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Abstract: Step response is widely used as the performance index of controlled systems. Thus,
the ideal system would be one that has an output which approaches to the step signal quickly
without error or over-shoot. However, if the output of an actual plant converges to the reference
signal in a very short period, it can be dangerous to the surrounding environment as well as
the operators. Furthermore, the smooth trajectories are required in some cases like vehicle or
elevator systems. It is known that some limitations on the jerk of the plant would be necessary
in such situations which require ride quality. In this paper, a non-linear feedforward filter for
the step signal is proposed. The proposed filter, which has simple structure and requires less
computational burden, produces time-optimal trajectories whose jerk guarantees the limitations
that are given a priori. The effectiveness is substantiated with numerical examples.
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control, Time-optimal control, Point-to-point control, Step function responses

1. INTRODUCTION

The Point-to-Point control is a fundamental control
method, which is based on step responses. Therefore, step
responses is one of the most important criteria for con-
trolled systems. The ideal system would be one whose
output converges to the given step reference as quick as
possible without error or over-shoot. However, it is not
preferred that an actual plant moves very speedily. Taking
elevators or vehicles for instance, while they should work
as fast as possible from the point of working efficiency, it
is desired that their jerk are constrained for ride quality.
Thus, a moderate trajectory would be necessary even for
the Point-to-Point control.

While a generation of the optimal trajectory for any ref-
erence signal is difficult, trajectory generations for some
limited situations such that the reference is given a pri-
ori, for instance, Point-to-Point control, iterative control
and so on, are studied in both online and offline frame-
works and their effectiveness are verified with real-time
experiments. Offline frameworks, for example, a directly
generation of trajectory (Tan, 2005) can be expected to
achieve higher performance than that of online frame-
works. However, it highly depends on the reference sig-
nal, therefore, even if the reference is linearly changed,
it would require resynthesises. The computational burden
or number of experiment to obtain the ideal trajectory
is more than those of online frameworks in general. More-
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over, calculated trajectories have to be memorised. On the
other hand, online frameworks, such as feedforward filter
approaches (Tsai, 2004; Jones, 2004) and reference gov-
ernors (Bemporad, 1997; Vahidi, 2007) provide trajectory
generators instead of trajectories themselves. The struc-
ture of the generator restricts the achievable performance,
which may be worse than that of the offline frameworks
in general. However, some of them can deal with any
reference signals. Due to its real-time implementation,
computational burden has to be considered in another
sense of the offline frameworks. The reference governor is
well researched theoretically, but its implementation is still
developing because of its complexity.

For this issue, trajectory generators under velocity and
acceleration constraints are proposed (Schlemmer, 2002;
Kim, 2003; Panahi, 2006), while time-optimal trajectory
generation itself is not a simple problem, which require a
certain computational burden even in the offline frame-
works (Agostini, 2003). In fact, the algorithms proposed
in (Schlemmer, 2002; Kim, 2003) are not so easily imple-
mented while both methods produce time-optimal trajec-
tories. On the other hand, Panahi et al. (Panahi, 2006) pro-
posed an online generator without multiplication, which
requires less computational burden.

In this paper, a new online trajectory generation based on
a non-linear feedforward filter, which has a simple struc-
ture and requires less computational burden, is proposed.
The proposed feedforward filter produces near the time-
optimal trajectories under jerk constraints from a given
step reference. Then, the effectiveness of the proposed fil-
ter and its application with two-degree-of-freedom system
(2DOFS) is verified with numerical examples.
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2. MAIN RESULTS

Consider the non-linear filter shown in Fig. 1 such that the
third order system with a saturation operator S.
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Fig. 1. Proposed feedforward filter A

The non-linear operator S is a static saturation function
representing the limitation for jerk, which is given as
follows.

