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Abstract: This paper is concerned with iterative feedback tuning for Hamiltonian systems.
Hamiltonian systems have a property called variational symmetry which can be used to estimate
the input-output mapping of the variational adjoint for certain input-output mappings of the
systems. Here this property is utilized for estimating the gradient of an optimal control type
cost function with respect to the design parameters of the controllers. This allows one to
obtain an iterative feedback tuning algorithm for Hamiltonian systems which generates the
optimal parameters by iteration of experiments. The proposed algorithm requires less number
of experiments to estimate the gradient and can be used with the iterative learning control
proposed previously. Furthermore, numerical simulations demonstrate the effectiveness of the
proposed method.

1. INTRODUCTION

In the research area on control of physical systems, most
of the existing results focus on feedback stabilization
and related topics such as trajectory tracking control,
output feedback control and so on. They utilize phyisical
properties such as passivity and symmetry for control
effectively (van der Schaft [2000], Ortega et al. [2002],
Fujimoto et al. [2003b]). In those methods, a precise model
of the plant is requred. However, it is quite difficult to
construct a precise model for a given plant and it is always
requred to adjust the design parameters when we design
a control system. Hence it is desired to adjust/generate
a feedback controller or feedforward input by automatic
learning. For this purpose, several methods are proposed.
In control engineering, iterative learning control (Arimoto
et al. [1984], Moore [1993]) and iterative feedback tuning
(Hjalmarsson [2002], De Bruyne et al. [1997]) are well
known. The former method is to generate a feedforward
input to achieve a given desired trajectory by iteration of
experiments and the latter adjusts the design parameter
of the feedback controller via experiments. This paper
is concerned with iterative feedback tuning for physical
systems described by Hamiltonian equations.

The authors have developped an iterative learning con-
trol method for Hamiltonian systems (Fujimoto and Sugie
[2003]). The conventional iterative learning control meth-
ods rely on the problem setting of trajectory tracking
control, and they are not applicable to other problems such
as trajectory generation. On the other hand, the authors’
former result is based on a special property of the plants
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Hamiltonian systems called variational symmetry, and it
is applicable to wilde class of problems described by cost
functions of optimal control type. The purpose of the paper
is to employ the variational symmetry to obtain a iterative
feedback tuning control algorithm.

There are many results reported on iterative feedback tun-
ing. A common control strategy for an iterative feedback
tuning problem is to select a cost function as optimal
control and to adjust parameters of the feedback controller
so that the cost function decreases. In this approach,
the gradient of the cost function with respect to the
parameter is estimated using input-output data. However
this method requres a number of experiments in order
to execute one step optimization in the gradient method
compared with iterative learning control in which one step
requres only one experiment. It is also noted that the num-
ber of parameters to adjust is finite in iterative feedback
tuning whereas the feedforward input to be optimized is
an infinite dimensional signal in iterative learning control.

The present paper is devoted to iterative feedback tuning
for Hamiltonian systems based on variational symmetry.
First of all, a version of variational symmetry of Hamilto-
nian systems which can be used to estimate the gradient
of a cost function of optimal control type. Next a novel
iterative feedback tuning method is constructed based on
it. The proposed method requres less number of exper-
imens compared with the existing results. A numerical
simulation of a 3 mass-spring systems demonstrates the
effectiveness of the proposed method. Since the proposed
algorithm is based on variational symmetry which can be
used for iterative learning control as well, it can be used for
simultaneous learning control with both iterative feedback
tuning and iterative learning control.
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2. PRELIMINARIES

This section briefly refers to preliminary backgrounds.

2.1 Variational symmetry

Our plant is a Hamiltonian system with dissipation Σ with
a controlled Hamiltonian H(x, u, t) as (x1, y) = Σ(x0, u) :



























ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

y = −
∂H(x, u, t)

∂u

T

x1 = x(t1)

(1)

with u, y ∈ Lm
2 (t0, t1). Here the structure matrix J ∈ R

n×n

and the dissipation matrix R ∈ R
n×n are skew-symmetric

and symmetric positive semi-definite, respectively. The
matrix R represents dissipative elements such as friction
of mechanical systems and resistance of electric circuits.
For this system, the following theorem holds. Here the

mapping u 7→ y is denoted by Σx0

or sometimes just Σ
when no confusion arises.

