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Abstract: This paper will consider the control of spacecraft in a leader-follower formation using
attitude measurements only. To analyze the formation under non vanishing disturbances, the
concept of uniform practical exponential stability is defined. To ease the Lyapunov analysis
a new theorem is provided, giving sufficient conditions for systems that present a cascaded
structure to satisfy this definition. Finally, output control is applied to both the leader and
follower spacecraft and the stability of the overall system is analyzed through the application
of this new result.

1. INTRODUCTION

1.1 Background

There are several reasons for spacecraft formations gaining
so much interest from the research community in the last
decade. The most important is the desire to place mea-
suring equipment further apart than what is possible on a
single spacecraft. This is desirable because the resolution
of measurements are often inversely proportional to the
baseline length, meaning that either a large spacecraft, or a
formation of smaller, but accurately controlled spacecraft
may be used. Large spacecraft that satisfy the demand
of resolution are often impractical and are both costly
to develop and costly to launch. Smaller spacecraft on
the other hand, may be standardized and have a lower
developmental cost. In addition, they may be of a lower
collective weight and/or smaller size such that cheaper
launch vehicles can be used. This also allows for the
possibility of them to piggy-back with other commercial
spacecraft.

1.2 Previous work

The following is a presentation of some of the works done
on output control of spacecraft using quaternion measure-
ments. A globally convergent angular velocity observer can
be found in Salcudean [1991] and is highly referenced in the
later works on output control of spacecraft. In Lizarrald
and Wen [1995] a nonlinear filter is used to compensate for
missing velocity measurements. The passivity properties of
the system are exploited in an output controller so as to
achieve asymptotic stabilization of the closed-loop system.
A nonlinear quaternion based feedback control law is used
in Joshi et al. [1995] to achieve similar stability results.
The controller does not depend on system parameters, and
therefore robustness to modeling errors and parametric
uncertainties are ensured. Two schemes for output attitude
tracking are presented in Caccavale and Villani [1999].
The schemes are based on results achieved for output
control of robot manipulators, see Berghuis and Nijmeijer
[1993], but as mentioned in Caccavale and Villani [1999]

the extension is not straight forward due to the nonlin-
ear mapping between the orientation variables, the unit
quaternions. In Bondhus et al. [2005] output control is ap-
plied to the synchronization of a leader/follower formation
of spacecraft. Nonlinear observers are used to estimate the
angular velocities based on quaternion estimates, and the
rotation matrices representing the attitude error between
the reference trajectory and the leader and the follower
spacecraft are shown to converge to the identity matrix
from any initial condition. The tracking control problem
of a follower spacecraft with coupled rotational and trans-
lational motion is addressed in Wong et al. [2005]. Conver-
gence of the position and tracking errors are proven, using
only position and attitude orientation measurements. In
Tayebi [2006] a spacecraft is stabilized without the use
of velocity measurements. A unit quaternion observer is
used together with linear feedback in terms of the vector
parts of the actual unit quaternion and the estimation
error quaternion. Asymptotic stability is proven through
Lyapunov analysis. The model of the relative dynamics
used in this paper has also been treated in Kristiansen
et al. [2006] and Krogstad et al. [2007].

1.3 Contribution

The contribution of this paper is twofold. First, we present
a theoretical contribution consisting of a new theorem for
a system to be uniformly practically exponentially stable
(UPES), provided that the system is of cascaded structure.
This theorem assumes each subsystem to be UPES and a
specific growth of the interconnection term.

Second, the stability of a leader/follower formation is
analyzed taking into account external disturbances, and
using a controller observer scheme originally designed for
the control of robot manipulators. As opposed to most
other papers on the topic, the control of both the leader
and follower spacecraft are considered, and the solutions
of the system are proved to be exponential convergent to
zero, up to a steady-state error that can be arbitrarily
reduced by a convenient tuning of the control gains.
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2. MATHEMATICAL PRELIMINARIES

2.1 Notation

We use the notation ẋ for the time derivative of a vector x,
i.e. ẋ = dx/dt. Moreover ẍ = d2x/dt2. The identity matrix
in R

n×n is written In×n. We use | · | for the Euclidean
norm of vectors. We define Bδ := {x ∈ R

n : |x| ≤ δ}.
The minimum and maximum eigenvalue of a matrix A are
denoted by λm(A) and λM (A), respectively.

2.2 Rotation Matrices and Unit Quaternions

We use the rotation matrix Ra
b , to transform vectors

represented in coordinate frame Fa to Fb, while preserving
the length of the vectors. Rotation matrices are special
orthogonal matrices in R

3×3, that is, they belong to the
space

SO (3) =
{

R ∈ R
3×3 | R⊤R = I3×3,det (R) = 1

}

.