S(j) =

{

−J, j < −J
j , −J ≤ j ≤ J
J, J < j

(1)

Here, non-negative finite scalar J is the maximum jerk of
the plant output or the limitation that should be given for
some reason (for example, for ride quality), the reference
r0 > 0 is given a priori. When positive scalars Ka, Kv and
large enough K0 > 0 are given by

Ka :=
16r0

JT 2
, Kv :=

5r0

3JT
, T :=

(

32r0

J

)
1

3

, (2)

K0 ≫ Ka, Kv, (3)

then the jerk of the non-linear system’s output; r(t) in Fig.
1 guarantee the following constraints.

−J ≤
d3

dt3
r(t) ≤ J, (4)

Furthermore, when K0 → +∞, r(t) becomes the time-
optimal trajectory, that means r(t) converges to the refer-
ence r0 at the minimum time under the jerk constraints.

The appropriate values of the gain parameters, Ka, Kv,
K0 are obtained as follows.

Consider simple physics of particles that a stationary
particle moves and then stops at the given distance r0.
To move distance r0 in the minimal time T under the jerk
constraints, the particle must accelerate at the positive
maximum jerk +J until T/4, then it must move at the
negative maximum jerk −J until 3T/4, after that it must
move at the positive maximum jerk +J again until T . By
simple calculation, we have the following equations for the
jerk jp(t), the acceleration ap(t), velocity vp(t), and the
time optimal trajectory rp(t) of the particle.

jp(t) =











+J, 0 ≤ t <
T

4
,

3T

4
< t ≤ T

−J,
T

4
< t <

3T

4

(5)

ap(t) =

t
∫

0

jp(τ)dτ, vp(t) =

t
∫

0

ap(τ)dτ (6)

rp(t) =

t
∫

0

vp(τ)dτ (7)

From the terminal condition rp(T ) = r0, we obtain

T =

(

32r0

J

)
1

3

. (8)

On the other hand, from the block diagram of Fig. 1, the
following equations are satisfied.

jL(t) = S(j(t)), j(t) = K0f(t) (9)

f(t) = (r0 − r(t)) − Kvv(t) − Kaa(t) (10)

Since jL(t) is the jerk of the output signal r(t), the
trajectory r(t) is the time optimal, if

j(t) ≥ J, 0 ≤ t < T/4
j(t) = 0, t = T/4
j(t) ≤ −J, T/4 < t < 3T/4
j(t) = 0, t = 3T/4
j(t) ≥ J, 3T/4 < t < T
j(t) = 0, t = T

hold. When letting K0 → +∞, Ka and Kv must chosen
such that j(T/4) = 0, j(3T/4) = 0, and j(T ) = 0 hold.
Substituting that a(t) = ap(t), v(t) = vp(t), r(t) = rp(t)
hold, we have

ap(T/4) =
1

4
JT, vp(T/4) =

1

32
JT 2,

rp(T/4) =
r

12
. (11)

Furthermore, by the symmetry of the trajectory, we also
have

ap(3T/4) =−
1

4
JT, vp(3T/4) =

1

32
JT 2,

rp(3T/4) =
11

12
r. (12)

Substituting them to the necessary conditions j(T/4) = 0
and j(3T/4) = 0, we obtain the candidates of Ka and Kv

as follows,

Ka :=
16r0

JT 2
, Kv :=

5r0

3JT
. (13)

Now, we analyse the behaviour of the filter in Fig. 1 with
these Ka, Kv, and K0 → +∞. Since jp(t), vp(t) and rp(t)
are the time optimal (accelerated at the maximum jerk +J
until t = T/4),

a(t)≤ ap(t) = Jt < ap(T/4) (14)

v(t)≤ vp(t) =
1

2
Jt2 < vp(T/4) (15)

r(t)≤ rp(t) =
1

6
Jt3 < rp(T/4) (16)

∀t < T/4 (17)

hold. Then

f(t) > r0 − rp(T/4) − Kvvp(T/4) − Kaap(T/4)

= 0 (18)

is obtained. Since K0 is large enough (K0 ≫ 0), we have
j(t) > J > 0, ∀t < T/4. This means that r(t) is accelerated
at the maximum jerk +J , therefore a(t) = ap(t), v(t) =
vp(t) and rL(t) = rp(t) hold for t < T/4. Furthermore,
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lim
t→T/4−0

a(t) = ap(T/4), (19)

lim
t→T/4−0

v(t) = vp(T/4), (20)

lim
t→T/4−0

r(t) = rp(T/4) (21)

are obtained. As a result, a(t) = ap(t), v(t) = vp(t) and
r(t) = rp(t) hold for t ≤ T/4. Note that j(T/4) = 0 also
holds.

