
Analysis on Behaviors of Controlled
Quantum Systems via Quantum Entropy

Tomonari Abe, Tomotake Sasaki, Shinji Hara, Koji Tsumura

Department of Information Physics and Computing, The University of
Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

(e-mail: {Tomonari Abe,Tomotake Sasaki,Shinji Hara,Koji Tsumura}
@ipc.i.u-tokyo.ac.jp)

Abstract: In this paper, we investigate the essential properties of finite dimensional
measurement-based quantum feedback control systems using a kind of quantum entropy, or so-
called linear entropy. We show how the terms appear in the stochastic master equation affect the
purity of the conditional density matrix of the system, and clarify a limitation of control action
via Hamiltonian. Moreover, applying the stochastic version of LaSalle’s invariance theorem, we
derive a sufficient condition under which the conditional density matrix converges in probability
to the set of all pure states for any control input. The result shows a class of measurement which
assures preparation of a pure state.
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1. INTRODUCTION
Even after many years from the establishment of quantum
mechanics, investigation on interesting phenomena in mi-
croscopic scale is still active. Moreover, control of quan-
tum systems becomes one of important research topics
in engineering. Recent rapid miniaturization of electronic
devices motivates such research activity, since quantum
mechanical effects cannot be ignored in these cases. An-
other motivation is the theoretical development of quan-
tum technologies, such as quantum computation, quantum
communication or precision metrology using quantum sys-
tems, which achieves high performances beyond the limits
of existing technologies. In recent years, researchers in var-
ious fields such as physics, control theory, or mathematics
collaborate on control of quantum systems [Mabuchi and
Khaneja, 2005].

In general, feedback control is expected to attain robust-
ness for noise or modeling error, and quantum control
using continuous measurement; so-called measurement-
based quantum feedback control , was proposed in 80’s to
early 90’s [Belavkin, 1987, Wiseman, 1994]. Afterward,
the quantum feedback control has been intensively investi-
gated and its effectiveness has been also demonstrated by
experiments [Geremia et al., 2004].

Recently, control theoretic approach to the quantum feed-
back control has achieved great success. For examples,
control laws for a specific class of quantum systems (spin
systems) attaining global asymptotic stabilization of eigen-
states have been proposed by employing techniques of
stochastic control theory [Mirrahimi and van Handel, 2005,
Tsumura, 2006, 2007]. These results have significant im-
portance because spin systems are expected to realize
quantum technologies. On the other hand, it is also impor-
tant to investigate fundamental properties of the quantum
feedback control in general settings. Such investigations

are naturally expected to serve for control law design in
various situations. In this paper, we analyze behaviors of
finite dimensional measurement-based quantum feedback
control systems using the linear entropy (a kind of quan-
tum entropy) as an index to characterize quantum states,
and show the essential properties of the quantum feedback
control. Furthermore, a condition for generating a pure
state is derived using the stochastic version of LaSalle’s
invariance theorem.

This paper is organized as follows. In Section 2 we explain
the basic idea of measurement-based quantum feedback
control, and introduce a stochastic differential equation de-
scribing the systems (stochastic master equation (SME )).
Section 3 is the main part of this paper. In Section 3.1 we
formulate the problems and introduce the linear entropy.
Section 3.2 shows the effects of each term in the SME
with respect to the linear entropy. Section 3.3 is devoted to
derive a condition for generating a pure state. In Section 4,
we clarify a feature of the theorem derived in Section 3.3
by comparing it with related results, which is confirmed by
numerical examples. We summarize the paper in Section 5.

Notation: i: imaginary unit. R: set of all real numbers.
Hn: set of all n × n Hermitian matrices. X∗: Hermitian
conjugate of a complex matrix X. TrX: trace of a complex
matrix X. ‖X‖2(:= (Tr [X∗X])1/2): Hilbert-Schmidt norm
(Frobenius norm) of a complex matrix X. [X,Y ](:= XY −
Y X): commutator of complex matrices X and Y .

2. MEASUREMENT-BASED QUANTUM FEEDBACK
CONTROL AND STOCHASTIC MASTER EQUATION

In this section, we explain the basic idea of measurement-
based quantum feedback control and introduce the stochas-
tic master equation (SME) which describes the control
system. Among several ways to derive the SME [Bouten
et al., 2004], our discussions are based on quantum filtering
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theory pioneered by Belavkin [1987], which is most natural
from control theoretic viewpoints. Note that this paper
only treats finite dimensional quantum systems.

