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Abstract: In this paper, a novel combination of unfalsified control and intelligent control
is proposed to improve the dynamic performance of an uncertain system. A PID controller,
whose parameters are adaptively tuned by switching among members of a given candidate set
using observed plant data, is presented and compared with multi-model adaptive control. Two
different cost functions are compared for their capability in selecting the “best” controller.
The principle of Radial Basis Function Neural Networks (RBFNN) is used to update the
parameters of the selected PID controller to further improve the performance. Simulation
results demonstrate that the proposed control switching strategy compares favorably to the
alternatives.
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1. INTRODUCTION

To address the emerging need for robustness of adaptive
systems towards larger uncertainties or to achieve tighter
performance specifications, several recent important ad-
vances have involved multi-model controller switching for-
mulations of the adaptive control problem, e.g. supervisory
based control design in Balakrishnan and Narendra [1994,
1997], or data-driven unfalsified adaptive control methods
of Tsao and Safonov [1997], which exploit evidence in the
plant output data to switch a controller out of the loop
when the evidence proves that the controller is failing
to achieve the stated goal. These formulations have led
to improved optimization-based adaptive control theories
and, most importantly, significantly weaker assumptions
of prior knowledge.

In contrast to the indirect, estimator-based multi-model
adaptive control schemes (Balakrishnan and Narendra
[1997], Chen and Narendra [2001]), unfalsified control
is an approach based on direct controller performance
(Tsao and Safonov [1997], Stefanovic and Safonov [2006],
Stefanovic et al. [2004], Wang et al. [2004]). It does
not attempt to make assumptions about the plant in
order to deduce overall switched system stability. Thus,
the potential problem of a ‘model-mismatch” instability
related to the multi-model based adaptive schemes can be
avoided. Of course, plant models still play an important
role in the design of the candidate controller set.

Recently, other approaches have been employed in ex-
tending multi-model adaptive control to the modeling and
control of more complex, unknown, time-varying dynamic
systems, such as fuzzy control (Skrjanc et al. [2003]) and
Neural Networks (NN) control (Chen and Narendra [2001],

Zhai and Fei [2005]). Neural networks are powerful tools
for approximating unknown nonlinear functions, which
extends their application to the control of unknown, non-
linear dynamic systems. In Lim and Lewis [1999], results
on stability of the neural networks have been obtained. In
Chen and Narendra [2001], some results about the signal
boundedness using neural networks in adaptive control
have been established.

To our knowledge, unfalsified control has not been exam-
ined in the combination with the neural network schemes.
In this paper, we propose new results on the performance
improvement in Multiple Controller Adaptive Control
(MCAC) systems by using Neural Networks. Also reported
is the comparison between the obtained results and the
performance improvement in Multiple Model Adaptive
Control schemes using neural networks.

The paper is organized as follows. In Section 2, the
formulation of unfalsified control problem is reviewed.
In Section 3, main results on stability of the switched
data-driven multi-controller adaptive control problem are
reviewed. In Section 4, a Radial Basis Function Neural
Networks(RBFNN) algorithm is stated and used in the
unfalsified (data-driven) control problem. Simulations are
conducted and discussed in Section 5. Concluding remarks
are provided in Section 6.

2. UNFALSIFIED CONTROL PROBLEM

The multiple controller unfalsified switching system is de-
scribed below, utilizing a set of candidate PID controllers,
which is one of the most widely used methods in the
industry. In Jun and Safonov [1999], fundamentals of the
unfalsified control theory and its use in conjunction with

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6536 10.3182/20080706-5-KR-1001.3871



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6537



.

.

.

.

.

.

1
h

2
h

mh

1
x

n
x

2
x

1
w

2
w

3
w

my

i
j

Fig. 2. RBF Neural Network Structure.

