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Abstract: This paper presents development of two different biosignal based computer interfaces for 
people with motor disabilities: 1) electromyography (EMG)-based computer interface (ECI) and 2) hybrid 
EMG-based computer interface (HECI). The ECI made both movements of a cursor and clicking from 
muscle contractions induced by volitional wrist movements. On the other hand, the HECI made 
movements of a cursor from the lower arm movements under a motion capture camera, and clicking from 
muscle contractions induced by volitional movements of index and middle fingers. These interfaces were 
tested by the experiments based on a Fitts’ law paradigm in order to provide object evaluation of the 
interfaces. These results were also compared to a commercial brain computer interface was evaluated 
under the same test setup. 

 

1. INTRODUCTION 
The standard computer interfaces such as keyboard or mouse 
are inherently driven by physical contacts (pressure) and 
movements of users. These physical interactions involve 
delicate and coordinated movements of upper limb, wrist, 
palm and fingers. On the contrary, there are the cases, in 
which some people are not apt to utilize the interfaces with 
their physical disabilities that have come from diseases such 
as spinal cord injury (SCI), paralysis, and amputation. In 
modern days like today’s, they involve themselves in projects 
to restrain the ongoing increase in inconvenience of the uses 
of the interfaces due to the disabilities. The Ministry of 
Health and Welfare in South Korea estimated in 2005 that in 
Korea approximately one million people suffered motor 
disabilities, and the number has been steadily increasing 
since 1995. Also, more than 500,000 individuals are living 
with SCI in North America and Europe (Guertin, 2005). 

The alternatives, which modern technology has resolved to, 
to provide the access to a computing environment for people 
with the disabilities are direct contact devices with a physical 
keyboard, such as mouth-sticks and head-sticks. Downsides 
of these devices are in their inaccuracy and inconvenience in 
its usage.  To overcome those problems, several biosignal 
based human-computer interfaces (HCIs) have become the 
new destination of the resolution, which have successfully 
emerged to extract a user’s intention because these signals 
provide information related to body motion faster than other 
means (such as kinematic and dynamic interfaces). 

Despite the success of the biosignal based HCI, few common 
standards for the performance evaluation has been established 
by researchers. They follow the same basic techniques in the 

development of interface; however, the standards vary greatly 
among them that it is hard for the people to compare the 
performance of the different interfaces. Thus, the 
performance evaluation of the biosignal based HCIs needs to 
be standardized. 

Such standardization will enable the researchers to perform 
easy and reliable evaluations of the biosignal based HCIs 
despite the differences in the biosignal sources (such as brain 
and muscle) and signal processing method (such as feature 
extraction and pattern recognition) among them. Furthermore, 
such standardization would help the users of the interface to 
choose the best fitting assistive interfaces to complement 
their disabilities without going through time-consuming 
process of accustoming themselves to the different biosignal 
sources and complicated signal processing methods of each 
interface. The development and performance evaluation of 
the biosignal based HCIs under the standard test setup should 
initiate better analysis of the each interface as well as a better 
comparative analysis between the interfaces. Through the 
comparison and evaluation, computer interfaces can undergo 
refinements, result in better performance, and allow the 
physically challenged people to make best decisions. 

This paper presents a comparative study of the three different 
biosignal based computer interfaces under a standard test 
setup designed by the researcher, who have based their test 
setup on a Fitts’ law paradigm (which is a quantitative model 
to evaluate the effectiveness of a computer pointing device). 
Among the three interfaces, two kinds of the interfaces were 
developed: 1) EMG-based computer interface (ECI) and 2) 
hybrid EMG-based computer interface (HECI). The ECI 
processes the movement of a cursor and its clicking s with 
the signals from the volitional wrist movements and its 
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muscle contraction. On the other hand, the HECI processes 
movements of a cursor with signals from the perception of 
the movements of a forearm by a motion capture camera and 
clicking with the signals from the volitional movements of 
index and middle fingers and their muscle contractions. The 
third interface is the brain computer interface available in the 
market, and this interface has been evaluated in the literature 
(Pino et al., 2003) under the standard test setup of our 
evaluation experiment. In addition, a computer mouse, as a 
standard computer pointing device, which people with intact 
limbs widely use, was also evaluated under the same test 
setup. 

2. EMG-BASED COMPUTER INTERFACE (ECI) 

2.1 System Description 

Fig. 1 shows a block diagram of the developed EMG-based 
computer interface. Only EMG signals were used for 
transmission from user’s intention to a computer using 
noninvasive surface electrodes (DE-2.1, Delsys) and a data 
acquisition board (PCI 6034e, National InstrumentTM). The 
signals were sampled at 1 kHz and amplified 1000 times, and 
this interface was developed with Microsoft Visual C++ 6.0. 