We will repeatedly use the fact that (Ra
b )

⊤
= (Ra

b )
−1

= Rb
a

(where Rb
a is equivalent to the opposite rotation of Ra

b ),
that the rotation matrix of a composite rotation is given
by the product of the rotation matrices (i.e. Ra

c = Ra
bRb

c),
and that

Ṙa
b = S (ωa

ab)Ra
b .

The vector ωa
ab is the angular velocity vector. The subscript

denotes the angular velocity of reference frame Fb relative
to frame Fa, where as the superscript shows that the
vector is decomposed in frame Fa. Given a vector ω =
(ωx, ωy, ωz), the matrix S is the skew-symmetric operator
defined as

S (ω) =

[

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]

i.e. S (ω) = −S⊤ (ω). Two important properties of the
indexed angular velocity representation are ωa

ab = −ωa
ba

and ωa
ac = ωa

ab + ωa
bc.

The quaternions are a generalization of the complex num-
bers, and the set of quaternions, denoted by H, is defined
as, see Ma et al. [2004]:

H = C + Cj, with j2 = −1

and where the set of complex numbers is defined as
C = R + Ri with i2 = −1. Furthermore, an element of H,
that is a quaternion, is of the form

Q = η + ǫ1i + ǫ2j + ǫ3k

with η, ǫ1, ǫ2, ǫ3 ∈ R and k = ij = −ji. In this paper we
will focus on a subgroup of H, the unit quaternions:

S
3 =

{

Q ∈ H | |Q|
2

= 1
}

. (1)

The unit quaternions (or Euler parameters) can be used
to represent rotation matrices, and this representation
has the advantage of avoiding singularities (as opposed
to rotation matrices represented with Euler angles). We
will in the following use the vector q to represent the
quaternions, with its elements being the real elements of
Q, i.e. q = (η, ǫ) where ǫ = (ǫ1, ǫ2, ǫ3). The rotation matrix
for the unit quaternions is (see Hughes [1986])

R (q) = I3×3 + 2ηS (ǫ) + 2S2 (ǫ) .

Therefore, q and −q represents the same orientation. We
use q̄ to denote the complex conjugate of q, i.e. q̄ = (η,−ǫ).

The quaternion product between two vectors qa = (ηa, ǫa)
and qb = (ηb, ǫb) is defined, see Egeland and Gravdahl
[2002], as

qa ⊗ qb =

[

ηaηb − ǫ⊤a ǫb

ηaǫb + ηbǫa + S (ǫa) ǫb

]

.

We define the matrix

E(q) = ηI3×3 + S(ǫ).

The kinematic differential equation can now be derived as

q̇ =
1

2

[

−ǫ⊤

E (q)

]

ω,

relating the time derivative of the quaternion to the
angular velocity. We will use the notation qab for the
quaternion describing the orientation of a frame Fb relative
to a frame Fa.

Perfect tracking in terms of the quaternion error qdl =
q̄id ⊗ qil, where qid(t) represents a possibly time varying
reference orientation and qid represents the actual orien-
tation, is achived when qdl = (±1, 0, 0, 0).

2.3 Stability Definition

Practical exponential stability properties pertain to pa-
rameterized nonlinear time-varying systems of the form

ẋ = f(t, x, θ) , (2)

where x ∈ R
n, t ∈ R≥0, θ ∈ R

m is a constant parameter
and f : R≥0 × R

n × R
m → R

n is locally Lipschitz in x
and satisfies Carathéodory conditions for any parameter θ
under consideration. θ is a free tuning parameter, and can
for instance be a control gain.

Definition 1. Let ∆ be a positive constant, and let Θ ⊂
R

m be a set of parameters. The system (2) is said to be
uniformly practically exponentially stable on Θ if, given
any δ > 0, there exists a parameter θ⋆(δ) ∈ Θ and positive
constants k(δ) and γ(δ) such that, for any x0 ∈ B∆ and
any t0 ∈ R≥0 the solutions of (2) satisfies, for all t ≥ t0,

|x(t, t0, x0, θ
⋆)| ≤ δ + k(δ) |x0| e

−γ(δ)(t−t0) .

This property is strongly related to its asymptotic homol-
ogous introduced (and commented in detail) in Chaillet
and Loŕıa [2008, 2006]. It is however a stronger property
(though only locally), as it imposes an exponential be-
havior of the solutions in the considered domain of the
state-space. We will also stress that ultimate boundedness
is a weaker property than practical stability. For a system
posessing the latter property, the vicinity of the origin to
which the solutions converge may be made arbitrary small
by convenient tuning of some parameters of the system,
typically the control gains.