Theorem 1. (Fujimoto and Sugie [2003]) Consider the
Hamiltonian system (1). Fréchet derivative dΣ(x0, u)(·)
of Σ(x0, u) is described by a Hamiltonian system. Suppose
that there exists a nonsingular matrix N ∈ R

n×n satisfying

NJ = −JN, NR = RN (2)
(

N 0
0 I

)

∂2H(x, u, t)

∂(x, u)2
=
∂2H(x, u, t)

∂(x, u)2

(

N 0
0 I

)

. (3)

Then a state-space realization of (dΣ(·))∗ coincide with
a time-reversal version of that of dΣ(·) and they are
described by Hamiltonian systems

dΣ(x0, u) : (x0
v, uv) 7→ (x1

v, yv)






































ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = (J −R)
∂Hv(xv, uv, x, u, t)

∂xv

T

,xv(t0) = x0
v

yv = −
∂Hv(xv, uv, x, u, t)

∂uv

T

x1
v = xv(t1)

(dΣ(x0, u))∗ : (x1
a, ua) 7→ (x0

a, ya)














































ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋa = −(J −R)
∂Hv(xv, ua, x, u, t)

∂xv

T

,

ya = −
∂Hv(xv, ua, x, u, t)

∂ua

T

xv(t1) = −(J −R)Nx1
a

x0
a = −N−1(J −R)−1xv(t0)

with a Hamiltonian

Hv(xv, uv, x, u, t) =
1

2

(

xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

(

xv

uv

)

.

Suppose moreover that, for two inputs v, w ∈ Lm
2 (t0, t1),

the corresponding state trajectories φ(t), ψ(t) ∈ R
n, t ∈

(t0, t1) satisfy

R

(

∂2H(x, u, t)

∂(x, u)2

∣

∣

∣

∣

x=φ
u=v

)

=
∂2H(x, u, t)

∂(x, u)2

∣

∣

∣

∣

x=ψ
u=w

. (4)

Here R is a time reversal operator on (t0, t1).

(R(u))(t) := u(t1 − t), t ∈ (t0, t1)

Then the following relationship holds.

S (dΣ(φ(t0), v))∗ = (dΣ(ψ(t1), w)) S

Here the operator S : R
n × Lm

2 (t0, t1) → R
n × Lm

2 (t0, t1)
is defined by

S(x0, u) := (−(J −R)Nx0,R(u)).

2.2 Iterative learning control

Based on the property in Theorem 1, an iterative learning
control algorithm was derived. We employ a cost function
(functional) of optimal control type Γ(u, y). The gradient
method implies that, if we can obtain the gradient ∇Γu(u)
of Γu(u) := Γ(u,Σ(u)), then the gradient method implies
that the input u should be updated as follows in order to
minimize the cost function.

u(i+1) = u(i) −K(i) ∇Γu(u(i)), i = 0, 1, 2 . . .

Here a positive constant K(i) is called a step parameter
and the subscript (·)(i) denotes the data in the i-th step
of the gradient method. Further, this gradient can be
decomposed as

∇Γu(u) = ∇uΓ(u, y) + (dΣ(u))∗∇yΓ(u, y)

All terms except the variational adjoint (dΣ(u))∗ are
known. In this way, when we want to solve an optimal
control, we need to construct a variational adjoint of the
plant in order to estimate the gradient of the cost function.

Now, Theorem 1 implies that the variational adjoint
(dΣ(u))∗ can be approximated by

(dΣ(u))∗(v) =R(dΣ(u))R(v)

=
1

ǫ
R (Σ(u+ R(ǫv)) − Σ(u)) +

o(ǫ)

ǫ
. (5)

Here o(·) denotes a term satisfying

lim
ǫ→0

o(ǫ)

ǫ
= 0.

The right hand side of Equation (5) can be estimated
by using two set of experiments since it is a function of
two Σ’s. Thus optimal control problem for Hamiltonian
systems to obtain optimal feedforward input can be solved
by iteraion of experiments via variational symmetry. The
purpose of the present paper is to extend this idea to
iterative feedback tuning, as precisely described in the
following sections.