J(K, z, t) = max
τ≤t

||y||2τ + ||u||2τ
||r̃K ||2τ + α

(4)

where α is an arbitrary positive number, used to prevent
division by zero when r̃ = y = u = 0 (unless Σ has
zero-input zero-output property). Alternatively, in order
to avoid the restriction to the minimum phase (stably
causally left invertible) controllers (which would assure the
causality and incremental stability of the map [u, y] → r̃),
the denominator of (4) can contain ṽK instead of r̃K

(Manuelli et al. [2007], Dehghani et al. [2007], where
ṽK is defined via the matrix fraction description (MFD)
of the controller K, as K = D−1

K NK and ṽK(t) =
(−NK)(−y(t)) + DKu(t).

J(K, z, t) = max
τ≤t

||y||2τ + ||u||2τ
||ṽK ||2τ + α

(5)

Both (4) and (5) have been shown to satisfy the required
properties of Theorem 4. Stability verification for (4)
and (5) is provided in Stefanovic and Safonov [2006].
The results of Manuelli et al. [2007] also ensure ‘internal
stability’ of the adaptive system designed using cost-
detectable cost-functions of the forms (4) or (5).

4. THE USE OF NEURAL NETWORK

The conventional PID controllers with fixed parameters
may deteriorate the control performance in accordance
with the complexity of the plant. In this section, we
attempt to select the best suitable PID controller using
the switching algorithm A1 and the cost function (4),
combined with the use of a three-layer RBFNN, as shown
in Fig. 2, to adaptively update its parameters to achieve a
better performance.

In the RBFNN, X = [x1, x2, ...xn]T denotes the in-
put vector. Assume the radial basis vector is H =
[h1, h2, ...hj , ...hm]T , where hj is the Gaussian function:

hj = exp
(

−
‖X−Cj‖

2

2b2
j

)

(j = 1, 2, ...,m)

and Cj = [cj1, cj2, ...cji, ..., cjn]T is the center vector of the
jth node.

Let B = [b1, b2, ..., bm]T , where bj > 0 is the basis width
of the jth node; W = [w1, w2, ..., wj , ...wm]T is the weight
vector. As shown in Fig. 2, the NN output is

ym =
m
∑

j=1

wjhj

The RBFNN identification performance index is

E = 1
2 (y(k) − ym(k))2

Then, according to gradient descent algorithm, the output
weights, node centers, and basis width parameters are
calculated as follows:

∆wj = ∂E
∂wj

= (y(k) − ym(k))hj

wj(k) = wj(k − 1) + η∆wj + α(wj(k − 1) − wj(k − 2))

∆bj = ∂E
∂bj

= (y(k) − ym(k))wjhj
‖X−Cj‖

2

b3
j

bj(k) = bj(k − 1) + η∆bj + α(bj(k − 1) − bj(k − 2))

∆cji = ∂E
∂cj

= (y(k) − ym(k))wjhj
x−cji

b2
j

cji(k) = cji(k − 1) + η∆cji + α(cji(k − 1) − cji(k − 2))

where η is the learning rate, α is the momentum factor.

In this paper, the inputs of the RBFNN identification is
chosen as

x1 = ∆u(k) = u(k) − u(k − 1)

x2 = y(k)

x3 = y(k − 1)

The Jacobian Algorithm, used in the sequel, is:

∂y(k)
∂∆u(k) ≈ ∂ym(k)

∂∆u(k) =
k
∑

j=1

wjhj
cji−∆u(k)

b2
j

Here, we use this algorithm to update the PID con-
troller parameters, selected by the above unfalsified control
switching algorithm A1. Assume the remaining error of the
unfalsified control is

error(k) = r − y(k)

Hence, the inputs of the RBFNN based PID controller are

error p = error(k) − error(k − 1)

error i = error(k)

error d = error(k) − 2error(k − 1) + error(k − 2)

The control algorithm is given as:

u(k) = u(k − 1) + ∆u(k)

∆u(k) = kp(error(k) − error(k − 1)) + ki(error(k)) +
kd(error(k) − 2error(k − 1) + error(k − 2))

Here, the NN approximation index is

E(k) = 1
2error(k)2

where kp, ki, kd are adjusted by the gradient descent algo-
rithm:

∆kp = −η ∂E
∂kp

= −η ∂E
∂y

∂y
∂∆u

∂∆u
∂kp

= ηerror(k) ∂y
∂∆u

error p

∆ki = −η ∂E
∂ki

= −η ∂E
∂y

∂y
∂∆u

∂∆u
∂ki

= ηerror(k) ∂y
∂∆u

error i

∆kd = −η ∂E
∂kd

= −η ∂E
∂y

∂y
∂∆u

∂∆u
∂kd

= ηerror(k) ∂y
∂∆u

error d

where ∂y
∂∆u

is the plant Jacobian, which is calculated by
the RBFNN.