2.4 Lyapunov Sufficient Conditions

Sufficient conditions for UPES are given in the following
theorem:

Theorem 1. Let Θ be a subset of R
m, ∆ > 0 and suppose

that, given any δ > 0, there exist a parameter θ⋆(δ) ∈ Θ, a
continuously differentiable Lyapunov function Vδ : R≥0 ×
B∆ → R≥0 and positive constants κ(δ), κ(δ), κ(δ) such
that, for all x ∈ B∆ \ Bδ and all t ∈ R≥0,

κ(δ) |x|
p
≤ Vδ(t, x) ≤ κ(δ) |x|

p
(3)
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∂Vδ

∂t
(t, x) +

∂Vδ

∂x
(t, x)f(t, x, θ⋆) ≤ −κ(δ) |x|

p
, (4)

where p denotes a positive constant. Assume also that

lim
δ→0

κ(δ)δp

κ(δ)
= 0.

Then the system ẋ = f(t, x, θ) introduced in (2) is UPES
on the parameter set Θ.

The following result establishes UPES for systems present-
ing a cascaded structure:

Theorem 2. Under Assumptions 1–3 below, the cascaded
system

ẋ1 = f1(t, x1, θ1) + g(t, x, θ) (5)

ẋ2 = f2(t, x2, θ2) (6)

is UPES on Θ1 × Θ2.

Assumption 1. There exists a continuous function g0 :
R≥0 → R≥0 and, for any θ = (θ⊤1 , θ⊤2 )⊤ ∈ Θ, there exists
a class K function Gθ1

independent of θ2 and such that,
for all x = (x⊤

1 , x⊤
2 )⊤ ∈ B∆1

× B∆2
and all t ∈ R≥0,

|g(t, x, θ)| ≤ g0(|x1|)Gθ1
(|x2|) .

Assumption 2. Let ∆ be a positive number. Given any
δ1 > 0, there exists a parameter θ⋆

1(δ1) ∈ Θ1, a con-
tinuously differentiable Lyapunov function Vδ1

: R≥0 ×
B∆1

→ R≥0 and positive constants κ(δ1), κ(δ1), κ(δ1),
c(δ1), η(δ1) such that, for all x1 ∈ B∆1

\Bδ1
and all t ∈ R≥0,

κ(δ1) |x1|
p
≤ Vδ1

(t, x1) ≤ κ(δ1) |x1|
p

(7)

∂Vδ1

∂t
(t, x1) +

∂Vδ1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −κ(δ1) |x1|

p
, (8)

∣

∣

∣

∣

∂Vδ1

∂x1
(t, x1)

∣

∣

∣

∣

g0(|x1|) ≤ c(δ1) + η(δ1) |x1|
p

, (9)

lim
δ1→0

κ(δ1)δ
p
1

κ(δ1)
= 0 (10)

where p denotes a positive constant.

Assumption 3. The system ẋ2 = f2(t, x2, θ2) is UPES on
Θ2.

The proofs are omitted due to the lack of space.

3. MODEL

3.1 Model of Leader Spacecraft

The model for the leader spacecraft is (Hughes [1986]):

q̇il =
1

2

[

−ǫ⊤il
E (qil)

]

ωl
il (11)

Jlω̇
l
il + Cl

(

ωl
il

)

ωl
il = τl + dl (12)

with Jl ∈ R
3×3 being the leader spacecraft inertia matrix,

ωl
il the angular velocity of the spacecraft relative to the

inertial frame, Cl

(

ωl
il

)

= −S
(

Jlω
l
il

)

and τl and dl the
input and disturbance moments on the leader spacecraft,
respectively.

3.2 Model of Follower Spacecraft

The model used for the follower spacecraft is similar to the
one found in Kristiansen et al. [2007], where the model of

the relative attitude in a leader-follower formation can be
written as

q̇lf =
1

2

[

−ǫ⊤lf
E (qlf )

]

ωf
lf (13)

Jf ω̇f
lf + Cf (ωf

lf )ωf
lf + nf (ωl

il, ω
f
lf ) = Γa + Γd (14)

with Jf ∈ R
3×3 being the follower spacecraft inertia

matrix, ωf
lf the angular velocity of the follower spacecraft

relative to the leader spacecraft, Cf = −S(Jfωf
lf ) and

nf =(S(Rf
l ωl

il)JfRf
l − JfRf

l J−1
l S(ωl

il)Jl)ω
l
il

(−S(JfRf
l ωl

il) + JfS(Rf
l ωl

il) + S(Rf
l ωl

il)Jf )ωf
lf

Furthermore,

Γa = τf
f − JfRf

l J−1
l τ l

l (15)

and
Γd = df

f − JfRf
l J−1

l dl
l (16)

with τf and df as the input and disturbance moments on
the follower spacecraft, respectively.

