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Abstract: A common and important problem in business is the determination of inventory
policies for a production system within a changing business environment and market demand. In
this paper, an automatic pipeline feedback order-based production control system (APIOBPCS),
considering a demand with cyclic and stochastic components, is proposed. The dynamics and
delays of the production process are modeled as a pure delay. The control system structure
consists of a PID (Proportional, Integrative and Derivative) controller with an Extended Kalman
Filter-based demand prediction. The main objective of the this dynamic controller is to stabilize
and regulate the inventory levels in function of a desired set-point level. The Extended Kalman
Filter (EKF) estimates the parameters of a Volterra time-series model to forecast future values of
the demand. A control error analysis is also performed for the proposed inventory control system,
in order to obtain bounds for the control errors and to probe its stability. This methodology
is useful to make an appropriate decision about the desired inventory level for a given demand
prediction error. The inventory control system is evaluated by simulations showing a good
performance.

1. INTRODUCTION

An important problem as in business as in manufacturing
is the determination of inventory and transportation poli-
cies for a physical distribution system within a changing
business environment and market demand. Until recently,
production and sales managers used to control inventory
levels by means of two powerful but limited tools: intu-
ition and experience. However, the size and complexity
of modern production and sale operations have grown in
such a way that it is not convenient anymore to regulate
stock levels without having a quantitative assessment of
the involved factors.

Inventories are resources needed for production or com-
mercialization processes, that are kept idle, waiting to be
used when necessary. These resources can be of any kind.
Inventories are used to compensate or regulate the imbal-
ances of the normal sequence of activities in production
and sales processes. In other words, inventories should
have a stabilizing effect on material flow patterns [Disney
and Towill, 2003]. Due to the fact that demand is usu-
ally unknown and stochastic in nature, it is not an easy
task to keep inventories on an appropriate and constant
level. If the set point of the desired level is set too low,
maintenance costs may go down, that is, there is no need
for large storage spaces, the insurance costs decrease, and
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then devaluation costs are lower. However, there persists
the risk of losing sales when demand grows beyond the
expected figures. On the other hand, if the inventory levels
are kept too high, maintenance cost are usually higher due
to the larger volume of resources that are kept in stock,
the larger space required, and the higher devaluation and
maintenance costs. Therefore, an effective supply chain is
managed with an aim at keeping a high level of costumer
satisfaction while minimizing costs and maximizing prof-
its [Rivera and Pew, 2005]. Results of savings achieved
by best-in-class companies, as a result of improving their
supply chain operations, amount 5-6% of sales [Simula-
tionDynamics, 2003].

Although research in this area is not novel, it was only
recently when the control systems community have paid
attention to this topic. This is described thoroughly in
an excellent revision of Ortega and Lin [2004]. Previous
research works have proposed systems to stabilize the in-
ventory level as is the case of John et al. [1994] and Disney
and Towill [2003]. More recently, the works of Grubbström
and Wikner [1996], Samanta and Al-Araimi [2001], and
Rivera and Pew [2005] have explicitly included dynamical
controllers, such as PID, on the supply chain, and have
obtained promising results.

In this paper we apply to the inventory management field
methodologies and tools from the industrial automation
and modern control theory. The present work proposes a
simple dynamical control system whose main objective is
to keep the inventory level at a desired set-point in spite
of fluctuations in the demand, and considering lead times
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of the production system. The controller is based on an
APIOBPCS model, uses a PID controller and estimator
of the demand prediction to keep into a stationary inven-
tory level. Therefore, the inventory level set-point can be
lowered without loosing sales opportunities. It is assumed
that demand signal is constituted by two components:
a cyclic one and a Poisson-like stochastic perturbation.
The demand is predicted by a dual joint EKF [Ljung,
1979, Wan and van der Merwe, 2000], which identifies
the parameters of a Volterra equation used to model it.
Furthermore, a control error analysis is performed for
the proposed inventory control system, in order to obtain
bounds for the control errors and to probe its stability.

2. MODELING THE DYNAMIC OF
PRODUCTION-INVENTORY SYSTEM

The underlaying theory of the open-loop model to describe
the dynamic of inventory system is explained as follow.
The dynamics of an inventory system can be represented
by a difference equation:

I(k + 1) = I(k) + O(k − τ) − D(k) (1)

where, I(k) is the net inventory level, τ represents the order
fulfilment time, O(k−τ) is the prior orders made τ -days
before, and D(k) the demand signal. O(k) is generated by
a reorder policy.

