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Abstract: Hybrid control systems integrate discrete logic combined with physical system dynamics. 
Discrete logic can be represented in a graphical, data flow language using a UML compliant statechart 
model. The physical system dynamics can also be integrated in the hybrid system by using the same data 
flow language. The resulting system can execute on a real-time processor or a system which includes both 
a processor and a field programmable gate array (FPGA). A case study is presented for a cruise control 
application.  

 

1. INTRODUCTION TO HYBRID CONTROL SYSTEMS 

Hybrid control systems integrate discrete logic combined 
with physical system dynamics. Antsaklis and Koutsoukos 
(Antsaklis et. al., 2002)  discuss the use of hybrid control 
systems in manufacturing, communication networks, auto-
pilot design, engine control, traffic control and chemical 
process control.  They also discuss how hybrid control is 
employed in a wide variety of embedded control systems that 
interacts with the physical world.  Hespanha and Liberzon 
(Hespanha et. al.) also examined applications of hybrid 
control systems and focused on reconfigurable systems, fault 
correction systems, and certain classes of parameter-adaptive 
systems. 

A simple example of a hybrid control system is given in 
(Antsaklis et. al., 2002) as a manufacturing plant with 
multiple machines connected via an automated material 
handling system.  Parts are processed on separate machines 
but the processing only begins when digital sensors indicate 
the delivery of the parts to the machines.  So, the complete 
system is described by combination of the event-driven 
dynamics of parts moving between machines and the time-
driven dynamics of the processes within the machines. 

Discrete logic can be represented using a graphical approach 
to event based programming called a statechart.  The physical 
system dynamics can be fully described using a graphical 
simulation diagram.  The combination of these two 
computational models results in a complete hybrid control 
system simulation or real-time implementation. 

2. STATECHART REPRESENTATION OF DISCRETE 
LOGIC OR CONTROL 

Statecharts were proposed by David Harel (1987) as a more 
advanced method for describing reactive systems and state 
machines than state transition diagrams or “state diagrams.”  
State diagrams are directed graphs containing nodes for states 
and arrows for transitions between states.  The transition 
arrows are labeled with triggering events and guarding 
conditions.  A drawback of state diagrams they do not 

incorporate hierarchy or modularity.  Thus, they can become 
quite large and unmanageable for complex systems. 

Harel (1987) proposed statecharts as a means to simplify the 
visual description of complex discrete event systems.  The 
statechart approach developed by Harel allows for 
modularity, clustering, orthogonality of states (or 
concurrency) and refinement.  It is also possible to “zoom” 
within a statechart to explore different levels of abstraction. 

The statechart concept for discrete event systems was 
incorporated into the Unified Modeling Language (UML) 
specification developed by the Object Management Group 
(OMG) consortium (2007).  The OMG consortium is an 
international, open membership, not-for-profit computer 
industry consortium.  The LabVIEW Statechart Module is 
compatible with the UML specification for statecharts (OMG 
2007). 

A program created with one or more statecharts can run on 
desktop PCs running Windows or it can run natively on 
desktops converted into dedicated real-time targets.  In 
addition, the statechart can run on a wide variety of 
embedded targets including distributed programmable 
automation controllers and custom microprocessor based 
designs through C code generation. In addition, statecharts 
can run on field programmable gate array (FPGA) targets 
such as PXI/PCI FPGA devices or on the FPGA within a 
distributed programmable automation controller. 

3. DYNAMIC SYSTEM SIMULATION INTEGRATION 
WITH GRAPHICAL PROGRAMMING 

The LabVIEW Control Design and Simulation Module 
includes tools for linear systems analysis, control system and 
estimator design, numerical simulation, and control 
implementation (National Instruments, 2007). 

The module allows continuous-time or discrete-time systems 
to be represented in standard block diagram form.  Both 
feedback and feedforward signal paths can be represented 
with arrows on the wires within the block diagram.  
Hierarchy in the block diagram may be used to represent the 
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dynamics of different subsystems. Also, the same simulation 
program that has been developed for offline simulation may 
be easily configured as a real-time simulation or control 
system.  Parallel simulation loops, with adjustable execution 
priority, may also be employed to create multi-rate systems. 
Additionally, textual programming may be incorporated into 
the simulation loop directly so that a combined textual and 
graphical approach may be used to describe the physical 
system.  Finally, a simulation loop may be placed within a 
larger graphical program.  This capability facilitates the 
creation of a hybrid or a complex intelligent system.   

4. CASE STUDY: CRUISE CONTROL SIMULATION 

The front panel for a Cruise Control User Interface program 
written in LabVIEW is shown in Fig. 1.  This example allows 
the user to test drive a hybrid control system simulation that 
combines discrete logic for the user interface with a 
continuous-time simulation of the vehicle dynamics, road 
profile and PID cruise control system. When the user runs the 
program, the vehicle can be driven manually with desired 
acceleration and braking commanded using sliders on the 
front panel.  As the vehicle goes over the simulated road, the 
speed of the vehicle is shown slowing down when it goes up 
an incline and then speeding up when it goes downhill.   

To activate the cruise control, the user can click the on button 
in the cruise control section of the front panel. This will set 
the cruise control state to idle.  Then, the user can click on the 
set button to provide the setpoint speed for the cruise control 
system.  The accelerator slider will then begin moving on its 
own to indicate the control action of the cruise control 
system.  There will be less variation of speed than the manual 
control system (the driver) as the vehicle goes uphill and 
downhill. If the user wants to disable the cruise control 
system and switch to manual control, he or she can press the 
on button again to turn the cruise control off.  The user can 
press the resume button in the cruise control section of the 
front panel to bring the cruise control immediately back to 
the last setpoint for speed and to the on state.  

The screenshot in Fig. 2 shows the top-level block diagram 
for the Cruise Control User Interface program.  It shows a 
continuous-time simulation loop with both hierarchy for 
different physical subsystems (cruise control, road, and 
vehicle) as well as the Run Statechart program to call the 
Cruise Control Logic. 

The Cruise Control Logic statechart diagram can be viewed 
by right-clicking on the Run Statechart program and then 
selecting the “Open Statechart” option.  The screenshot in 
Fig. 3 shows the statechart diagram for this example.  It 
includes an Initial state as well as four other states: Off, Idle, 
On, and Set. 

5. HYBRID SYSTEM DEPLOYMENT 

An FPGA may be used in conjunction with a microprocessor 
to form a heterogenous computational device.  Discrete logic 
tasks that must run at high speeds may be described by 
statecharts and deployed to the FPGA.  

 

          
Fig. 1:  Front panel for a Cruise Control program 

 
 Fig. 2: Top level block diagram for Cruise Control 

               
Fig. 3: Statechart used for Cruise Control program. 
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