Remark 1. Note that the matrices Ci, i ∈ {l, f} satisfy
the inequalities

|Ci (a) b| ≤ |Ji| |a| |b|

and are linear in their arguments, i.e.

Ci (φ1a + φ2b) = φCi (a) + φCi (b)

for any vectors a, b ∈ R
3 and any constants φ1, φ2 ∈ R.

3.3 Model Assumptions

We pose the following assumption on the spacecraft mod-
els:

Assumption 4. The inertia matrices Ji, i ∈ {l, f} are sym-
metric and positive definite, and satisfy the inequalities

αJi
≤ |Ji| ≤ βJi

with αJi
, βJi

∈ R being positive constants.

Assumption 5. The disturbance moments di, i ∈ {l, f} are
bounded

|di| ≤ βdi

with βdi
∈ R being positive constants. Furthermore, we

assume that
|τl + dl| ≤ β(τl+dl)

with β(τl+dl) being a positive constant.

4. CONTROLLER-OBSERVER DESIGN

4.1 Leader Spacecraft

The desired angular velocity of the leader spacecraft is
usually given with reference to the inertial frame as ωi

id.
In the leader spacecraft frame, it is

ωl
id = Rl

iω
i
id

where as its time derivative is

ω̇l
id = Ṙl

iω
i
id + Rl

iω̇
i
id

= −S
(

ωl
il

)

ωl
id + Rl

iω̇
i
id

We see that to evaluate the derivative we need to know
the actual velocity of the leader spacecraft ωl

il, so we will
therefore use the modified acceleration vector

ad = −S
(

ωl
id

)

ωl
id + Rl

iω̇
i
id

= Rl
iω̇

i
id (17)

Let us assume the following:
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Assumption 6. The desired angular velocity and the de-
sired angular acceleration of the leader spacecraft are
bounded, i.e.

∣

∣ωl
id

∣

∣ ≤ βωl
id

and
∣

∣ω̇l
id

∣

∣ ≤ βω̇l
id

.

The following controller-observer scheme is the same as in
[Caccavale and Villani, 1999, Theorem 1]:

Controller 1. Let the control law be

τ l
l = Jlar + Cl(ωo)ωr + kv(ωr − ωo) − kpǫdl (18)

ar = ad −
1

2
λdE(qde)ωde (19)

ωr = ωl
id − λdǫde (20)

ωo = ωl
ie − λeǫel (21)

with kv, kp, λe, λd ∈ R constants to be defined, ǫdl as the
vector part of the quaternion product qdl = q̄id⊗qil, ǫde as
the vector part of qde = q̄id ⊗ qie, ǫel and ηel as the vector
and scalar part of qel = q̄ie ⊗ qil, respectively, ωl

de = ωl
ie −

ωl
id and E(qde) = ηdeI + S(ǫde). Here, qid represents the

orientation of the desired frame, qie the orientation of the
estimated frame, and finally qil the actual orientation of
the leader spacecraft, all relative to the inertial frame. Let
the observer be

ż = ar + J−1
l (lpǫel − kpǫdl + lvλeηelǫel) (22)

ωl
ie = z + λeǫel + 2J−1

l lvǫel (23)

with lv, lp ∈ R constants to be defined.

Let us first define the sliding variables

σd = ωl
il − ωr (24)

= ωl
dl + λdǫde (25)

and

σe = ωl
il − ωo (26)

= ωl
el + λeǫel (27)

Define η̃dl := 1 − ηdl and η̃el := 1 − ηel. Let x2 :=
(σd, η̃dl, ǫdl, σe, η̃el, ǫel). The error dynamics can be written
on state space form ẋ2 = f2 (t, x2, θ2), where

f2 (t, x2, θ2) =

















J−1
l ξ3

1

2

[

ǫ⊤dl

E (qdl)

]

ωl
dl

J−1
l ξ4

1

2

[

ǫ⊤el

E (qel)

]

ωl
el

















(28)

with

ξ3 = − Cl(ω
l
il)σd − kvσd − kpǫdl + kvσe − Cl(σe)ωr

− JlS
(

ωl
ld

)

ωl
id + dl (29)

ξ4 = − (lvE(qel) − kvI)σe − lpǫel − kvσd − Cl(σe)ωr

− Cl(ω
l
il)σd + dl (30)

Remark 2. Note that we have chosen to characterize per-
fect tracking in terms of the quaternion error to when
ηdl = +1 and ηel = +1, cf. the discussion about perfect
tracking in Section 2.2. We could just as well have used
ηdl = −1 and ηel = −1, or both - that is, defined tracking
error in terms of the scalar part of the quaternion product
as 1 − |ηdl| and 1 − |ηel|. Throughout the literature it has
been common to use the signum function in the control
law for efficient maneuvers. Such an approach would not
fit our framework, since this would violate the assump-
tion of our system to be locally Lipschitz and satisfy the

Charathéodory conditions. A thorough analysis of stability
with respect to sets using discontinuous Lyapunov func-
tions can be found in Fragopoulos and Innocenti [2004].