Measurement for a microscopic scale system cannot be
performed without probabilistic back-action. In general,
the alteration of the system caused by the measurement is
too drastic and instantaneous, and it prevents the imple-
mentation of feedback control. A possible way to avoid this
difficulty is measuring the target system indirectly and in
continuous time so that the back-action is suppressed to an
allowable level and real-time (partial) information of the
system is derived. This is the essential idea of continuous
measurement and realized by keeping the target system
interacting with another system (called probe system) such
as laser field and measuring the probe system.

This situation is analogous to that of partially observable
classical stochastic systems. Hence, as in the classical case,
filtering theory for quantum systems, i.e., quantum filter-
ing theory gives a basis for feedback control of quantum
systems under such situations. First, we introduce the
following preliminary to explain the results of quantum
filtering theory.

It is necessary to use a special mathematical framework
to describe probabilistic phenomena in microscopic scale.
In quantum mechanics (or in quantum probability theory),
a probability distribution (probability vector) is replaced
by a density matrix ρ which is positive semidefinite and
unital-trace. Consequently, a conditional probability dis-
tribution (conditional probability vector) is replaced by a
conditional density matrix . We denote the set of all n× n
density matrices by Sn, i.e.,

Sn := {ρ ∈ Hn | ρ ≥ 0, Trρ = 1}. (1)
We also call ρ a quantum state. A quantum state which
satisfies ρ2 = ρ is called a pure state 1 . Pn denotes the set
of all n-dimensional pure states, i.e.,

Pn := {ρ ∈ Sn|ρ2 = ρ}. (2)

Now consider a case that an n-dimensional quantum
system is a control target, and it is measured by homodyne
detection which is one of the methods of continuous
measurement. Let (Ω, F, P ) be the underlying (classical)
probability space and yt be the measurement signal at time
t. Quantum filtering theory shows that the conditional
density matrix ρt ∈ Sn of the target quantum system
obeys the following equation [Belavkin, 1987, van Handel
et al., 2005a,b, Bouten and van Handel, 2006, Bouten
et al., 2007]:

dρt = −iu(t)[H, ρt]dt + D[C]ρtdt

+
√

ηH[C]ρt(dyt −
√

ηTr [(C + C∗)ρt] dt). (3)
This is a quantum analogue of the Wonham filter (finite di-
mensional version of the Kushner-Stratonovich equation).
Here super-operators D[C] and H[C] are defined as follows:

D[C]ρ := CρC∗ − 1
2
C∗Cρ − 1

2
ρC∗C,

H[C]ρ := Cρ + ρC∗ − Tr [(C + C∗)ρ] ρ. (4)
The n × n complex matrix C is determined by the in-
teraction between the target system and the probe sys-
1 Let {λi}n

i=1 be the set of all eigenvalues of ρ ∈ Sn. Note that the
condition ρ2 = ρ is equivalent to the condition λî = 1 for a unique

index î and λi = 0 for i 6= î.

tem. The n × n Hermitian matrix H denotes the control
Hamiltonian and u(t) ∈ R is the control input at time t.
It is assumed that the control law satisfies a regularity
condition [Bouten and van Handel, 2006] ensuring the
solvability of the filtering problem. We denote the set of
all control laws satisfying the regularity condition by U .
The parameter η (0 < η ≤ 1) represents the measurement
efficiency at detector [Jacobs and Steck, 2007] and is called
detector efficiency . The condition η = 1 corresponds to the
measurement without loss (perfect measurement).

The conditional density matrix ρt is calculated by the
equation (3) with measured output yt, and used to de-
termine control input according to a feedback control law
u(t) = u(ρt). This is the basic idea of measurement-based
quantum feedback control, which can be implemented (in
principle) by a computer.

It is assumed in the remainder of the paper that we can
appropriately set the initial value ρ0. Then, stochastic
properties of the innovations process

yt −
√

η

∫ t

0

Tr [(C + C∗)ρs] ds (5)

are those of the standard Wiener process [van Handel
et al., 2005a, Bouten et al., 2007]. Thus, the equation (3)
can be represented as the following matrix-valued Ito type
nonlinear stochastic differential equation:

dρt = −iu(t)[H, ρt]dt + D[C]ρtdt +
√

ηH[C]ρtdwt, (6)

where dwt denotes the standard Wiener increment. This
is known as stochastic master equation (SME) in physics.