3. ITERATIVE FEEDBACK TUNING BASED ON
VARIATIONAL SYMMETRY

This section provides an iterative feedback tuning algo-
rithm based on variationlal symmetry for Hamiltonian
systems. Whereas iterative learning control produces an
optimal feedforward input based on the input-output data
of experiments, iterative feedback tuning is an algorithm
to adjust finite number of parameters of a feedback con-
troller. Since the number of parameters are finite, we can
construct an learning algorithm based on gradient method
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in whcich a set of data for a finite number of experiments
is required to update the estimation for the parameters. In
the conventional iterative feedback tuning algorithm, e.g.
(Hjalmarsson [2002]), the estimation of the gradient of a
given cost fucntion needs s+1 experiments where s denotes
the number of parameters to be tuned. On the other hand,
the proposed algorithm based on variational symmetry
requres only 3 experiments to estimate the gradient for
any number of parameters contained in the Hamiltonian
function.

3.1 Variational symmetry

Let us consider a feedback system of a Hamiltonian sys-
tem with a generalized canonital transformation (Fujimoto
et al. [2003b]). Since a generalized canonical transforma-
tion is a set of feedback and coordinate transformations
preserving the Hamiltonian structure in Equation (1),
the feedback system has the form as in Equation (1) as
well. Therefore the system parameters of the closed loop
system H(x, u), J and R depend on the the parameters
of the feedback controller to be adjusted. For simplicity,
let us suppose that only the Hamiltonian function H(x, u)
depends on the tuning parameter ρ ∈ R

s. The case where
the other system parameters J and R also depend on the
tuning parameter will be considered later.

Consider a feedback system (1) with a Hamiltonian
H(x, u, ρ) where ρ ∈ R

s is the tuning parameter. Namely,
the dynamics is written as

ẋ = (J −R)
∂H(x, u, ρ)

∂x

T

. (6)

For this dynamics, let us construct the following input-
output map

Σx0,u
ρ : uρ 7→ yρ



















ẋ = (J −R)
∂H(x, u, uρ)

∂x

T

, x(t0) = x0

yρ = −
∂H(x, u, uρ)

∂uρ

T

with uρ, yρ ∈ Ls
2(t

0, t1). Since this map Σρ is a Hamilto-
nian system in the form (1), Theorem 1 implies that it has
variational symmetry.

(dΣx0,u
ρ (uρ))

∗ = R (dΣξ0,w
ρ (wρ)) R

Here ξ0, w, wρ are selected in such a way that the condition
(4) holds. In order to describe the true dynamics of the
closed loop system, we need to select uρ ∈ Ls

2 as constant
with respect to time. To this end, let us introduce a (0-
order) holder

H : R
s → Ls

2(t
0, t1) :

(H(ρ))(t) ≡ ρ, ∀t ∈ (t0, t1)

Then, clearly, the composition map Σ ◦ H(ρ) describe the
dynamics in Equation (6). For this map, let us define the
following operator

ΣH := H∗ ◦ Σρ ◦ H

Then we can prove the variational symmetry of ΣH.

Theorem 2. Consider the Hamiltonian system (1) and
suppose that the assumptions (2), (3) and (4) in Theorem
1 hold. Then the following equation holds.

(dΣx0,u
H

(ρ))∗ = dΣξ0,w
H

(ρ) (7)

Proof. Proof is obtained from direct calculation under the
assumptions (2), (3) and (4).

(dΣx0,u
H

(ρ))∗ = (d(H∗ ◦ Σx0,u
ρ ◦ H(ρ)))∗

= (H∗ dΣx0,u
ρ (H(ρ))H)∗

=H∗ (dΣx0,u
ρ (H(ρ)))∗ H

=H∗ R (dΣξ0,w
ρ (H(ρ))) R H

=H∗ (dΣξ0,w
ρ (H(ρ))) H

= d(H∗ ◦ dΣξ0,w
ρ ◦ H(ρ))

= dΣξ0,w
ρ (ρ)

Here the fourth equality follows from Theorem 1 and the
fifth one is implied by

R H=H

H∗R=H∗R∗ = (R H)∗ = H∗.

This proves the theorem. 2

As in the previous results, this property is called vari-
ationla symmetry. It can be utilized to derive iteration
algorithm for iterative feedback tuning problems.