Proposition 3. Let Assumption 4, 6 and 5 hold. Then, the
system ẋ2 = f2 (t, x2, θ2) is UPES.

Proof . The proof is mostly similar to the proof of [Caccav-
ale and Villani, 1999, Theorem 1]. Consider the positive
definite Lyapunov function candidate

V2 =
1

2
σ⊤

d Jlσd + kp((1 − ηdl)
2 + ǫ⊤dlǫdl)

+
1

2
σ⊤

e Jlσe + lp((1 − ηel)
2 + ǫ⊤elǫel)

Following the steps of the proof of [Caccavale and Villani,
1999, Theorem 1] we find that the time derivative of the
Lyapunov function candidate along the error dynamics are

V̇2 = − kvσ⊤
d σd − kpλdηelǫ

⊤
dlǫdl + kpλdηdlǫ

⊤
elǫdl

− σ⊤
d C(σe)ωr + σ⊤

d JlS(ωl
ld)ω

l
id

− (lvηel − kv)σ⊤
e σe − lpλeǫ

⊤
elǫel

− σ⊤
e C(σe)ωr − σ⊤

e C(ωl
il)σd

From Remark 1 we have that |Cl(a)b| ≤ βJl
| |a| |b| and we

see that the following inequalities hold:

σ⊤
d C(σe)ωr ≤

1

2
βJl

(|σd|
2

+ |σe|
2
)(
∣

∣ωl
dl

∣

∣+ βωl
id

+ |σd|)

σ⊤
e C(ωl

il)σd ≤
1

2
βJl

(|σd|
2

+ |σe|
2
)(
∣

∣ωl
dl

∣

∣+ βωl
id

)

σ⊤
e C(σe)ωr ≤ βJl

|σe|
2
(
∣

∣ωl
dl

∣

∣+ βωl
id

+ |σd|)

σ⊤
d JlS(ωl

ld)ω
l
id ≤ βJl

βωl
id
|σd| (|σd| + λd(|ǫel| + |ǫdl|))

We will in the following use that

|ǫde| ≤ |ǫel| + |ǫdl| (31)

and
∣

∣ωl
dl

∣

∣ ≤ |σd| + λd |ǫde| (32)
After some intermediate calculations we end up with:

V̇2 ≤− (kv − βJl
(λd |ǫde| +

3

2
|σd| + (2 + λd)βωl

id
)) |σd|

2

− (lvηel − kv − 2βJl
(λd |ǫde| + βωl

id
+

7

4
|σd|)) |σe|

2

−
1

2
(kpλdηel − βJl

βωl
id

λd) |ǫdl|
2

−
1

2
(lpλe − βJl

βωl
id

λd) |ǫel|
2

−
1

2

[

|ǫdl|
|ǫel|

]⊤ [

kpλdηel −kpλd

−kpλd lpλe

] [

|ǫdl|
|ǫel|

]

+ (|σd| + |σe|)βdl

Let |x2| ≤ ∆̄2 < 1. Then, for any δ2 ≤ |x2|, we define

k⋆
v := βJl

(

λd +
3

2
∆̄2 + (2 + λd)βωl

id
+

βdl

δ

)

l⋆v :=
1

√

1 − ∆̄2
2

(

kv + 2βJl

(

λd +
7

4
∆̄2 + βωl

id

)

+
βdl

δ

)

k⋆
p :=

βJl
βωl

id
√

1 − ∆̄2
2

l⋆p := max

{

βJl
βωl

id
λd

λe

,
kpλd

λe

√

1 − ∆̄2
2

}

such that with kv > k⋆
v , lv > l⋆v (kv) , kp > k⋆

p and lp >
l⋆p (kp) condition (4) of Theorem 1 is satisfied, provided
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that ηel does not change sign. Note that for the considered
domain of the state space, namely where |x2| ≤ ∆̄2,
V2 is in fact a proper Lyapunov function, i.e. its time
derivative can be bounded as in (4). To see this, let c1

and c2 be positive constants. For |x2| ≤ ∆̄2 we have that
ηel, ηdl > 0, so −c1|ǫdl|