The control structure is shown in Fig. 3.
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Fig. 3. Unfalsified Control Using NN.

According to Jun and Safonov [1999], when a new con-
troller is selected, the control algorithm resets the states
of the integrator term, and the approximate differentia-
tor term (to prevent the discontinuity). Thus, the whole
algorithm can be presented as follows. The data u and y

are measured;
∼
ri and

∼
ei are calculated from the candidate

controller and measured plant data; Ji is calculated, and
the controller arg min

1≤i≤N
Ji(t) is switched into the loop; at

the switching times, the controller states are reset; the
RBFNN is combined to the selected controller to update
the PID parameters. Theoretical validation of the stability
of the unfalsified control system is described in Stefanovic
and Safonov [2006] (see Section 2). The combination of
NN in unfalsified control does not alter the stability of
the switched system. Once the RBFNN is combined with
the selected controller, the switched controller remains in
the candidate controller set, in which all controllers are
“supervised” by the switching law. When the measured
data start revealing instability, the currently active con-
troller is quickly switched out of the loop and replaced by
another one. Hence, stability of the overall switched unfal-
sified control system combined with the neural networks
is preserved (under the feasibility assumption).

5. SIMULATIONS AND DISCUSSION

This section presents simulation results with no distur-
bance, no noise, and zero-initial conditions, though this
can be relaxed.

To illustrate the algorithm described above and compare
with the simulation results of multiple-model adaptive
control in Balakrishnan and Narendra [1994], we have
reproduced the same simulation setting as in Balakrishnan
and Narendra [1994]. The transfer function of the actual
plant (unknown from the control perspective) is assumed
to be:

Gp(s) = a
s2+bs+c

The parameters a, b, c are assumed to lie in the compact set
given by S = {0.5 ≤ a ≤ 2,−0.6 ≤ b ≤ 3.4,−2 ≤ c ≤ 2}.
The reference input is a square wave signal with unit
amplitude and period 10 seconds, and the reference model,
whose output is to be tracked, is taken as Wm(s) =

1
s2+1.4s+1 . Simulations were conducted on three plants

found in Balakrishnan and Narendra [1994], all unstable
oscillatory plants: 0.5/(s2 − 0.35s+2), 0.5/(s2 − 0.5s+2),
0.5/(s2 + 0.5s − 2).

Simulation 1 : Here we demonstrate that the cost-
detectable cost function is “safer” than the non-cost-
detectable one. In this case, the controller set is taken
as KP = {1, 5, 20, 50, 100}, KI = {1, 5, 20, 30, 50, 100},
KD = {0.2, 0.5, 1, 5, 15}. The simulation results are shown
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Fig. 4. I/O data for unstable oscillatory plant Gp(s) =
0.5/(s2 − 0.35s + 2) with two different cost functions
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Fig. 5. Controller cost with two different cost functions,
with the plant Gp(s) = 0.5/(s2 − 0.35s + 2)

in Figs. 4-7, where column (a) shows the reference input
r(t), the reference model output ym(t), the plant response
yp(t) and plant input u(t) with the non-cost-detectable

cost function( Ji(t) = −ρ +
∫ t

0
Γspec(

∼
ri(t), y(t), u(t))dt),

whereas column (b) shows the corresponding results
with the cost-detectable cost function( Ji(t) = −ρ +

max
τ∈[0,t]