The target muscles for acquiring EMG signals should be the 
ones that a user can easily elicit the signal and at the same 
time the ones related to the motion that can be intuitively 
mapped to computer operating commands. Under this 
criterion, four different wrist movements (namely radial 
deviation, ulnar deviation, wrist extension, and wrist flexion) 
were chosen by which the user’s intention could be expressed, 
and these movements were mapped to cursor movement 
commands (i.e. “LEFT”, “RIGHT”, “UP”, and “DOWN”). In 
addition, the motion of finger extension was mapped to 
“CLICKING” of a mouse button and rest was mapped to 
“STOP”.  Four muscles related to the production of the wrist 
movements above were selected: the flexor carpi ulnaris 
(FCU), the extensor carpi radialis (ECR), the extensor carpi 
ulnaris (ECU), and the abductor pollicis longus (APL) 
(Perotto, 2005), and EMG signals were recorded as shown in 
Fig. 2 (a) and (b). 

2.2  Signal Processing 

It is well established that the EMG signal can be modeled as 
a zero mean Gaussian process (Shwedyk et al., 1977). Thus, 
the following equation is used to easily estimate the variance 
of the signal for feature extraction and low-pass filtering: 
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where Mi, N, and M  are the magnitude of the ith signal, the 
length of an analysis window, and the mean of the magnitude 
of the N signal data, respectively. The function form of 
variance is analogous to a moving average filter except for a 
square term and a denominator. 

Since the function of variance is similar to the function of a 
moving average filter, the cut-off frequency fc of the low-pass 
filtering used here can be defined in relation to a moving 
average filter as follows (Smith, 1999): 
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where fs is the sampling frequency. This equation describes if 
a large window is used the effectiveness of the low-pass 
filtering could be increased (because a cutoff frequency could 
become smaller). Since noise on the high frequency is, 
therefore, effectively reduced, this large window helps the 
accuracy of pattern recognition get higher (Englehart and 
Hudgins, 2003). However, this large window introduces a 
significant time delay and thus this delay could be a barrier 
for a natural real-time computer interface. Hence, there is a 

 

Fig. 1. Block diagram of the developed EMG-based computer 
interface. 

 

(a) 

 
(b) 

Fig. 2. (a) Myoelectric sites for the extraction of EMG signals. 
Four muscles were selected to extract volitional motor 
activities: the flexor carpi ulnaris (FCU), the extensor 
carpi radialis (ECR), the extensor carpi ulnaris (ECU), 
and the abductor pollicis longus (APL). The images of 
wires were removed for clear expression of the electrode 
placement. (b) Recorded EMG signals. 
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tradeoff between the real-time signaling and the accuracy of 
pattern recognition. 

Recently, “optimal controller delay” have been suggested  for 
collection and analysis of EMG data to maximize 
classification accuracy without affecting performance, and 
the maximum amount of time lied between 100 and 125 ms 
(Todd and Richard, 2007). Taking into account this 
experimental result, the length of an analysis window was 
determined as 100 ms. Thus, this signal process not only 
provides effective low-pass filtering (fc = 5 Hz) but also 
prevents any significant delay. 

2.3  Pattern Recognition 

Artificial neural network (ANN) has been emerged as an 
important tool for pattern recognition mainly used in HCI 
researches (Barniv et al., 2005, Hiraiwa et al., 1990). One of 
the advantages of using ANN is that because ANN acts like a 
black box model, it does not require detailed information 
regarding to the system. In order to design the network (the 
black box) for the classification of EMG signals, a set of 
examples flow through the network. Then, the network 
adjusts its internal structure until it reaches a stable stage at 
which the outputs are considered satisfactory. After the 
successful training, the network is preserved and receives 
new input information, which have never seen before, and 

then the network processes the information to produce 
appropriate outputs. 

Fig. 3 depicts the designed structure of ANN with two hidden 
layers and ten hidden neurons (for each layer) used in this 
computer interface. During the training stage, all subjects 
were instructed to get six different wrist motions in turn, and 
then the filtered EMG signals were extracted. Next, the 
network was trained using those six groups of wrist 
movements and desired network responses shown in Table 1. 
Its tuning was carried out by using a backpropagation 
algorithm with a momentum approach. 