2 ≤ −1/2c1(|ǫdl|
2 + (1 − ηdl)

2)
and −c2|ǫel|

2 ≤ −1/2c2(|ǫel|
2 + (1 − ηel)

2). Condition (3)
is satisfied with Vδ = V2, κ(δ) = min {1/2αJl

, kp, lp},
κ(δ) = max {1/2βJl

, 2kp, 2lp}. Hence, for any x(0) ∈ B∆2
,

where ∆2 :=
√

κ(δ)/κ(δ)∆̄2, we are ensured that ηel does
not change sign. Furthermore,

lim
δ2→0

κ (δ2) δp
2

κ (δ2)
= lim

δ2→0

max { 1
2βJl

, 2kp, 2lp}δ
2
2

min { 1
2αJl

, kp, lp}
= 0

and we can conclude UPES with θ = (kp, lp, kv, lv) as
tuning parameter. �

4.2 Follower spacecraft

In the design and analysis of the follower spacecraft, we
will overline the subscripts to distinguish vectors from the
vectors related to the leader spacecraft. The subscript d̄
denote the desired frame and ē the estimated frame of
follower spacecraft. E.g. ωi

ld̄
will be the desired angular

velocity of the follower spacecraft relative to the leader
spacecraft.

Consider the control law:

Controller 2.

τf
f = Jfar̄ + Cf (ωō)ωr̄ + kv̄(ωr̄ − ωō) − kp̄ǫd̄f (33)

ar̄ = ad̄ −
1

2
λd̄E(qd̄ē)ω

f

d̄ē
(34)

ωr̄ = ωf

ld̄
− λd̄ǫd̄ē (35)

ωō = ωf
lē − λēǫēf (36)

with kv̄, kp̄, λd̄, λē ∈ R positive constants, ǫd̄f as the vector
part of the quaternion product qd̄f = q̄ld̄ ⊗ qlf , ǫd̄ē as the
vector part of qd̄ē = q̄ld̄⊗qlē, ǫēf as the vector part of qēf =

q̄lē⊗qlf , ωf

d̄ē
= ωf

lē−ωl
ld̄

and E(qd̄ē) = ηd̄ēI +S(ǫd̄ē). Here,
the desired orientation of the follower spacecraft relative to
the leader is described by qld̄, the actual orientation of the
follower spacecraft relative to the leader is qlf , and finally
qlē is the estimated orientation of the follower spacecraft

relative to the leader. Since the states ωf
lf and ωl

il are
assumed unknown, we have introduced the acceleration

vector ad̄ = Rf
i ω̇i

ld̄
. Let the observer be

ż = ar̄ + J−1
f (lpǫēf − kpǫd̄f + lv̄λēηēf ǫēf ) (37)

ωf
lē = z + λēǫēf + 2J−1

f lv̄ǫēf (38)

with lv̄ and lp̄ positive constants.

To ease the analysis we will define the variables:

σd̄ = ωf
lf − ωr̄ (39)

= ωf

d̄f
+ λd̄ǫd̄ē (40)

and

σē = ωf
lf − ωō (41)

= ωf
ēf + λēǫēf (42)

Define η̃d̄f := 1 − ηd̄f and η̃ēf := 1 − ηēf . Let x1 :=
(σd̄, η̃d̄f , ǫd̄f , σē, η̃ēf , ǫēf ). We can write the error dynamics
on state space form, as:

ẋ1 = f̃1 (t, x1, θ1) + g̃ (t, x) (43)

ẋ2 = f2 (t, x2, θ2) (44)

where

f̃1 (t, x1, θ1) :=

















J−1
f ξ1

1

2

[

ǫ⊤
d̄f

E
(

qd̄f

)

]

ωf

d̄f

J−1
f ξ2

1

2

[

ǫ⊤ēf

E (qēf )

]

ωf
ēf

















with

ξ1 = − Cf (ωf
lf )σd̄ − kv̄σd̄ − kp̄ǫd̄f + kv̄σē − Cf (σē)ωr̄

+ JfS
(

ωf
lf

)

ωf

ld̄
+ df

f − JfRf
l J−1

l (τ l
l + dl

l)

ξ2 = − (lv̄E(qēf ) − kv̄I)σē − lpǫēf − kv̄σd̄ − Cf (σē)ωr̄

− Cf (ωf
lf )σd̄ + df − JfRf

l J−1
l (τ l

l + dl
l)

g̃ (t, x) :=









−nf (ωl
il, ω

f
lf ) − JfS(ωf

ld̄
)Rf

l ωl
il

0

−nf (ωl
il, ω

f
lf )