Traditionally, reorder policies have been based on Eco-
nomic Order Quantity (EOQ) approaches, such as the

(ŝ, Ŝ) policy (when the inventory level becomes equal to

or less than ŝ, order up to the level Ŝ). EOQ approaches
are widely used but they are not efficient enough, mainly
because they are static laws and do not have into account
the demand fluctuations.

On the other hand, APIOBPCS models have shown to
perform well, stabilizing the dynamic system and reducing
the bullwhip effect. Bullwhip effect refers to the scenario
where orders to the suppliers tends to have larger fluctua-
tions than sales to the buyer and this distortion propagates
and amplifies itself when going upstream [Disney and Tow-
ill, 2003, Warburton, 2004]. A basic production-inventory
system based on the APIOBPCS scheme has four main
components: the inventory, that can be modeled as an
integrator, the production process, that has been modeled
in this paper as a finite time delay, the reorder policy,
and the demand predictor. In addition, there are four
fundamental information flows [Grubbstöm and Wikner,
1996], namely demand, inventory level, work-in-progress
(WIP), and demand prediction. Most of the order decision
rules are based on one or more of these flows. That is:

O(k) = f [I(k), d̂, WIP ]. (2)

In this work, the demand is supposed to be cyclic, mod-
eling a seasonal demand, adding a stochastic component
given by a Poisson noise. For simplicity, a fixed order
fulfillment time is assumed.

In contrast to the APIOBPCS analyzed by Disney and
Towill [2003], our approach includes in the control loop a
PID controller and the demand prediction is generated by
a joint dual EKF. We call this approach a PID-APIOBPCS
model.

3. DEMAND PREDICTION

3.1 Volterra Models

The demand over time can be thought as a time-series,
represented by a nonlinear autoregressive model. One way
to model it is by means of a Volterra equation. The
finite-dimensional discrete-time Volterra model used in
this paper is a single-input, single-output model, relating
an input sequence {u(k)}, to an output sequence {y(k)}
[Doyle et al., 2002]. This relationship is defined by the
equations:

y(k) = y0 +
N

∑

n=1

γn
M (k) (3)

γn
M (k) =

M
∑

i1=0

· · ·

M
∑

in=0

θn(i1, . . . , in)u(k − i1) · · ·u(k − in)

where y0 and θi are the model parameters. It will be
convenient to introduce the notation V(N,M), where N
denotes the nonlinear degree of the model and M denotes
its dynamic order. In our particular case a V(1,30) model
is used. Changing the name of the input and output
signals, and taking the mentioned values for N and M ,
equation (3) is reduced to:

d̂(k) = d0 +

30
∑

i=1

θid(k − i) (4)

where d0 and θi are the model parameters, d̂(k) is the
actual estimated demand and D(k−1) are past values of
the demand. The values of the unknown parameters will be
found by a Kalman Filter, as shown in the next subsection.

3.2 Joint Extended Kalman Filter

The Kalman filter is characterized by a set of equa-
tions that synthesizes an optimal estimator of predictor-
corrector type in the sense of minimizing the estimate error
covariance P(k). In this particular case, a Joint Extend
Kalman Filter [Ljung, 1979, Wan and van der Merwe,
2000] was used to solve the dual problem of simultaneously
estimating the state and the model parameters θ from the
noisy demand signal. To make the Volterra time-serie into
a Markovian process its necessary to model the demand
given by a the Volterra equation (4) as that given by the
nonlinear auto-regression system (5).

x(k) = F(x(k−1), θ(k−1)) + Bυ(k−1) (5)

y(k) = Cx(k) + η(k)

Then the model is then rewritten as the state space system
given by (6):









x(k)

x(k−1)

...
x(k−M+1)









=











f(x(k−1) . . . , x(k−M), θ)






1 0 0 0

0
. . . 0

...
0 0 1 0













x(k−1)

...
x(k−M)

















+









υ(k−1)

0
...
0









(6)

y(k) = [1 0 · · · 0]x(k) + η(k)

where f(x(k−1) . . . , x(k−M), θ(k−1)) is the Volterra model,
and υ and η are the process and measurement noises
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respectively. The joint EKF approach to determine the
unknown parameters θ consists in augmenting the state
vector x with the parameters vector θ(k). By doing this,

a new state vector z(k) = [xT
(k), θ

T
(k)]

T is obtained. Then,

estimation is done recursively by writing the state-space
equations for the joint state as

[

x(k)

θ(k)

]

=

[

F(x(k−1), θ(k−1))
Iθ(k−1)

