +

lη2
< 1.

Let us propose
V2 = ln (cosh (z1)) (33)

then
V̇2 = − tanh (z1) (a tanh (z1) + η2) (34)

If |z1| > lη2
implies V̇2 < 0. Thus, there exists a time

T3 > T2 such that

|z1| ≤ lη2
∀t > T3

and therefore equation (31) reduces to

ż1 = −az1 − η2 ∀t > T3 (35)

From (30) we obtain for t > T3

φ (t) = e−(t−T2)φ (T2) +

∫ t

T2

e−(t−τ)z1 (τ) dτ

Thus it follows that for a time T4 large enough we obtain

|φ (t)| ≤ lη2
+ δ

for some δ arbitrarily small.

To establish a bound of ẏ let us define

z2 = aẏ − gz1 − agφ (36)

then from (29) , (20) and (35) we obtain

ż2 = gη2 (37)

Let us define η2 as

η2 = −b tanh (z2) − η3 (38)

where b is a positive constant, |η3| ≤ lη3
< b and b+lη3 < a.

Let
V3 = ln (cosh (z2)) (39)
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then

V̇3 = −g tanh (z2) (b tanh (z2) + η3) (40)

Note that if |z2| > lη3
implies V̇3 < 0. Hence, there exists

a time T4 > T3 such that

|z2| ≤ lη3
∀t > T4

therefore the equation (37) reduces

ż2 = −bgz2 − gη3 (41)

To deduce a bound of y consider

z3 = abgy + z2 + bgẏ + abgẏ − bg2φ (42)

From (29) , (41) , (35) and (20) we obtain

ż3 = −gη3 (43)

Proposing η3 as

η3 = c tanh (z3) (44)

where c < b is a positive constant.

Let

V4 = ln (cosh (z3)) (45)

then

V̇4 = −gc tanh2 (z3) (46)

which is negative definite for all z3. This implies that
z3 → 0 as t → ∞.

From (30)− (44) we deduce that zi → 0 for i = 1, 2. From

(27) , (28) , (30) , (32) (38) and (44) we get that φ̇ → 0 and
φ → 0. From (36) and (42) it is follows that ẏ → 0 and
y → 0. This concludes the proof.

In order to stabilize the remaining dynamics (19) and (22)
we propose the following state equations







ξ1

ξ2

ξ3

ξ4






=







x
ẋ
θ

θ̇







The dynamic equations then are given by

ξ̇ = Aξ + Bβ

where

A =







0 1 0 0
0 0 g 0
0 0 0 1
0 0 −gℓp 0







B =







0
−g
0

−gℓp







Proposing

β = −k̄ξ (47)

where

k̄ =
(

k̄1 k̄2 k̄3 k̄4

)

Thus

ξ̇ =
(

A − Bk̄
)

ξ

Choosing k̄ such that
(

A − Bk̄
)

is Hurwitz implies that ξ
→ 0 as t → ∞.

4. EXPERIMENTAL PLATFORM

In this section, we present the real-time experimental
results obtained when applying the proposed controllers,
(24) , (18) , (25) and (47) to the T-Phoenix UAV (see
Figures 6).

4.1 Real-time PC-Control System (PCCS)

The control is performed trough a real-time simulink XPC
target toolbox. The radio and the target PC are connected
using data acquisition cards. The connection in the radio
is directly made to the joystick potentiometers for the
collective, yaw, pitch, and roll controls.

Fig. 6. The T-Phoenix UAV.

Sensors and communication hardware In order to sta-
bilize the helicopter and acquire the system data, we
have implemented two different platforms. The first one
is devoted to compute the onboard control algorithm for
the autonomous attitude-stabilized flight, and the second
one to provide the 3D position feedback for the regulation
of the helicopter.

Sensors

• Inertial Measurement Unit (IMU): We have used a
3DM-X1 microstrain IMU which provides the angular
rate (ψ̇, φ̇, θ̇) and the angular position (ψ, φ, θ). This
IMU combines three angular rate gyros with three
orthogonal accelerometers, three orthogonal magne-
tometers, multiplexer and 16 bit A/D converter.

• Position Measurement Unit (PMU): The vehicle’s po-
sition (x, y, z) is obtained through a magnetic three-
dimensional tracker Polhemus. This sensor is very
sensitive to electromagnetic noise and has a range
of 1.52m approximately. For this reason we placed
it quite away from the electric motors.

Communication hardware

The PCCS requests (polling mode) the sensors information
via the RS-232 serial communication. The best sensor
performance, in terms of transmission data, was obtained
at a sampling frequency of 50Hz. The inertial data is
transmitted via a wireless X-Bee modem whereas the
Polhemus is directly plugged to the PCCS.

4.2 Experimental results

The gain values used for the control law are shown in Table
1. The control goal is to reach the zero attitude (ψ, θ, φ) =
(0, 0, 0) and a 3D desired position (x, y, z) = (0, 0, 15 cm) ,
resulting in a autonomous stabilized-hover flight.
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Fig. 7. Yaw and pitch angles.
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Fig. 8. Roll angle and x position.
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Fig. 9. x and y positions.
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Fig. 10. α and β controllers

Figures 7-11 show the performance of the controller during
the T-Phoenix’s hover flight. As can be seen from Figures
7-11 the proposed control performs well in practice even
in presence of significant disturbances.

Control parameter Value

k1 1.975

k2 0.07

k3 0.001

k4 0.002

a 0.4

b 0.2

c 0.1

k̄1 0.002

k̄2 0.00001

k̄3 0.04

k̄4 0.00003

Table 1. Gain values used in the control law.
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Fig. 11. uφ control and throttle input.

5. CONCLUSION

A noteworthy accomplishment is the autonomous hover
flight of the mini-tiltrotor UAV (T-Phoenix) employing a
simple mechanics. For the pitch dynamics we tilt the rotors
in such a way that it damps the pendular motion of the
vehicle maintaining the upwards position of the propellers.
In spite of the complexity of the real prototype’s dynamics,
a satisfactorily control law performance is observed from
the real time experiments. The previous, proves that is
possible to deal with strong nonlinear systems by driving
each decoupled dynamics.
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