0









Finally, f2(t, x2, θ2) is as in (28-30). Since ωl
il = σd −

λdǫde +ωl
id(t) and ωf

lf = σd−λd̄ω
f

ld̄
(t), it may happen that

g̃(t, x) 6= 0 when x2 = 0. For that reason, define g(t, x) :=

g̃(t, x1, x2) − g̃(t, x1, 0) and f1(t, x1, θ1) := f̃(t, x1, θ1) +
g̃(t, x1, 0). Similar arguments as in Remark 2 would apply
to this system. We are now ready to state the following
proposition:

Proposition 4. Let Assumption 4 and 6 hold. Then, the
system ẋ1 = f1(t, x1, θ)+g(t, x), ẋ2 = f2(t, x2, θ) is UPES.

Proof . To prove this proposition we will apply Theorem 2.
We will first prove Assumption 1, i.e. boundedness of the
interconnection term g(t, x). We will in the following use
|S (α) | = |α| and |R| = 1. It can be shown that

|g(t, x)| ≤ a1|x2| + a2|x2|
2 (45)

with a1, a2 being positive constants, independent of x1, x2,
θ1, θ2 and t. Hence, the function g0 and Gθ1

of Assumption
1 can be chosen as

g0(s) = 1 (46)

Gθ1
(s) = a1s + a2s

2 ∀s ≥ 0 (47)

Therefore, Assumption 1 is satisfied. Now we will prove
Assumption 2. Consider the positive-definite Lyapunov
function

V1 =
1

2
σ⊤

d̄
Jfσd̄ + kp̄((1 − ηd̄f )2 + ǫ⊤

d̄f
ǫd̄f )

+
1

2
σ⊤

ē Jfσē + lp̄((1 − ηēf )2 + ǫ⊤ēf ǫēf )

This function satisfies condition (7) of Theorem 2 with
Vδ = V1, p = 2, κ(δ) = min {1/2αJf

, kp̄, lp̄} and
κ(δ) = max {1/2βJf

, 2kp̄, 2lp̄}. Furthermore,

∂V1

∂x1
≤ x⊤

1 Q
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where Q := diag(Jf , 2kp̄I4×4, Jf , 2lp̄I4×4), so
∣

∣

∣

∣

∂V1

∂x1

∣

∣

∣

∣

g0(|x1|) ≤ λM (Q)|x1|.

It will shortly be shown that λM (Q) depends on δ1 through
kp̄ and lp̄. Since any linear function can be upper bounded
by the sum of a quadratic function and a constant, we
conclude that condition (9) is satisfied for some constants
c(δ1) and η(δ1) and p = 2. To prove condition (8), it should
first be noted that there exist positive constants a3, a4

and a5, independent of x1, x2, θ1, θ2 and t, such that for
|x1| ≥ δ1,

∣

∣

∣

∣

∂V1

∂x1
g̃(t, x1, 0)

∣

∣

∣

∣

≤ a3
|x1|

2

δ1
+ a4|σd̄|

2 + a5|σē|
2 (48)

The intermediate calculations have been left out due to
space limitations. Let |x1| ≤ ∆̄1 ≤ 1. For any δ1 ≤ |x1|
the time derivative of the Lyapunov function can be upper
bounded by:

V̇1 ≤−
(

kv̄ − βJf

(

λd̄ +
3

2
∆̄1 + (2 + λd̄)βω

f

ld̄

)

−a4 −
β2

ω
f

ld̄

+ β̃ + a3

δ1

)

|σd̄|
2

−
(

lūηēl − kv̄ − 2βJf

(

λd̄ +
7

4
∆̄1 + β

ω
f

ld̄

)

−a5 −
β̃ + a3

δ1

)

|σē|
2

−
1

2

(

kp̄ηēlλd̄ − λd̄βJf
β

ω
f

ld̄

−
a3

δ1

)

|ǫd̄f |
2

−
1

2

(

lp̄λē − λd̄βJf
β

ω
f

ld̄

−
a3

δ1

)

|ǫēf |
2

−
1

2

[∣

∣ǫd̄f

∣

∣

|ǫēf |

]⊤ [

kp̄ηēlλd̄ −kp̄λd̄
−kp̄λd̄ lp̄λē

] [∣

∣ǫd̄f

∣

∣

|ǫēf |

]

where β̃ := βdf
+ βJf

αJl
β(τl+dl). By defining

k⋆
v̄ :=βJf

(

λd̄ +
3

2
∆̄1 + (2 + λd̄)βω

f

ld̄

)