A typical experimental setting described by the SME is
a spin system in optical cavity measured by laser and
actuated by magnetic field depicted in Fig. 1. A quantum
dot system measured by quantum point contact is also
described by the SME in [Goan et al., 2001].

Fig. 1. A typical measurement-based quantum feedback
control system.

Basic theoretical issues on the quantum feedback control
are 1) analysis on the behaviors of the solution ρt of the
SME, and 2) design of a feedback control law u(t) = u(ρt)
which makes ρt behave to be desired. This paper focuses
on the analysis problem from a new perspective (refer
[Yamamoto et al., 2005, Sasaki et al., 2006] for some
discussion on the reachability of the SME).
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3. ANALYSIS USING QUANTUM ENTROPY

In this section, we analyze the measurement-based feed-
back control systems using a kind of entropy as an index
to evaluate its behavior.
3.1 Problem Setting

We here formulate the problems to be investigated and
introduce a kind of quantum entropy as an evaluation
index for the problems.

One of the objectives of quantum feedback control is
preparation of particular quantum states which play im-
portant roles in applications, such as quantum informa-
tion processing or precision metrology [van Handel et al.,
2005b]. Although the target quantum states to be prepared
are different in each application, they have a common
feature in general. That is, they should be pure states 2 .
From this viewpoint, a quantum feedback control system
has to guarantee the preparation of a pure state at least.
Hence, important questions are the following:

i) Do the terms of the right hand side of the SME (6)
make ρt approach to or go away from Pn (the set of all
pure states)?

ii) Does ρt converge to Pn?

This paper treats these two questions in general settings,
i.e., without imposing preconditions to n, C, H, u(∈ U)
and η. Essential properties of measurement-based quan-
tum feedback control are clarified through answering these
questions.

We introduce a quantity defined by
SL(ρ) := 1 − Tr

[
ρ2

]
= 1 − ‖ρ‖2

2, (7)
which represents how pure a quantum state is to inves-
tigate the problems stated above. SL(ρ) is called linear
entropy [Breuer and Petruccione, 2002] or impurity, and is
equivalent to the Tsallis entropy of order 2 [Plastino and
Plastino, 1993]. It is easy to see that the linear entropy
satisfies 0 ≤ SL(ρ) ≤ 1, and SL(ρ) = 0 holds if and only if
ρ is a pure state. In addition, SL is obviously continuous
with respect to the Hilbert-Schmidt norm.

According to (6) and the Ito rule (dt2 = 0, dtdwt =
0, dw2

t = dt), we can calculate the increment of SL(ρt)
as follows:

dSL(ρt) = − Tr [dρtρt] − Tr [ρtdρt] − Tr [dρtdρt]
= − 2Tr [(D[C]ρt)ρt] dt − ηTr

[
(H[C]ρt)2

]
dt

− 2
√

ηTr [(H[C]ρt)ρt] dwt. (8)
We consider the questions i) and ii) based on this equation.
Remark . The von Neumann entropy expressed as

S(ρ) := −Tr [ρ log ρ] (9)
is a quantum analogue of the Shannon entropy and is
frequently used in quantum information theory. However,
it is much easier to handle the increment of the linear
entropy than to handle that of the von Neumann entropy.
Thus we use the linear entropy in this paper.

3.2 Effects of Terms in SME

In this subsection, we show the effects of each term in the
SME (6) by analyzing the equation (8) and answer the
question i).
2 This paper focus on the purity of target quantum states rather
than another important feature; entanglement.

Since neither u(t) nor H appear in the equation (8), the
effect of the control input to the purity of the conditional
density matrix is indirect, i.e.,

• Any control input cannot change the purity of the
conditional density matrix directly.

According to the definition of the linear entropy, it can
be transformed into the following geometrical description:
the effect of control input at a point ρ ∈ Sn is restricted to
the tangent hyperplane at the point ρ of the hypersphere
{X ∈ Hn | ‖X‖2 = ‖ρ‖2}. This result is quite natural
or almost obvious because control input affects the target
quantum system via Hamiltonian which causes unitary
evolution. However, it is important to notice this limitation
in the design process for a feedback control law.