]

+

[

B
0

]

υ(k−1)

y(k) = [ 1 0 · · · 0 ]

[

x(k)

θ(k)

]

+ η(k) (7)

and running a EKF on the joint state-space to produce the
simultaneous estimates of the states x(k) and θ. The EKF
equations can be synthesized as follow [Wan and Nelson,
2000]. Initialize with:

ẑ(0) = E[z(0)]

Pz(0)
= E[(z(0) − ˆz(0))(z(0) − ˆz(0))

T ], (8)

where E means the expected value. Then, for k = 1, . . . ,∞,
the time update equations of the EKF are:

ẑ−(k) = F(ẑ(k−1), θ(k−1), υ(k−1))

P−
z(k)

= A(k−1) Pz(k−1)
AT

(k−1) + Rυ (9)

and the measurement update equations are:

Kz

(k) = P−
z(k)

CT
(k)(C(k)P

−
z(k)

CT
(k) + Rn)−1

ẑ(k) = ẑ−(k) + Kz

(k)(y(k) − C(k)ẑ
−
(k)) (10)

Pz(k)
= (I − Kz

(k)C(k))P
−
z(k)

with A =
∂F(z, θ, υ)

∂z

∣

∣

∣

∣

ẑ(k)

In the EKF equations, Pz is the estimate error covariance,
Kz

(k) is the Kalman gain and Rυ and Rη are the process

and measurement noise covariance respectively.

Once the model parameters d0 and θ have been estimated,
they are used together with the model to get a prediction
of on step ahead. This predicted state vector is then used
for the PID-APIOBPCS reorder policy.

4. PID-APIOBPCS-BASED INVENTORY LEVEL
CONTROL

The proposed control law is based on the APIOBPCS,
namely in our case PID-APIOBPCS. APIOBPCS has the
main advantage over the other reorder policies of including
in the decision rule the value of the WIP. A scheme of
the APIOBPCS is shown in Fig. 1, and the reorder policy
equations are given by (11),

O(k) = d̂(k) +
[Iref (k) − I(k)]

Ti
+

[dWIP (k) − WIP (k)]

Tw

(11)

WIP (k) = WIP (k − 1) + O(k) − O(k − τ)

dWIP (k) = Tpd̂(k)

where, d̂(k) is the estimated demand, and Iref (k) is the
inventory level reference. Constants Ti is related to the

time to adjust the inventory level, T̂P is the estimate of
the production lead time, and Tw is the time needed to
adjust the WIP.

Fig. 1. Ordering system incorporating WIP feedback.

On the other hand, the approach of using only a PID as
suggested in Grubbstöm and Wikner [1996], and in Rivera
and Pew [2005] to model an order decision rule does not
involve an explicit forecasting unit to estimate demand.
So, fusing both controllers, it is possible to obtain a new
structure and control law. The proposed control schema
can be seen in Fig. 2.

Fig. 2. Proposed PID-APIOBPCS controller.

O(k) = O(k − 1) + KP [e(k) − e(k − 1)] + KIe(k − 1)+

+KD [e(k) − 2e(k − 1) + e(k − 2)]
(12)

e(k) = (Iref (k) − I(k)) + (dWIP (k) − WIP (k))

WIP (k) = WIP (k − 1) + O(k) − O(k − τ)

dWIP (k) = d̂(k)

Equations (12) represent the reorder policy for the PID-
APIOBPCS controller. As it can be seen the reorder policy
involves the same variables as the APIOBPCS method, but
in this case with the advantages of using a PID controller.
The inclusion of a PID is not a capricious choice; according
to Kunreuther [1969], top level managers are found to
act in a three-terms-control mode, similarly to a PID
controller, using memory of past results (integral term),
anticipating trends (derivative term), and as well as a
proportional term for their future decisions.

Therefore, as shown in Fig. 2, the proposed controller has
the basic elements of the APIOBPCS, demand forecast,
and WIP compensation, and the PID controller is used
as a decision rule maker. It is worth to note that, in this
case, the PID actions are physically limited, that is, actions
should not take values above 200 and below to 0. That is
because we assume that the production system saturates
when orders are greater than 200, and orders with negative
values do not have a real meaning for inventory systems.
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5. STABILITY AND CONTROL ERROR ANALYSIS

Stability analysis is a very important goal that must be
satisfied by any control system. One approach to test this
issue is by means of a control error analysis. If control
errors of the closed-loop control system are ultimately
bounded [Salle and Lefschetz, 1961], then the entire system
has stability under a certain perturbation as demand
estimate error.