3. HYBRID EMG-BASED COMPUTER INTERFACE 
(HECI) 

3.1 System Description 

Fig. 4. shows a block diagram of the developed hybrid EMG-
based computer interface. For the movements of a cursor, a 
motion track system (Micron Tracker, Claron Technology 
Inc.) was used to track a marker attached on a single forearm. 
Two dimensional movements of the arm were mapped 
directly into the cursor movements. For the clicking 
command, extensions of index and middle finger were used 
and these two different finger movements are able to bring 
out two different clicks like “Left/Right Button Clicks” on a 
computer mouse. These two finger movements were caught 
from observation of extensor digitorum (ED) muscle 
contractions. This muscle divides distally into four tendons 
which pass in a common synovial sheath with the tendon of 
extensor indicis, and through a tunnel under the extensor 
retinaculum and diverge on the dorsum of the hand, one to 
each finger (Gray et al., 2005). Therefore, two fingers’ 
movements are anatomically dependent, but the independent 
finger extensions are observable by attaching separately two 
EMG electrodes regarding of locally separate contractions. 
Fig. 5(a) shows the developed hybrid EMG-based computer 
interface setup, and EMG signal were recorded as shown in 
Fig. 5(b).This interface was developed with Microsoft Visual 

 

Fig. 3. The structure of the artificial neural network with 
two hidden layers and ten hidden neurons (for each 
layer). Six neurons are located at the network’s 
output, and each neuron corresponds to each 
volitional command to control a cursor movement or 
clicking. 

 

Fig. 4. Block diagram of the developed hybrid EMG-based 
computer interface. 

 
Table 1. Target vectors to classify a user's 

intention 
Class of the 

volitional command 
Desired network’s 

response 
STOP 1 0 0 0 0 0
LEFT 0 1 0 0 0 0

RIGHT 0 0 1 0 0 0
UP 0 0 0 1 0 0

DOWN 0 0 0 0 1 0
CLICK 0 0 0 0 0 1
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C++ 6.0. 

3.2 Signal Processing 

To track the position of the forearm from a camera, the 
tracking coordinate was updated at 20 Hz, and this three 
dimensional coordinate was transformed into a two 
dimensional coordinate removing depth information between 
the arm and the camera. Since this tracking data include some 
random noise from image, they slightly change at the rate 
even though a use’s forearm does not move. When the 
tracking data was used directly to move a cursor without any 
signal processing, the cursor trembles on a computer screen. 
However, people do not want to let move a mouse to control 
a cursor while reading and watching something through the 
monitor because it could disturb to concentrate on doing 
them. Although the small amount of noise affected the 
tracking data, it made the small trembles of the cursor, and 
even its one pixel change at the every time could be a 
problem. To avoid this tremble, a simple low pass filter was 
used: 

∑
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where xi, x , and N are of the ith motion signal, the average of 
the signals, and the length of an analysis window, 
respectively. For EMG signal processing, the same method 
was used as the section 2.2 in this paper. 

3.3 Pattern Recognition 

If many movements of the body motion are estimated from 
muscle contractions, sophisticated means of discriminating 
different muscle states could be required. That is because 
each body motion cannot be matched with each muscle 
contraction like one by one, and also coherent contractions in 
space or in time of a group of muscles occur to produce even 
one simple body movement. However, in the developed 
interface, because two channel EMG signals were used, a 
sophisticated classifier was not required and also it could be 
time-consuming work on the real-time point of view. 
Therefore, a simple classification method was implemented 
in this interface, which detects whether a muscle is contracted 
like “ON or OFF state.”  

Fig. 6 depicts an example of EMG signals with two different 
states from one when a muscle is relaxed to the other when a 
muscle is fully contracted, and these ranges can be spatially 
divided. To discriminate these spaces on the graph, two 
thresholds, S1 and S2, were determined empirically and S1 
must be larger than S2. When the filtered signal is greater 
than S1, it means a muscle is fully contracted, “ON,” and 
otherwise when the filtered signal is smaller than S2, it 
means a muscle is relaxed, “OFF.” The “ON” state was 
matched with the command, “MOUSE BUTTON DOWN,” 
and The “OFF” state was matched with the command, 
“MOUSE BUTTON UP.” Using this amplitude-coded 
myoelectric control, it is possible to implement several useful 
functionalities like them of the computer mouse: such as 
“DOUBLE CLICKING” and “DRAGING.” In contrast to the 
EMG signal, the motion track signal did not need to go 
through pattern recognition process, because the recorded 
signal was directly transferred into the movements of the 
cursor. 