3.2 Iterative feedback tuning

This subsection is devoted to iterative feedback tuning
based on variational symmetry characterized in Theorem
2. Before stating the result, the following property is
exhibited.

Lemma 3. H∗ is characterized by the following equation.

H∗(y) =

∫ t1

t0
y(t)dt

Proof. The adjoint H∗ satisfies the following equations for
arbitrary ρ ∈ R

s and y ∈ Ls
2.

〈H∗y, ρ〉Rs = 〈y,Hρ〉Ls2

=

∫ t1

t0
ρTy(t)dt

= 〈

∫ t1

t0
y(t)dt, ρ〉Rs

Since the above equation holds for arbitrary ρ and y, the
lemma is true. 2

The investigation given in the previous section derives that
any cost function of the input and output of the operator
ΣH can be minimized by only using input-output data as
in iterative learning control case.

Theorem 2 and Lemma 3 implies that the closed loop
system (6) should be rewritten by ΣH(ρ)

ΣH : ρ 7→ η :















ẋ = (J −R)
∂H(x, u, ρ)

∂x

T

η = −

∫ t1

t0

∂H(x, u, ρ)

∂ρ

T

dt

(8)
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In order to utilize Theorem 2 for iterative feedback tuning,
the cost function to be minimized shoud have a form
Γ(ρ, η).

The gradient of this cost function

Γρ(ρ) := Γ(ρ,ΣH(ρ))

with respect to ρ is given as follows.

〈∇Γρ, dρ〉Rs = 〈∇ρΓ(ρ, η), dρ〉Rs + 〈∇ηΓ(ρ, η), dη〉Ls2
= 〈∇ρΓ(ρ, η) + (dΣH(ρ))∗∇ηΓ(ρ, η), dρ〉Rs

If the assumption in Theorem 2 holds, then the gradient
∇Γρ is given by

∇Γρ(ρ) =∇ρΓ(ρ, η) + (dΣx0,u
H

(ρ))∗∇ηΓ(ρ, η)

=∇ρΓ(ρ, η) + (dΣξ0,w
H

(ρ)) ∇ηΓ(ρ, η) (9)

Here, the partial gradients ∇ρΓ(ρ, η) and ∇ηΓ(ρ, η) are
known (can be obtained by experiments). The Fréchet

derivative dΣξ0,w
H

(ρ) can be obtained as welll by an ap-
proximation

dΣξ0,w
H

(ρ)(ν) =
1

ǫ
dΣξ0,w

H
(ρ)(ǫν)

=
1

ǫ

(

Σξ0,w
H

(ρ+ ǫν)−Σξ0,w
H

(ρ)
)

+
o(ǫ)

ǫ
(10)

as in Equation (5) Once we can obtain the gradient
estimation for the cost function Γ(ρ, η) based on Equations
(9) and (10), the gradient method suggests the following
parameter update law

ρ(i+1) = ρ(i) −K(i)∇Γρ(ρ(i))

= ρ(i) −K(i) ×
(

∇ρΓ(ρ(i), η(i)) + dΣ
ξ0
(i),w(i)

H
(ρ(i)) ∇ηΓ(ρ(i), η(i))

)

≈ ρ(i) −K(i) ×

(

∇ρΓ(ρ(i), η(i)) +
1

ǫ(i)
×

(

Σ
ξ0
(i),w(i)

H
(ρ(i)+ǫ(i)∇ηΓ(ρ(i), η(i)))−Σ

ξ0
(i),w(i)

H
(ρ(i))

))

where K(i) > 0 is the step parameter of the gradient
method and the subsucript (·)(i) denotes the data in the
i-th step of iteration. In each step, we need two more
experiments in order to produce the input-output map

of the operator Σ
ξ0
(i),w(i)

H
. Therefore, the concrete iterative

feedback tuning algorithm reduces to







x0
(3i+1) = ξ0(i)
u(3i+1) = w(i)

ρ(3i+1) = ρ(3i)






x0
(3i+2) = ξ0(i)
u(3i+2) = w(i)

ρ(3i+2) = ρ(3i) + ǫ(i)∇ηΓ(ρ(3i), η(3i))
(11)























x0
(3i+3) = x0

(0)

u(3i+3) = u(0)

ρ(3i+3) = ρ(3i) −K(i)×
(

∇ρΓ(ρ(3i), η(3i)) +
1

ǫ(i)
(η(3i+2) − η(3i+1))

)

Here the condition ξ0(i) and w(i) are chozen such that it

satisfies the condition (4) with the trajectory derived by
the pair x0

(3i) = x0
(0) and u(3i) = u(0) with ρ(3i). How to

select ξ0(i) and w(i) is discussed in (Fujimoto et al. [2003a])

and a concrete algorithm is given for mechanical systems
in the following section.