The analysis is performed by using the Input-Output
transfer function model of the system. Considering the
demand as an input signal, the inventory system is a
Multiple-Input Single-Output (MISO). For the stability
analysis we first consider the control system presented
in Disney and Towill [2003], which structure is shown in
Fig. 1, and modeling the production process as a first order
dynamic system instead of a pure delay.

Therefore, the transfer functions of the closed-loop model
are obtained by applying the superposition theorem [Ogata,
1997, Kuo, 1980]. That is,

GI,Iref
=

1/TiG1Gi

1 + G1Gi1/Ti
; GI,D =

Gi

1 + G1Gi1/Ti
; (13)

GI,D̂ =

(

1 +
T̄p

Tw

)

G1Gi

1 + G1Gi1/Ti
;

where,

G1 =
1

Tps + (1 + Tp/Tw)
and Gi =

1

s
.

In equation (13), GI,Iref
, GI,D̂ and GI,D represents the

transfer functions relating the inventory output (I) to the
desired inventory level (Iref ), the output to the estimated

demand (D̂), and output to the demand (D) respectively.
G1 is just an intermediate auxiliary transfer function.
Then, the system output can be expressed as,

I = 1/TiG1Gi

1+G1Gi1/Ti
Iref − Gi

1+G1Gi1/Ti
D +

(1+T̄p/Tw)G1Gi

1+G1Gi1/Ti
D̂.

(14)

Therefore, by using (14), and after some mathematical
manipulation it is possible to obtain an expression of
the inventory control errors as a function of the demand
estimate error as is shown in (15).

EInv =
Gi

1 + G1Gi1/Ti
EDem −

Gi

1 + G1Gi1/Ti
D̂+

(

1 +
T̄p

Tw

)

G1Gi

1 + G1Gi1/Ti
D̂ −

1

1 + G1Gi1/Ti
Iref . (15)

The maximum error EInv, independently of the values of
EDem, D̂ and Iref , will be achieved when the transfer func-
tion operators have their maximum values. These maxi-
mum values can be obtained by using ∞-Norm (‖ · ‖∞),
defined as ‖H(s)‖∞ = max

ω
|H(jω|), [Vidyasagar, 1993] in

(15). Then, applying norm properties, and taking into ac-

count the values used in the model (Tp = T̂p = Tw = Ti = 1),
(15) can be reduced to (16)

0 5 10 15 20
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||E
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||
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E
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v||

∞

APIOBCS

PID−APIOBCS
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Fig. 3. Errors are bounded

‖EInv‖
∞

≤
∥

∥

Gi
1+G1Gi1/Ti

∥

∥

∞

‖EDem‖
∞

−
∥

∥

Gi
1+G1Gi1/Ti

∥

∥

∞

‖D̂ ‖
∞

+

(16)
∥

∥

∥

(

1+
T̄p
Tw

)

G1Gi
1+G1Gi1/Ti

∥

∥

∥

∞

‖D̂‖
∞

+
∥

∥
1

1+G1Gi1/Ti

∥

∥

∞

‖Iref‖
∞

.

Finally, we can obtain a boundary for the inventory control
errors for the APIOBPCS control system as

‖EInv‖∞ ≤ 2 ‖EDem‖∞ + 1.1533 ‖Iref‖∞ . (17)

A similar procedure can be performed for the proposed
PID-APIOBPCS presented in this work. Resulting,

GI,Iref
=

G1PIDGi

1 + G1PIDGi
; GI,D̂ =

G1PIDGi

1 + G1PIDGi
(18)

GI,D =
Gi

1 + G1PIDGi
;

where,

G1PID =
GPIDGp

1 + GPIDGpTp
; GPID =

Kds
2 + Kps + Ki

s
;

Gp =
1

Tps + 1
and Gi =

1

s
. (19)

Then, the expression of the system output as a function of

signals Iref , D and D̂ is,

I =
G1PIDGi

1 + G1PIDGi
Iref−

Gi

1 + G1PIDGi
D+

G1PIDGi

1 + G1PIDGi
D̂.

(20)

Once again, by taking ∞-Norm and the norm properties,
using typical values for Kp = (30); Kd = (1); Ki = (10);
Tp = 1, and performing the same steps as in the API-
OBPCS case, the equation that relates the demand es-
timate errors to the inventory level errors can be obtained
by

‖EInv‖∞ ≤ 1 ‖EDem‖∞ + 1.0185 ‖Iref‖∞ . (21)

Then, evaluating the expression given by (17) and (21)in a
graphical interpretation is possible to analyze the stability
problem for the inventory control system.