4. EXPERIMENTAL SETUP ON A FITTS’ LAW 
PARADIGM 

 

Fitts’ Law (Fitts, 1992, Fitts and Peterson, 1964) is a 
quantitative model to evaluate the effectiveness of a 

 

Fig. 6. An example of one channel amplitude-coded 
myoelectric control. 

 

(a) 

 

(b) 

Fig. 5. (a) The developed hybrid EMG-based computer 
interface setup. (b) Recorded EMG signals. 
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computer pointing device and also to compare novel pointing 
device with the others (for a review of the Fitts’ Law; see 
(MacKenzie, 1992)). Since 1954 when the Fitts’ Law was 
presented, this model has been used successfully in HCI area, 
and has undergone some refinements in its mathematical 
formulation. Now, this model becomes one of the 
cornerstones in performance evaluation of a computer 
pointing device. 

In our experiment, the protocol used a Fitts’ Law paradigm, 
and this evaluation was conducted into three sorts: the first 
and second sessions were for the use of the developed 
interfaces and the other session was for the use of a computer 
mouse (a standard computer interface tool). Even though 
people with the disabilities cannot use a mouse, the purpose 
of this comparison is in an effort to investigate where the 
developed interface is relatively to a standard computer 
interface which people with intact limbs have widely used. 
Seven subjects (S1-S6: S1-S5 were for the ECI evaluation 
and the mouse evaluation, S5-S6 were for the HECI 
evaluation) with intact limbs (5 males, 26.17 years of age) 
volunteered. A testbed was designed for the experimental test 
shown in Fig. 7. The subjects were instructed to point and to 
click on a target (a dark rectangle) by moving a cursor, and 
time (movement time, MT) was measured taken to complete 
the task. The difficulty of the task depends on the width of 
the target W and the distance D between the cursor and the 
target. To mathematically express the difficulty, the Shannon 
formulation of the index of difficulty (ID) was used (Accot 

and Zhai, 1997), and the ID is expressed in “bits” as follows: 

2log 1DID
W

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (4)

Thus, the task becomes more difficult as D increases and W 
decreases. In this experiment, three different widths (W = 30, 
70, and 110 pixels) and three different distances (D = 150, 
300, and 450 pixels) were selected in line with Pino et al. 
(Pino et al., 2003), who evaluated the performance of a 
commercial assistive pointing device called BrainfingersTM 
(Brain Actuated Technologies), based on Fitts’ Law. 
According to Fitts’ Law, MT and ID have the following 
linear relation: 

MT a b ID= + ⋅  (5)

In this form, a reciprocal number of b is in “bits/s” and is 
called the index of performance (IP) or bandwidth. The IP 
represents how quickly the pointing and clicking can be done 
with the computer pointing device. Namely, an interface with 
higher IP is better than that with lower IP, because high IP 
indicates that the less MT is affected the greater ID increased. 

The position of the target in this experiment was randomly 
assigned for each session so that a user does not expect it. 
Then, the cursor was positioned on the right side or the left 
side of a target in accordance with the ID of each session. At 
the beginning of the experiment, all subjects were instructed 
to click a dummy target and then to click nine targets with 
different IDs. The duration of the pointing and clicking at 
each session was measured, and this process was repeated as 
20 times per subject. 

5. RESULTS AND DISCUSSIONS 
Fig. 8 shows that the experimental data of the MT and the ID 
for a subject have a linear relationship in accordance with 
Fitts’ Law. From this relationship, IPs of the developed 
interfaces were acquired: 1.299 bits/s for the ECI and 3.047 
bits/s for the HECI, and IP of the mouse was 7.733 bits/s. 
The IP of the mouse we achieved is comparable to the 
literatures where Pino et al. and Zhai et al. have reported the 
IP value of the mouse as 7.048 and 8.445 bits/s (Pino et al., 
2003, Zhai et al., 2003). 

Pino et al. have evaluated the performance of a commercial 

 

Fig. 7. Snapshot of the testbed on a Fitts’ law paradigm. 

           
(a)                                                              (b)                                                       (c) 

Fig. 8. Relation between the movement time (MT) and the index of difficulty (ID) from the experiment on a subject: (a) the 
developed EMG computer interface, (b) the developed hybrid EMG computer interface, and (c) the computer mouse. 
The gentle slope of the line illustrates the high IP (index of performance) value. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5225



 
 

     

 

assistive pointing device called BrainfingersTM (Brain 
Actuated Technologies) under the same test setup based on a 
Fitts’ law paradigm, and the IP was 0.386 bits/s (Pino et al., 
2003). The HECI has the greatest IP among the biosignal 
based interfaces mentioned here, and performance of the 
HECI is approximately 8 times greater than that of the 
commercial assistive computer pointing device, which means 
our development of the interface reduced the gap in 
efficiency between a mouse and an assistive pointing device. 