The first term in (8) expresses the effect of D[C]ρtdt to the
purity of the conditional density matrix. We can apply the
result of Lidar et al. [2006] to our case. That is, if C is a
normal matrix, or C satisfies CC∗ = C∗C, the following
inequality holds:

−2Tr [(D[C]ρ)ρ] ≥ 0, for all ρ ∈ Sn. (10)
We can interpret this inequality as follows:

• If C is a normal matrix, D[C]ρtdt always causes
undesirable effects for the preparation of a pure state.

In many cases of measurement-based quantum feedback
control, C is a Hermitian matrix and thus a normal matrix.
Consequently, the statement above tells us the negative
effect of D[C]ρtdt in practical situations.

The second term in (8) represents the averaged effect of
H[C]ρtdwt to the purity of the conditional density matrix.
Since the super-operator H[C] maps a Hermitian matrix to
a Hermitian matrix, (H[C]ρ)2 = (H[C]ρ)∗(H[C]ρ) holds.
Thus, we have the following relation:
−ηTr

[
(H[C]ρ)2

]
= −η‖H[C]ρ‖2

2 ≤ 0, for all ρ ∈ Sn. (11)
This inequality implies the following:

• H[C]ρtdwt always yields desirable effects for the
preparation of a pure state on average.

This is a fairly reasonable result because wt is originally
the innovation process (5) and thus H[C]ρtdwt is a term
updating or correcting the conditional density matrix
associated with the measured output.

The above investigations are summarized as follows.
Proposition 1. Any control input cannot change the purity
of the conditional density matrix directly, and H[C]ρtdwt

always yields desirable effects for the preparation of a
pure state on average. Moreover, D[C]ρtdt always causes
undesirable effects for the preparation of a pure state if C
is a normal matrix.

Note that these results were derived without imposing pre-
conditions to n, C, H, u and η (except the regularity of u).
Therefore, we can regard them as fundamental properties
of measurement-based quantum feedback control systems.

3.3 Asymptotic Behavior of Conditional Density Matrix

This subsection focuses on the question ii), i.e., the asymp-
totic behavior of the conditional density matrix. First, we
introduce the following definition of convergence.
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Definition 1. Let Mn be a subset of Hn. An Hn-valued
stochastic process {Xt}t∈[0,∞) is said to converge in prob-
ability to Mn if

lim
t→∞

P

(
{ω ∈ Ω | inf

Y ∈Mn

‖Xt(ω) − Y ‖2} ≥ ε

)
= 0 (12)

holds for arbitrary small ε > 0.

We can show the following result using the stochastic
version of LaSalle’s invariance theorem by Kushner [1967,
1968, 1972] (see also [Mirrahimi and van Handel, 2005]).
Theorem 2. Suppose η (detector efficiency) is equal to 1
and C + C∗ has distinct eigenvalues. Then the solution ρt

of stochastic master equation (6) converges in probability
to Pn (the set of all pure states) for any control law u ∈ U .

We need the following lemma to prove the theorem. In
what follows, A denotes the weak infinitesimal operator
of ρt [Mirrahimi and van Handel, 2005].
Lemma 3. If η is equal to 1, the following relation holds
for any n, C, H, and u ∈ U :

A SL(ρ) ≤ 0, for all ρ ∈ Sn. (13)
Proof . When η is equal to 1, we can see from (8) that

A SL(ρ) = −2Tr [(D[C]ρ)ρ] − Tr
[
(H[C]ρ)2

]
(14)

holds. By substituting definitions of D[C]ρ and H[C]ρ into
(14), we have

A SL(ρ) = −K(ρ), (15)
where

K(ρ) :=Tr [(C + C∗)ρ(C + C∗)ρ]
− 2Tr [(C + C∗)ρ] Tr

[
(C + C∗)ρ2

]
+ (Tr [(C + C∗)ρ])2Tr

[
ρ2

]
. (16)

Setting A := C + C∗, K(ρ) can be described as follows:

K(ρ) = Tr
[
ρ2

] [
Tr [Aρ] −

Tr
[
Aρ2

]
Tr [ρ2]

]2

+
1

Tr [ρ2]

{
Tr [AρAρ] Tr

[
ρ2

]
−

(
Tr

[
Aρ2

])2
}

. (17)

Let B = (Bij) := U∗AU , where U is a unitary matrix
which diagonalizes ρ. In addition, let {λi}n

i=1 be the set of
all eigenvalues of ρ. Note that λi is nonnegative for all i,
since ρ is positive semidefinite. We get the following:

Tr [AρAρ] Tr
[
ρ2

]
−

(
Tr

[
Aρ2

])2

= Tr [U∗AUU∗ρUU∗AUU∗ρU ] Tr
[
ρ2

]
−

(
Tr

[
U∗AUU∗ρ2U

])2

=
∑
i,j

λiλjBijBji

∑
k

λk
2 −

∑
i,j

λi
2λj

2BiiBjj

≥
∑
i,j

λi
2λj

2Bii
2 −

∑
i,j

λi
2λj

2BiiBjj

=
∑
i<j

λi
2λj

2(Bii − Bjj)2 ≥ 0. (18)

Note that B is a Hermitian matrix, and hence Bij = B̄ji

holds (B̄ji is the complex conjugate of Bji). The first
inequality is obvious, because we just drop nonnegative
terms λiλjBijBji = λiλj |Bij |2 (i 6= j).

The first term of (17) is obviously nonnegative, and thus
K(ρ) ≥ 0 and A SL(ρ) = −K(ρ) ≤ 0 holds for any ρ ∈ Sn.

It should be noted that the above discussion does not
depend on n, C, H, nor u. ¤

This lemma shows that if the measurement is perfect, or
η = 1, the entropy of ρt does not increase on average for
any n, C, H and u ∈ U .

We are now ready to prove the theorem.
Proof of Theorem 2 . Let Un be the set of all ρ ∈ Sn

which satisfies A SL(ρ) = 0. As addressed in Lemma 3,
A SL(ρ) ≤ 0 holds in Sn when η is equal to 1. Other
conditions of the stochastic version of LaSalle’s invari-
ance theorem are also satisfied [Mirrahimi and van Han-
del, 2005]. As the conclusion of the stochastic version of
LaSalle’s invariance theorem, ρt converges in probability
to the largest invariant set contained in Un.

We can see from (18) that Bij = 0 (i 6= j) is a necessary
condition for A SL(ρ) = 0. Under this condition, the
diagonal elements of B are the eigenvalues of C + C∗. If
C + C∗ has distinct eigenvalues, A SL(ρ) = 0 is satisfied
if and only if λi = 1 holds for some i, or ρ is a pure state.
This implies that Un is identical to Pn.

Furthermore, according to (8), dSL(ρt)|ρt=ρ = 0 holds if
ρ is a pure state. This means that Pn is an invariant set.
Hence, the largest invariant set contained in Pn (= Un)
is Pn itself. This completes the proof. ¤

Theorem 2 characterizes a class of measurement which
guarantees the preparation of a pure state. Under the
condition of the theorem, feedback control is expected to
attain additional purposes such as

(1) speeding up the convergence of ρt to Pn
3 ,

(2) making ρt converge to a particular pure state.

A feedback control law assuring the convergence to the tar-
get state with an pure initial state, is a possible candidate
for the second purpose, because the conditional density
matrix is expected to become pure after a long time. This
can be a guideline to design feedback control laws.

4. DISCUSSIONS WITH NUMERICAL EXAMPLES

4.1 Comparison with Related Results

We here clarify a feature of the Theorem 2 by comparing
it with related results.

First, we review Theorem 2 by focusing on two aspects,
namely 1) properties of convergence and 2) class of sys-
tems. More specific, 1-a) type of convergence, 1-b) region
of convergence, 2-a) constraints on C, 2-b) constraints on
H and u ∈ U , and 2-c) constraints on η are considered. In
these viewpoints, Theorem 2 is summarized as follows:

◦ Theorem 2:
• 1-a) convergence in probability, 1-b) Pn (the set of

all pure states),
• 2-a) C + C∗ has distinct eigenvalues,

2-b) no constraint, 2-c) η = 1.

3 As seen in Section 3.2, control via Hamiltonian does not change
the purity directly. However, the speed-up of convergence might be
possible in a certain (indirect) way. Combes et al. [2007] discusses
such speed-up using feedback control.
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It should be emphasized that Theorem 2 holds for any
choices of H and u ∈ U . Comparisons with related results
may highlight this feature.

Van Handel et al. investigated basic properties of continu-
ous measurement for a spin (angular momentum) system
in [van Handel et al., 2005a]. In the paper, they showed
that if we only measure a spin system, the conditional
density matrix converges almost surely to one of the eigen-
states 4 . For the same system, Mirrahimi and van Handel
[2005] and Tsumura [2007] considered a control problem
and proposed feedback control laws (a switching type in
the former and a continuous type in the latter) which
attain global stabilization of an arbitrary target eigenstate.