5.1 Main results

As it can be seen in Fig. 3, inventory level errors are
bounded for both cases by the straight line, given by
equations (17) and (21). In inventory models, the desired
inventory level is usually arbitrarily chosen, based on de-
mand requirements and storage capabilities. The equations
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above presented can be used to set the value of the desired
inventory level (the value of the abscise) at an arbitrarily
low value, provided that the out-of-stocks are avoided. In
this figure it is clear that for the APIOBPCS model, the
minimum inventory level must be chosen around 16 units,
while for the PID-APIOBPCS that value can be as low
as 8 units. This is an important aspect in the inventory
problem. In addition, for both cases the inventory level
error is bounded by the demand prediction error, but in
the case of the PID-APIOBPCS, errors in the demand
prediction have less effects on the inventory level. In order
to prevent out-of-stock situations, the desired inventory
level should be used as a design parameter and should be
chosen looking at the prediction error, that is, the higher
this error is, the higher the desired inventory level must be
chosen.

6. SIMULATION RESULTS

To show the feasibility and performance of the proposed
inventory controller, as well as the stability properties
obtained in the preceding theoretical development, a simu-
lation study has been carried out using a Matlab-Simulink
model. The joint Dual Extended Kalman filter was im-
plemented in a Matlab S-Function, using the model given
in (7), and the EKF equations (8), (9) and (10). Parame-
ters Rυ and Rη were used as design parameters, and set
to 10 and 40 respectively.

The time-series model used to approximate the demand
is given by Eq. (4), and its forecasting is performed by
the EKF. The demand signal was generated by a sum of
sin and cos terms, with different amplitudes, phases and
frequencies. A Poisson noise, with λ = 10, was also added
to the seasonal signals.

For all simulation runs, the inventory level set-point was
set to 20 units, and the PID action limited to a maximum
of 200 units, assuming that this is the capacity of the
production system. In addition, demand signal has been
added with an extra term, representing sudden stochastic
changes on the value of demand.

6.1 EOQ reorder policy

In order to evaluate performance and advantages of using
the proposed PID-APIOBPCS controller, a simulation of a
production-inventory system controlled by the EOQ (ŝ, Ŝ)
policy is compared. Simulation is run for 365 days (one
year), and results are shown in Fig. 4. In general, this is
an acceptable policy for controlling and ideal inventory
production system, but in presence of delays in the pro-
duction line and a variable demand, its good performance
is degraded. Note that in Fig. 4 the EOQ policy is far
from being effective due to inventory level often falls below
zero, meaning that there are many lost sales and, although
the production system is always working at his maximum
capacity, the inventory falls a number of times in stock-out
situations.

6.2 APIOBPCS reorder policy

In this point is presented the APIOBPCS control system
performance. The gain values were all set to one, due to
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Fig. 4. Inventory level using an (ŝ, Ŝ) policy
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Fig. 5. Inventory level for the APIOBPCS method

the fact that those values are related to production and
lead times. Desired inventory level was set to 20. Results
presented in Fig. 5 shown a good performance for this
control system. The inventory level stays stable around 20
units, and compared to the previous case, inventory level
seldom falls below 0. The bullwhip effect is appreciated
in some peaks, caused by abrupt changes in demand, but
they are canceled in around 7 days.

6.3 PID-APIOBPCS reorder policy

Finally, the proposed control system is tested under sim-
ulation. PID parameters were set to KP = 30; KI = 1;
KD = 10. These values give a good response in terms
of dampness and speed. The desired inventory level was,
again, set to 20 units. The results are presented in Fig. 6.
Note in this case that the inventory level is more stable.
Bullwhip effect has diminished a bit compared to the pre-
vious PID and APIOBPCS cases: peaks still exist, but they
are smaller and are canceled in around 5 days. Although
there are some inventory level values below zero, these are
not as many as in the previous analysis. In this case it
is kept an acceptable level of lost sales, and the desired
inventory level should be lower than the EOQ policy, only
a PID controller, or with the APIOBPCS approach.

6.4 Simulation results evaluation

To show the advantage of the proposed controller, the
results for the different controllers are compared follow-
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Fig. 6. Inventory for PID-APIOBPCS controller.