3.3 Mechanical systems

Let us consider a simple mechanical system of the form

J =

(

0 I
−I 0

)

R=

(

0 0
0 KD

)

x=

(

q
p

)

H(x, u, ρ) =
1

2
pTM(q) p+

1

2
qTKP q − uTq

Here ρ := vec(KP). This system can be obtained by
applyin the following PD feedback to a simple mechanical
system without dissipation.

u = ū−KP q −KD q̇ (12)

Here the PD feedback gains KP and KD are selected such
that the feedback system is asymptotically stable. The
feedback system is depitcted in Figure 1. In the figure, qr

and q̇r are reference signals such that the internal states q
and q̇ will track them.

Fig. 1. Feedback system

In order to produce the trajectory of dΣξ0,w
H

satisfying the
condition (4), we select the reference signals as

qr =R(qold)

q̇r =−R(q̇old)

with the initial states

qr(t0) = qold(t
1)

q̇r(t0) =−q̇old(t
1)

where qold and q̇old denote the data q and q̇ in the previous
step of iteration. That is, they are selected such that the
two state tajectories x = (q, p) and xold = (qold, pold)
satisfy the condition (4) for variational symmetry. Here we

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15681



can regard that the feedforward input ū = w is selected as
follows in this case.

ū = w =KPq
r +KDq̇

r

=KPR(qold) −KDR(q̇old)

Using this idea, the tuning algorithm in Equation (11)
reduces to















q0(3i+1) = q1(3i)

q̇0(3i+1) = −q̇1(3i)

ū(3i+1) = KPR(q(3i)) −KDR(q̇(3i))
ρ(3i+1) = ρ(3i)















q0(3i+1) = q1(3i)

q̇0(3i+1) = −q̇1(3i)

ū(3i+2) = KPR(q(3i)) −KDR(q̇(3i))
ρ(3i+2) = ρ(3i) + ǫ(i)∇ηΓ(ρ(3i), η(3i))

(13)































q0(3i+1) = q0(0)
q̇0(3i+1) = q̇0(0)
ū(3i+3) = u(0)

ρ(3i+3) = ρ(3i) −K(i)×
(

∇ρΓ(ρ(3i), η(3i)) +
1

ǫ(i)
(η(3i+2) − η(3i+1))

)

.

Thus, an iteration algorithm of iterative feedback tuning
for Hamiltonian control systems is obtained.

3.4 General case

In the previous sections, we have derived an iterative
feedback tuning algorithm. Basically, this algorithm is to
adjust the design parameters contained in the Hamiltonian
function H of the closed loop system. However, in general,
the design parameters to be tuned may not be contained
in the Hamiltonian and the matrices J and/or R may
depnend on them. For example, for the mechanical systems
treated in the previous section, we introduced a PD
feedback given in Equation (12). Thought the P feedback
gain KP is contained in the Hamiltonian, the D feedback
gainKD is not. In fact, the disspation matrixR depends on
KD. For the parameters not contained in the Hamiltonian
can be tuned via conventional iterative feedback tuning
method (Hjalmarsson [2002]).

Suppose that the Hamiltonian contains a tuning parameter
ρ ∈ R

s and there is another parameter κ ∈ R
r not in the

Hamiltonian. Then the number of experiments required
for one step iteration of the gradient method in the con-
ventional iterative feedback tuning is 1 + r + s, whereas
that reuqured for the proposed algorithm is 3 + r since
additional r experiments are needed to execute conven-
tonal iterative feedback tuning method in addition to the
3 step given in the algorithm (13). Therefore the proposed
algorithm requres less number of experiments when s > 2.
This analysis is summarized in Table 1. Furthermore, since
the iterative learning control in the authors former result
depends on the very same property, variational symmetry
of Hamiltonian systems, the proposed algorithm can be
applied to simultaneous learning control with iterative
feedback tuning and iterative learning control. In this com-
bined approach, the number of iteration is also reduced.