After the time T/4, it is hold that

a(t)≥ ap(t) = −J(t − T/2), (22)

v(t)≥ vp(t) = −
J

2
(t − T/2)2 +

JT 2

16
, (23)

r(t) ≥ rp(t) = −
J

6
(t − T/2)3 +

JT 2t

16
−

JT 3

64
,

(24)

since ap(t), vp(t) and rp(t) are the time optimal (moving
at the negative maximum jerk −J after the time T/4).
Hence

f(t)≤ r0 − rp(t) − Kvvp(t) − Kaap(t)

=−
1

6
J(t − T/4)(t − 3T/4)(t− 3T )

< 0 (T/4 < t < 3T/4) (25)

is satisfied. Since K0 ≫ 0 is assumed, j(t) < −J < 0
holds for T/4 < t < 3T/4. It shows that r(t) moves at
the negative maximum jerk −J . As a result, a(t) = ap(t),
v(t) = vp(t) and rL(t) = rp(t) hold for T/4 < t < 3T/4.
In addtion,

lim
t→3T/4−0

a(t) = ap(3T/4), (26)

lim
t→3T/4−0

v(t) = vp(3T/4), (27)

lim
t→3T/4−0

r(t) = rp(3T/4) (28)

are held. Consequently, a(t) = ap(t), v(t) = vp(t) and
r(t) = rp(t) hold for t ≤ 3T/4 and j(3T/4) = 0 is also
satisfied.

After the time 3T/4, since jp(t), vp(t) and rp(t) are the
time optimal (moving at the maximum jerk +J after
t = 3T/4),

a(t)≤ ap(t) = J(t − T ) (29)

v(t)≤ vp(t) =
1

2
J(t − T )2 (30)

r(t) ≤ rp(t) =
1

6
J(t − T )3 + r0 (31)

hold. Then

f(t)≥ r0 − rp(t) − Kvvp(t) − Kaap(t)

=−
1

6
J(t + T/4)(t− 3T/4)(t − T )

> 0, (3T/4 < t < T ) (32)

is obtained. Since K0 is large enough (K0 ≫ 0), we have
j(t) > J > 0 (3T/4 < t < T ). This means that r(t)
moves at the maximum jerk +J , therefore a(t) = ap(t),
v(t) = vp(t) and rL(t) = rp(t) hold for t < T . Furthermore,

lim
t→T−0

a(t) = ap(T ) = 0, (33)

lim
t→T−0

v(t) = vp(T ) = 0, (34)

lim
t→T−0

r(t) = rp(T ) = r0 (35)

are obtained, i.e., a(t) = ap(t), v(t) = vp(t) and r(t) =
rp(t) hold for t ≤ T . Note that j(T ) = 0, a(T ) = 0,
v(T ) = 0, and r(t) = r0 also hold, and consequently the
output r(t) remains at r0 for t ≥ T . This means that the
output signal r(t) of the filter is exactly the same as the
optimal trajectory rp(t).

3. IMPLEMENTATION

When the proposed filter is implemented, the gain K0

should be chosen as a finite real number to avoid nu-
merically ill conditions while we can let K0 → +∞ the-
oretically. In the case of finite K0, when t is close to T ,
the filter acts linear system, which might have complex
conjugate poles (|j(t)| ≤ J holds when t is nearly equal
to T ). This means that the output of the filter r(t) might
overshoot or be oscillatory. To avoid the situation, consider
the following filter shown in Fig. 2, here, p0, p1, p2 > 0.