Fig. 9 shows the comparisons of the performance results 
among four computer interfaces. The HECI, however, was 
not still able to achieve the performance comparable with the 
mouse (IP = 7.733 bits/s) in terms of the performance 
evaluation results. 

6. CONCLUSIONS 
This paper presents a quantitative comparison study of three 
different biosignal based computer interfaces for the people 
under the same test setup based on a Fitts’ law paradigm for 
people with motor disabilities to access a computer 
comfortably. Even though our development of the interface 
reduced the gap in efficiency between a mouse and an 
assistive pointing device, it is still less efficient than the 
mouse.  

Future works will go in the direction of developing assistive 
computer interface with consideration for how a cursor could 
be more efficiently controlled. For this purpose, the 
performance result we achieved here will be analyzed using a 
design tool, and then factors why performance of the HECI is 
better than the other assistive interfaces could be found. In 
considerations of those factors, a new assistive computer 
interface in high efficiency could be designed for people with 
motor disabilities. 

ACKNOWLEDGMENTS 
The work described here was supported by the IT R&D 
program of MIC/IITA [2005-S-096-02, Development of 
wearable PC interface technology for the disabled]. 

REFERENCES 
Accot, J. & Zhai, S. (1997) Beyond Fitts' law: models for 

trajectory-based HCI tasks. Proceedings of the 

SIGCHI conference on Human factors in 
computing systems. Atlanta, Georgia, U.S. 

Barniv, Y., Aguilar, M. & Hasanvelliu, E. (2005) Using 
EMG to anticipate head motion for virtual-environment 
applications. IEEE Trans Biomed Eng, 52, 1078-93. 

Englehart, K. & Hudgins, B. (2003) A robust, real-time 
control scheme for multifunction myoelectric control. 
IEEE Trans Biomed Eng, 50, 848-854. 

Fitts, P. M. (1992) The Information Capacity of the Human 
Motor System in Controlling the Amplitude of 
Movement (Reprinted from Journal Experimental-
Psychology, Vol 47, Pg 381-391, 1954). Journal of 
Experimental Psychology-General, 121, 262-269. 

Fitts, P. M. & PETERSON, J. R. (1964) Information 
Capacity of Discrete Motor Responses. J Exp Psychol, 
67, 103-12. 

Gray, H., Standring, S., Ellis, H., Collins, P., Wigley, C. B. & 
Berkovitz, B. K. B. (2005) Gray's anatomy: the 
anatomical basis of clinical practice, Edinburgh; 
New York, Elsevier Churchill Livingstone. 

Guertin, P. A. (2005) Paraplegic mice are leading to new 
advances in spinal cord injury research. Spinal Cord, 
43, 459-61. 

Hiraiwa, A., Shimohara, K. & Tokunaga, Y. (1990) EEG 
Topography Recognition by Neural Networks. IEEE 
Engineering in Medicine and Biology 
Magazine, 9, 39-42. 

Mackenzie, I. S. (1992) Movement time prediction in human-
computer interfaces. Proceedings of Graphics 
Interface. 

Perotto, A. O. (2005) Anatomical guide for the 
electromyographer, IL, Charles C. Thomas. 

Pino, A., Kalogeros, E., Salemis, E. & Kouroupetroglou, G. 
(2003) Brain Computer Interface Cursor Measures for 
Motion-impaired and Able-bodied Users. Proc. Int. 
conf. Human-Computer Interaction. Crete, 
Greece. 

Shwedyk, E., Balasubramanian, R. & Scott, R. N. (1977) 
Nonstationary Model for Electromyogram. IEEE 
Trans Biomed Eng, 24, 417-424. 

Smith, S. W. (1999) The scientist and engineer's guide 
to digital signal processing, San Diego, Calif., 
California Technical Pub. 

Todd, R. F. & Richard, F. W. (2007) The Optimal Controller 
Delay for Myoelectric Prostheses. IEEE Trans 
Neural Syst Rehabil Eng, 15, 111-118. 

Zhai, S., Conversy, S., Beaudouin-Lafon, M. & Guiard, Y. 
(2003) Human on-line response to target expansion. 
Proc. the SIGCHI conference on Human 
factors in computing systems. 

 

 

Fig. 9. A comparison plot showing interface performance 
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