+ a4 +
β2

ω
f

ld̄

+ β̃ + a3

δ1

l⋆v̄ :=
1

√

1 − ∆̄2
1

(

kv̄ + 2βJf

(

λd̄

7

4
∆̄1 + β

ω
f

ld̄

)

+ a5 +
β̃ + a3

δ1

)

k⋆
p̄ :=

λd̄βJf
β

ω
f

ld̄

+ a3

δ1

λd̄

√

1 − ∆̄2
1

l⋆p̄ := max

{

λd̄βJf
β

ω
f

ld̄

+ a3

δ1

λē

,
kp̄λd̄

λē

√

1 − ∆̄2
1

}

and choosing the control gains such that kv̄ > k⋆
v̄ , lv̄ >

l⋆v̄(kv̄), kp̄ > k⋆
p̄ and lp̄ > l⋆p̄(kp̄) we satisfy condition (8),

provided that x(0) ∈ B∆1
where ∆1 :=

√

κ(δ)/κ(δ)∆̄1.
Since the gains are linearly dependent on 1/δ1

lim
δ1→0

κ (δ1) δp
1

κ (δ1)
= lim

δ1→0

max {1/2βJf
, 2kp̄, 2lp̄}δ

p
1

min {1/2αJf
, kp̄, lp̄}

= 0

holds, and condition (10) is satisfied. Hence, by the same
arguments as in the proof of Proposition 3, all conditions
of Assumption 2 are satisfied. Finally, it is shown in
Proposition 3 that the system ẋ2 = f (t, x2, θ2) is UPES
and the conclusion of Proposition 4 follows. �
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Fig. 1. Orientation and angular velocity tracking error of
the leader spacecraft
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Fig. 2. Orientation and angular velocity estimation error
of the leader spacecraft

5. SIMULATION

The spacecraft inertia matrices were chosen to be Jl =
Jf = diag{6, 7, 8}, where as the input torque were satu-
rated to max {τl} = max {τf} = 20. The disturbances act-
ing on the spacecraft, dl and df , were band-limited white
noise of power 0.1 and sample time of 0.1 acting about all
body frame axis. Examples of disturbances on a spacecraft
orbiting Earth are torques due to gravitational, aerody-
namic and magnetic forces. The initial conditions for the
leader spacecraft model were qil(0) = (1/2, 1/2, 1/2, 1/2)
and ωil(0) = (0.2, 0.3,−0.2), where as the controller
had initial conditions qie(0) = (1/2,−1/2, 1/2,−1/2) and
z(0) = (5, 6, 4) and gains kp = 24, kv = 426, lv = 2700,
lp = 144, λd = 20 and λe = 10. The reference signal
was chosen as ω̇i

id = 0.1 × (sin π
32 t + π

2 , sin π
4 t, sin π

8 t + π
4 ).

Figure 1 shows the orientation and angular velocity track-
ing error of the leader spacecraft. Figure 2 shows the
estimation errors. The follower spacecraft were chosen to
track the orientation and angular velocity of the leader
spacecraft. The initial conditions of the follower spacecraft
model were qlf (0) = (1/2, 1/2, 1/2, 1/2) and ωlf (0) =
(0, 0, 0). The controller initial conditions and gains were
qie(0) = (1/2,−1/2,−1/2, 1/2) and z(0) = (5, 6, 4) and
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Fig. 3. Orientation and angular velocity tracking error of
the follower spacecraft
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ǫēf,3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−50

0

50

Time [s]

A
n
g
.

ve
l.

er
ro

r
[r

a
d
/
s]
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Fig. 4. Orientation and angular velocity estimation error
of the follower spacecraft

kp̄ = kp, kv̄ = kv, lv̄ = lv, lp̄ = lp, λd̄ = λd and λē = λe,
respectively. The gains of the controller and observer were
chosen based on the outcome of the Lyapunov analysis in
the previous sections. Figure 3 and 4 show the simulation
results.

6. CONCLUSION

We have stated a definition for UPES and theorems for
Lyapunov sufficient conditions for a systems to satisfy the
definition. Exponentially stable equilibrium points are well
known for their robustness to disturbances vanishing at the
equilibrium point and their fast convergence rate. With
the new theorems, stability of a neighborhood of such
equilibrium points can be adressed under nonvanishing
perturbations, and by a convenient tuning of parameters
such neighborhoods can be made arbitrarily small, while
still ensuring exponential convergence of the solutions.

The theorems were used to analyze the stability of space-
craft in formation using a cascaded reasoning. Both space-
craft were controlled using knowledge of their orientation
only. Simulations were performed, which support the ro-
bustness results of the stability analysis.
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