-r0
a- p0p1p2 - a-j(t) S -jL(t)

1/s p

a(t)
1/s p

v(t)- 1/s p

r(t)-

�p0 + p1 + p2
�a
+

�p0p1 + p1p2 + p2p0

6+

6−6−

Fig. 2. Proposed feedforward filter B

If J is large enough (J → +∞), this filter is equivalent to
the following linear system;

p0p1p2

(s + p0)(s + p1)(s + p2)
(36)

which only has real stable poles −p0, −p1 and −p2.
Therefore, the output of the system is not oscillatory.
Furthermore, the system shown in Fig. 2 is equivalent to
that shown in Fig. 3.

-r0
a- p0p1p2 -j(t)

S -jL(t)
1/s p

a(t)
1/s p

v(t)- 1/s p

r(t)-

�p0+p1+p2

p0p1p2

�a
+

�p0p1+p1p2+p2p0

p0p1p2

�a
+

6+

6+

6−

Fig. 3. Equivalent system to filter B

By comparing the systems shown in Fig. 1 and in Fig. 3,
we have the following equations;

K0 = p0p1p2 (37)

Ka =
p0 + p1 + p2

p0p1p2

≃
1

p1p2

(38)

Kv =
p0p1 + p1p2 + p2p0

p0p1p2

≃
p1 + p2

p1p2

(39)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6035



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

p
o

s
it
io

n
 [

ra
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

v
e

lo
c
it
y
 [

ra
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

0

50

a
c
c
e

le
ra

ti
o

n
 [

ra
d

/s
2
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

0

1000

je
rk

 [
ra

d
/s

3
]

time [s]

Fig. 4. Step responses of proposed filter A

here, p0 ≫ p1, p2 is assumed. Letting 1

p1p2

= Ka and
p1+p2

p1p2

= Kv, we obtain

K0 = p0p1p2 = p0/Ka (40)

p0 + p1 + p2 = p0 + (p1 + p2)

= K0Ka + Kv/Ka (41)

p0p1 + p1p2 + p2p0 = p0(p1 + p2) + p1p2

= K0Kv/K2
a + 1/Ka. (42)

It is confirmed that the poles p1 and p2 can not be complex
conjugate as follows. When (p1 − p2)

2 ≥ 0 holds, the poles
are not complex conjugate. and the system shown in Fig. 2
with (40) - (42) produces non-oscillatory trajectories even
though K0 is not large enough. It is easy to confirm that

(p1 − p2)
2 = (p1 + p2)

2 − 4p1p2 = (
Kv

Ka
)2 −

4

Ka

=
(

K2

v

Ka

− 4)

Ka
=

4

5Ka
> 0 (43)

holds. Hence both poles p1 and p2 are real.

4. NUMERICAL EXAMPLES

The effectiveness of the proposed methods are verified by
numerical examples. Firstly, the response for a given step
reference is considered. The step response of the proposed
filter A; r(t), v(t), a(t), and jL(t) are shown in Fig. 4, here,
r0 = π/6, J = 600 K0 = 2000, 200000. Fig. 5 shows the
step response of the proposed filter B with (40) - (42),
here, r0 = π/6, J = 600 K0 = 2000, 200000. In both
figures, the solid curve shows the case of K0 = 200000
and the dashed curve shows the case of K0 = 2000. As
can be seen from both figures, when K0 is large enough
(in the case of K0 = 200000), the trajectories of both filters
A, B are almost the same. Furthermore, the output r(t)
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Fig. 5. Step responses of proposed filter B

accelerates at the maximum jerk +J until t = T/4, then
it moves at the negative maximum jerk −J . After that it
moves again at the maximum jerk +J until it enters the
linear region. The results show that the proposed filter
produces a trajectory that guarantees a convergence time
near the minimum using the maximum jerk when K0 can
be considered as +∞.