‖u‖2

τ
+
∥

∥

∼

ei

∥

∥

2

τ
∥

∥

∼

ri

∥

∥

2

τ

). In Figs. 4(a), 7(a), yp(t) are both oscil-

latory divergent, and all candidate controllers are falsified
in approximately 11 seconds. In Fig. 6(a), yp(t) is bounded,
but the tracking error is rather large. In Figs. 4-7(b), the
tracking error is considerably smaller. To clarify the differ-
ence between the above two cost functions, we decreased
the dimension of controller set to KP = {1, 50, 100},
KI = {1, 50}, KD = {0.2, 5, 15}. Fig. 5(a) shows the cost
with the non-cost-detectable cost function on the plant
Gp(s) = 0.5/(s2−0.35s+2), while Fig. 5(b) represents the
corresponding cost with the cost-detectable cost function.
In fig. 5, lines Cc and Co respectively stand for the costs
of the selected controller and those of the non-selected
ones. It is seen that the former cost function lacks the
capability of selecting the “best” controller, or even discard
the stabilizing controller. As expected, the stability and
performance with the latter cost function are preserved.
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Fig. 6. I/O data for the unstable oscillatory plant Gp(s) =
0.5/(s2 − 0.5s + 2) with two different cost functions
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Fig. 7. I/O data for the unstable nonoscillatory plant
Gp(s) = 0.5/(s2 + 0.5s − 2) with two different cost
functions

Moreover, compared with the results in Balakrishnan and
Narendra [1994], we can conclude that the unfalsified con-
trol, under the feasibility assumption and with a properly
designed cost function, can achieve similar, or even better
response results.

Simulation 2 : Here we demonstrate the effectiveness of
Neural networks combined with the unfalsified control. In
this case, the controller set is set to be smaller to make re-
sults more obvious, e.g. KP = {5, 50, 100}, KI = {20, 30},
KD = {0.2, 0.5, 1}. The cost function is the chosen to be
the cost-detectable one. Other simulation parameters are
the same as in the previous setting. Figs. 8, 10, 11 (b) show
the simulation results with NN inserted to update the PID
parameters of the controller being switched to the closed
loop. Figs. 8, 10, 11 (a) show the simulations without NN.
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Fig. 8. I/O data for the unstable oscillatory plant Gp(s) =
0.5/(s2 − 0.35s + 2). (a)without NN. (b) with NN

Fig. 9. PID gains with NN for the unstable oscillatory
plant Gp(s) = 0.5/(s2 − 0.35s + 2).

By comparing Figs. 8, 10, 11 (b) with Figs. 8, 10, 11 (a), we
can find that the combination of NN with the unfalsified
control reduces the tracking error, and even stabilizes a
divergent system, in the scenarios when the candidate
controllers set is small, or does not match well with the
actual plant, and all controllers in the controller set might
be falsified. Fig. 9 shows the PID gains, which demonstrate
the effect of NN.

Although the tracking error is increasing in the scenarios
without NN (Figs. 8, 10, 11 (a)), as soon as stability is
falsified by the switching algorithm (guaranteed by the
cost-detectable cost function), the old controller will be
switched out and replaced with an as-yet-unfalsified one.
However, every new switching requires controller state
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Fig. 10. I/O data for the unstable oscillatory plant Gp(s) =
0.5/(s2 − 0.5s + 2). (a)without NN. (b) with NN
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Fig. 11. I/O data for the unstable nonoscillatory plant
Gp(s) = 0.5/(s2 + 0.5s − 2). (a)without NN. (b) with
NN

resetting in order to prevent undesirable oscillations in the
output, which can be circumvented by the proper use of
NN, as demonstrated.

6. CONCLUSION

New results for the combination of the neural networks
with unfalsified control are presented. A cost-detectable
switching cost is used and compared with a previously
known, non-cost-detectable one. Nonlinear neural net-
works are used to update the parameters of the PID
controller, which is switched according to the hysteresis
switching algorithm. Simulations are conducted compara-
ble to those in Balakrishnan and Narendra [1994], a well-
known example on multi-model adaptive control, and the
results demonstrate the validity of the proposed frame-

work. Although improved performance can be obtained in
principle by increasing the number of the candidate con-
trollers, we focused here on the performance improvement
given a fixed candidate set. This is important when one
needs to work with a limited candidate set, due to the
computational reasons, for example. The issue of how one
can optimally utilize data for generating new candidate
controllers on the fly remains an open question.
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