Table 1. Inventory Cost System

Policy / Costs LS costs IL costs Total Cost

(̂s, Ŝ) 80517 12994 93511

PID 8082 4475 12560

APIOBPCS 3357 4405 7762

PID-APIOBPCS 2010 4211 6221

ing the next procedure. Suppose that the inventory cost
function is defined as,

C =

Tf
∑

i=0

{3LSi + 0.3ILi} (22)

where, LSi means Lost Sales and represent the number
of units below zero in the inventory level, and ILi is the
inventory level at any sample time. The first term of the
functional is the cost of lost sales, and represent not only
an economic quantity but also a measure on service quality
and customer satisfaction level. The second one, represent
the cost of inventory daily maintenance. Table 1 shows the
results after applying this cost funcional for each control
system approach, with Tf = 730 = 2 years. Note that
proposed controller, PID-APIOBPCS, shows the lowest
cost. These results agree with the conclusions obtained
from previous experiments, where the PID-APIOBPCS
shows a better performance than the other approaches.

7. CONCLUSIONS

In this paper, an approach and a systematic design
methodology to obtain a reorder policy for inventory sys-
tems based on the APIOBPCS control scheme was pre-
sented. The new reorder policy includes a PID controller
and an estimate of the demand prediction obtained by
using a joint dual EKF. This new approach control is
called PID-APIOBPCS. An explicit evaluation of control
error in terms of the demand prediction error and design
parameters was also performed. To show the practical
feasibility and performance of the proposed control al-
gorithm as well as stability properties obtained in the
present work, a simulation study was carried out for a
simple production-inventory system. The proposed policy
was compared to classical reorder policies such as an (ŝ, Ŝ)
policy, and the APIOBPCS policy. The results show the
practical feasibility and good performance of the proposed
approach to production-inventory systems.

Future research will include more complex models for the
production-inventory systems, such as multiple-echelon
and multiple-products production-inventory systems, and
the inclusion in the design methodology of technics of
optimal control to obtain an optimum operative condition
for the controller, as well as, for the planning of the desired
inventory level. Controllers should also have the possibility
of managing backordering and saturation in a better way.
Improvement on the demand prediction is also a pending
issue.

REFERENCES

S.M. Disney and D.R Towill. On the bullwhip and
inventory variance produced by an ordering policy. The
International Journal of Management Science, 31, 2003.

F. J. Doyle, R. K. Pearson, and B. A. Ogunnaike. Iden-
tification and Control Using Volterra Models. Springer
Verlag, 2002.

R. W. Grubbstöm and J. Wikner. Inventory trigger control
policies developed in terms of control theory. Inter-
national Journal of Production Economics, 45, August
1996.

S. John, M. M. Naim, and D. R. Towill. Dynamic
analysis of a wip compensated decision support system.
International Journal of Manufacturing System Design,
1(4), 1994.

H. Kunreuther. Extensions of bowman’s theory on man-
agerial decision making. Management Science, 15, 1969.

B. C. Kuo. Digital Control Systems. Holt, Rinehart and
Winston, Inc., 1980.

Lennart Ljung. Asymptotic behavior of the extended
kalman filter as a parameter estimator for linear sys-
tems. IEEE Transactions on Automatic Control, AC-24
(1), 1979.

K. Ogata. Modern Control Engineering. Prentice-Hall,
1997.

M. Ortega and L. Lin. Control theory applications to the
production-inventory problem: a review. International
Journal of Production Research, 42(11), 2004.

E. Rivera and M. D. Pew. Evaluating pid control for
supply chain management: A freshman design project.
CDC-ECC ’05. 44th IEEE Conference on Decision and
Control 2005 and 2005 European Control Conference.,
2005.

J. La Salle and S. Lefschetz. Stability by Liapunov’s Direct
Method. Academic Press, 1961.

B. Samanta and S. A. Al-Araimi. An inventory control
model using fuzzy logic. International Journal of Pro-
duction Economics, 73, 2001.

SimulationDynamics. Importance of supply chain manage-
ment. http: //www.simulationdynamics.com /Sc /Sup-
plyChainImportance.htm, 2003.

M. Vidyasagar. Nonlinear Systems Analysis. Prentice-
Hall, 1993.

E. A. Wan and Alex T. Nelson. Dual EKF Methods.
Willey, 2000.

E. A. Wan and R. van der Merwe. The unscented kalman
filter for nonlinear estimation. In Proc. of IEEE Sym-
posium 2000 (AS-SPCC), Lake Louise, Alberta,Canada,
Oct 2000.

R. D. H. Warburton. An analytical investigation of the
bullwhip effect. Production and Operations Manage-
ment, 13(2), 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1874