On the other hand, when K0 is not large enough, the
behaviour of filters A and B are different from each other.
As discussed in the previous section, the output of filter A
is oscillatory, while that of filter B does not overshoot. It
shows the effectiveness of filter B with (40) - (42).

Secondly, the effectiveness of the 2DOFS with filter B is
verified with a mathematical model of a rotary flexible
link system. Consider the simplified system shown in Fig.
6. It is known that the system can be approximated by the

Torque

Lhub(t)

Lhub(0)

Lload(t)

Lload(0)

loadhub zero position

α

θ
θ + α

Lload(t)

Lhub(t)

Side View Top View

Fig. 6. Simplified model of the flexible link

following kinetic equations(Quanser, 2003).

{

Jhubθ̈ + Jload(θ̈ + α̈) + Beq θ̇ = τ

Jload(θ̈ + α̈) + KStiffα = 0
(44)

Here, Jhub[kgm2] and Jload[kgm2] are inertia moment of
the hub and the load, respectively, Beq[Nm/rad] is viscous
modulus of the hub, τ [Nm] is input torque of the motor,
Kstiff [N/m] is stiffness of the link. Letting output y be
angle of load (y = θ+α) and state vector xp be as follows,
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xp = [ θ α θ̇ α̇ ]T (45)

a mathematical model of the plant is given by the following
state equation.

{

ẋp = Apxp + Bpu
y = Cpxp

(46)

Ap =











0 0 1 0
0 0 0 1
0 γ −δ 0

0 −γ
(Jhub + Jload)

Jload
δ 0











γ =
Kstiff

Jhub
, δ =

−ηmηgKtKmKg
2 + BeqRm

JhubRm

Bp =

[

0 0
ηmηgKtKg

JhubRm
−

ηmηgKtKg

JhubRm

]T

Cp = [ 1 1 0 0 ]

Here, ηm and ηg are the efficiency of the motor and the
gear box, respectively, Kt[Nm/A] is the motor torque
coefficient, Km[Vs/rad] is back electromotive force of the
motor, Kg is the total gear ratio between the motor shaft
and the hub, and Rm[Ω] is resistance of the motor. For
the system, a closed loop system is synthesised by PID
controller and a 2DOFS with filter B is synthesised in the
same manner as (Chen, 2007).

The step responses of filter B (r(t), v(t) and a(t) and jL(t))
and those of the plant model (angle, angular velocity,
angular acceleration, angular jerk, input) are shown in Fig.
7, here, reference steps are r0 = π/6[rad] and π/3[rad],
and the jerk limit is J = 600. In the figure, the solid
curve, dashed curve, and dash-and-dotted curve show the
behaviour of the plant model with the proposed 2DOFS
with filter B, that with a conventional linear 2DOFS
(without considering jerk limit), and the trajectories of
the proposed filter B, respectively.

Due to the 2DOFS (delay of feedforward Fr in (Chen,
2007)), the behaviour of the plant model delay slightly be-
hind those of filter B. However, the 2DOFS with proposed
filter B;

(1) appropriately and effectively use jerk and input, while
the linear 2DOFS requires large jerk/input when t is
small and does not use them when r(t) is close to r0.

(2) whose speed and acceleration are symmetric for time,
while linear system tends to move fast when t is small
and stop passively when r(t) is close to r0.

in both case of r0 = π/3, π/6. As a result, even though the
proposed methods’ start-up time are slower, their settling
time are faster than the linear system. The result shows
that the effectiveness of the proposed filter.

5. CONCLUSION

In this paper, a non-linear feedforward filter which pro-
duces near the time-optimal trajectory for a given step
reference signal under jerk constraint is proposed. The pro-
posed filter has simple structure, which requires less com-
putational burden, and, in fact, it is easy implementable.
The effectiveness is substantiated with numerical exam-
ples. Issues in the future are synthesis method for reference
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Fig. 7. Step responses of flexible link model

signals other than step signal, and asymmetric limitation
for jerk.
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