

Design of Hybrid Systems With Real-Time and FPGA Targets

Jeanne Sullivan Falcon*

*National Instruments, Austin, TX 78759
USA (Tel: 512-683-6618; e-mail: Jeannie.falcon@ni.com).

Abstract: Hybrid control systems integrate discrete logic combined with physical system dynamics.
Discrete logic can be represented in a graphical, data flow language using a UML compliant statechart
model. The physical system dynamics can also be integrated in the hybrid system by using the same data
flow language. The resulting system can execute on a real-time processor or a system which includes both
a processor and a field programmable gate array (FPGA). A case study is presented for a cruise control
application.

1. INTRODUCTION TO HYBRID CONTROL SYSTEMS

Hybrid control systems integrate discrete logic combined
with physical system dynamics. Antsaklis and Koutsoukos
(Antsaklis et. al., 2002) discuss the use of hybrid control
systems in manufacturing, communication networks, auto-
pilot design, engine control, traffic control and chemical
process control. They also discuss how hybrid control is
employed in a wide variety of embedded control systems that
interacts with the physical world. Hespanha and Liberzon
(Hespanha et. al.) also examined applications of hybrid
control systems and focused on reconfigurable systems, fault
correction systems, and certain classes of parameter-adaptive
systems.

A simple example of a hybrid control system is given in
(Antsaklis et. al., 2002) as a manufacturing plant with
multiple machines connected via an automated material
handling system. Parts are processed on separate machines
but the processing only begins when digital sensors indicate
the delivery of the parts to the machines. So, the complete
system is described by combination of the event-driven
dynamics of parts moving between machines and the time-
driven dynamics of the processes within the machines.

Discrete logic can be represented using a graphical approach
to event based programming called a statechart. The physical
system dynamics can be fully described using a graphical
simulation diagram. The combination of these two
computational models results in a complete hybrid control
system simulation or real-time implementation.

2. STATECHART REPRESENTATION OF DISCRETE
LOGIC OR CONTROL

Statecharts were proposed by David Harel (1987) as a more
advanced method for describing reactive systems and state
machines than state transition diagrams or “state diagrams.”
State diagrams are directed graphs containing nodes for states
and arrows for transitions between states. The transition
arrows are labeled with triggering events and guarding
conditions. A drawback of state diagrams they do not

incorporate hierarchy or modularity. Thus, they can become
quite large and unmanageable for complex systems.

Harel (1987) proposed statecharts as a means to simplify the
visual description of complex discrete event systems. The
statechart approach developed by Harel allows for
modularity, clustering, orthogonality of states (or
concurrency) and refinement. It is also possible to “zoom”
within a statechart to explore different levels of abstraction.

The statechart concept for discrete event systems was
incorporated into the Unified Modeling Language (UML)
specification developed by the Object Management Group
(OMG) consortium (2007). The OMG consortium is an
international, open membership, not-for-profit computer
industry consortium. The LabVIEW Statechart Module is
compatible with the UML specification for statecharts (OMG
2007).

A program created with one or more statecharts can run on
desktop PCs running Windows or it can run natively on
desktops converted into dedicated real-time targets. In
addition, the statechart can run on a wide variety of
embedded targets including distributed programmable
automation controllers and custom microprocessor based
designs through C code generation. In addition, statecharts
can run on field programmable gate array (FPGA) targets
such as PXI/PCI FPGA devices or on the FPGA within a
distributed programmable automation controller.

3. DYNAMIC SYSTEM SIMULATION INTEGRATION
WITH GRAPHICAL PROGRAMMING

The LabVIEW Control Design and Simulation Module
includes tools for linear systems analysis, control system and
estimator design, numerical simulation, and control
implementation (National Instruments, 2007).

The module allows continuous-time or discrete-time systems
to be represented in standard block diagram form. Both
feedback and feedforward signal paths can be represented
with arrows on the wires within the block diagram.
Hierarchy in the block diagram may be used to represent the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4432 10.3182/20080706-5-KR-1001.3874

dynamics of different subsystems. Also, the same simulation
program that has been developed for offline simulation may
be easily configured as a real-time simulation or control
system. Parallel simulation loops, with adjustable execution
priority, may also be employed to create multi-rate systems.
Additionally, textual programming may be incorporated into
the simulation loop directly so that a combined textual and
graphical approach may be used to describe the physical
system. Finally, a simulation loop may be placed within a
larger graphical program. This capability facilitates the
creation of a hybrid or a complex intelligent system.

4. CASE STUDY: CRUISE CONTROL SIMULATION

The front panel for a Cruise Control User Interface program
written in LabVIEW is shown in Fig. 1. This example allows
the user to test drive a hybrid control system simulation that
combines discrete logic for the user interface with a
continuous-time simulation of the vehicle dynamics, road
profile and PID cruise control system. When the user runs the
program, the vehicle can be driven manually with desired
acceleration and braking commanded using sliders on the
front panel. As the vehicle goes over the simulated road, the
speed of the vehicle is shown slowing down when it goes up
an incline and then speeding up when it goes downhill.

To activate the cruise control, the user can click the on button
in the cruise control section of the front panel. This will set
the cruise control state to idle. Then, the user can click on the
set button to provide the setpoint speed for the cruise control
system. The accelerator slider will then begin moving on its
own to indicate the control action of the cruise control
system. There will be less variation of speed than the manual
control system (the driver) as the vehicle goes uphill and
downhill. If the user wants to disable the cruise control
system and switch to manual control, he or she can press the
on button again to turn the cruise control off. The user can
press the resume button in the cruise control section of the
front panel to bring the cruise control immediately back to
the last setpoint for speed and to the on state.

The screenshot in Fig. 2 shows the top-level block diagram
for the Cruise Control User Interface program. It shows a
continuous-time simulation loop with both hierarchy for
different physical subsystems (cruise control, road, and
vehicle) as well as the Run Statechart program to call the
Cruise Control Logic.

The Cruise Control Logic statechart diagram can be viewed
by right-clicking on the Run Statechart program and then
selecting the “Open Statechart” option. The screenshot in
Fig. 3 shows the statechart diagram for this example. It
includes an Initial state as well as four other states: Off, Idle,
On, and Set.

5. HYBRID SYSTEM DEPLOYMENT

An FPGA may be used in conjunction with a microprocessor
to form a heterogenous computational device. Discrete logic
tasks that must run at high speeds may be described by
statecharts and deployed to the FPGA.

Fig. 1: Front panel for a Cruise Control program

 Fig. 2: Top level block diagram for Cruise Control

Fig. 3: Statechart used for Cruise Control program.

REFERENCES

Antsaklis, P. and X. Koutsoukos, X. (2002). “Hybrid Systems
Control,” http://www.nd.edu/~pantsakl/elecpubs/256.pdf

Douglass, B. (1999). “UML Statecharts,” Embedded.com,
http://www.embedded.com/1999/9901/9901feat1.htm

Harel, D. (1987). “Statecharts: a visual formalism for
complex systems,” Science of Computer Programming.
Vol. 8, p. 231.

Hespanha, J., and Liberzon, D., Abstract for “Tutorial On
Logic-Based Control: Switched Control Systems,”
http://med.ee.nd.edu/MED10/pdf/abstract.pdf

Object Management Group (2007). “Unified Modeling
Language™ - UML® Resource Page”
http://www.uml.org/

National Instruments (2007). “Embedded System Design,”
http://www.ni.com/embedded

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4433