These studies can be reinterpreted as the results stating
convergence properties of ρt in each situation. In order to
compare these studies with Theorem 2, we here describe
them in the same way as follows:

◦ Van Handel et al. [2005a]:
• 1-a) almost sure convergence, 1-b) the set of all

eigenstates,
• 2-a) C is an angular momentum operator 5 ,

2-b) u(t) ≡ 0, 2-c) no constraint.
◦ Mirrahimi and van Handel [2005] and Tsumura [2007]:

• 1-a) almost sure convergence, 1-b) an arbitrary
target eigenstate,

• 2-a) C is an angular momentum operator,
2-b) H is another angular momentum operator
and u is a specific feedback control law, 2-c) no
constraint.

Note that H and u are specified in these studies, while
Theorem 2 holds for general H and u ∈ U .

As addressed in Section 3.2, the entropy is not directly
affected by the control input. The above-mentioned feature
of Theorem 2 is due to this property of the entropy.

4.2 Numerical Examples

We will confirm Theorem 2 by numerical examples, fo-
cusing on the main point of discussions in the previous
subsection, or the irrelevance of the type of control law.

Here we consider a 2-dimensional quantum system. In this
case, it is easy to see that ρ ∈ S2 can be parameterized as

ρ =
1
2

[
1 + z x − iy
x + iy 1 − z

]
, (19)

where x, y, z are real scalars. Furthermore, positive semidef-
initeness of ρ leads to the condition x2+y2+z2 ≤ 1. Thus,
we can identify ρ with a point included in a solid sphere
with unit radius in R3, which is called Bloch sphere. The
surface of the Bloch sphere corresponds to P2 (the set of
all 2-dimensional pure states).

We set C and H as

C =
1
2

(
1 0
0 −1

)
, H =

1
2

(
0 −i
i 0

)
. (20)

4 Eigenstates are specific pure states determined by the measure-
ment.
5 If we assume u(t) ≡ 0, this condition is easily generalized to the
condition “ C∗ = C”.

This C obviously satisfies the condition of Theorem 2. This
setting corresponds to the situation that we measure a
single particle with spin 1/2 by laser in z-direction and
apply a magnetic field in y-direction. Furthermore, we
assume η = 1.

Figure 2 shows the simulated trajectory of ρt in the Bloch
sphere with u(t) ≡ 1, where the initial point of the
simulation is (x, y, z) = (−1/2, 1/2, 1/2). The trajectory
of ρt converges to the surface of the Bloch sphere, i.e., P2.
The convergence is also verified by Fig. 3, which illustrates
the time evolution of SL(ρt). We can see that the entropy
converges to zero, which means that ρt converges to P2.

We have made more simulations with different types of
control law u to confirm the property in Theorem 2.
Figures 4 and 5 respectively illustrate the time evolutions
of SL(ρt) with random piecewise constant input and that
with a feedback control law u(t) = 1 − Tr [ρtρf ], where
ρf = diag[1, 0]. The initial points and the simulated Wiener
processes are same as the first case. We can see that the
values of entropy converge to zero, i.e., the conditional
density matrices also converges to P2 in these cases as
stated in Theorem 2.

Fig. 2. Trajectory of ρt in the Bloch sphere with u(t) ≡ 1.
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Fig. 3. Time evolution of SL(ρt) with u(t) ≡ 1.
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Fig. 4. Time evolution of SL(ρt) with random piecewise
constant input.
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Fig. 5. Time evolution of SL(ρt) with a feedback control
law u(t) = 1 − Tr [ρtρf ].

5. CONCLUSION

In this paper, we have analyzed behaviors of measurement-
based quantum feedback control systems using the linear
entropy as an index. We first made the effects of terms
appearing in the stochastic master equation (6) clear and
clarified a limitation of control action via Hamiltonian.
We have also shown that H[C]ρtdt always yields desir-
able effects for preparation of a pure state and D[C]ρtdt
causes undesirable effects if C is a normal matrix. These
results are fundamental properties of measurement-based
quantum feedback control systems. Furthermore, we have
derived a condition which assures the conditional density
matrix converges in probability to the set of all pure states
for any control input.
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