Table 1. The required number of experimtns in
1 step parameter estimation

Existing Proposed

algorithm algorithm

Number of parameter included

in Hamiltonian system (s) 3

Number of parameter exclude 1 + s + r

from Hamiltonian system (r) r

Required number 1 + s + r 3 + r

4. NUMERICAL EXAMPLE

4.1 Description of the plant

Fig. 2. A mass-spring-damper system

The proposed algorithm is applied to a three degree of
freedom mass-spring-damper system depicted in Figure 2.
This system can be modeled by a Hamiltonian system in
Equation (1) with a Hamiltonian

H(q, p, ρ, u) =

3
∑

i=1

(

1

2mi

p2
i +

ki

2
q2i

)

with q = (q1, q2, q3), p = (p1, p2, p3) and ρ = (k1, k2, k3).
Here ki’s are the spring coefficients and mi’s are the
masses. The variables qi’s and pi’s denote the positions
and the corresponding momentums. Then the dynamics
was described by a Hamiltonian system

(

q̇
ṗ

)

=

(

0 I3
−I3 −diag(d1, d2, d3)

)









∂H

∂q

T

∂H

∂p

T









.

Since this system satisfies the conditions (2) and (3) of
Theorem 1, we can apply the iterative feedback tuning
method characterized in the previous section.

Let us apply the proposed algorithm to the system. Sup-
pose that the spring coefficients are adjustable and tune
them by the proposed method. (It is possible to adjust the
masses mi’s via the proposed method and the dampings
di’s by the existing methods.) The physical parameters
and the design parameters are summarized in Table 2.

Then the output η = (η1, η2, η3) in Equation (8) is given
by

ηi = −

∫ t1

t0

∂H

∂ρi

dt = −

∫ t1

t0
q2i dt

Here let us take a cost function as

Γ(η, ρ) =
3
∑

i=1

(

−
γi

2
ηi +

γi+3

2
ρ2

i

)

=
3
∑

i=1

(

γi

2

∫ t1

t0
|qi|

2dt+
γi+3

2
k2

i

)
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Table 2. Parameters

parameter value

q0
1, q0

2 , q0
3 1.0 [m] Initial position

q̇0
1, q̇0

2 , q̇0
3 0.0 [m/s] Initial velocity

m1 1.0× 102 [kg] Mass 1

m2 1.0 [kg] Mass 2

m3 1.0× 10 [kg] Mass 3

ǫ1(i), ǫ2(i), ǫ3(i) 1.0 A small positive constant

K(i) 5.0× 10−2 Step parameter

γ1 5.0× 106 Coeff. in the cost function

γ2 1.0× 104 Coeff. in the cost function

γ3 5.0× 104 Coeff. in the cost function

γ4 1.0× 10−4 Coeff. in the cost function

γ5 1.0× 10−4 Coeff. in the cost function

γ6 1.0× 10−4 Coeff. in the cost function

t0 0.0 [s] Initial time

t1 0.50 [s] Terminal time

d1, d2, d3 4.0× 10 Damper coefficints

k1 5.0× 103 Initial spring coeff.

k2 3.0× 103 Initial spring coeff.

k3 3.5× 103 Initial spring coeff.

Here the positive constants γi’s (i = 1, 2, . . . , 6) are
selected appropriately as in Table 2.

4.2 Simulations

Under these circumstances, we executed several simula-
tions. Figures 3 and 4 show the result. Figure 3 depicts the
hisotry of the cost function along the iteration. Since the
cost function Γ decreases monotonically, we can conclude
that the learning procedure works well.
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Fig. 3. History of the cost function Γ

Figure 4 shows the responses of the displacement q3’s
during the learning. It depicts the renponses for 8k-th (k =
0, 1, 2, . . .) experiments. The response is oscillatory in the
beginning (the thin dashed lines), and then converges to a
rather smooth trajectory (the thick solid line) eventually.

5. CONCLUSION

This paper propses a new algorithm for iterative feedback
tuning. We have shown a version of variational symmetry
of Hamiltonian systems which can be used for estimating
the gradient of a given cost function. A novel iterative

Fig. 4. Resposes of the position q3’s

feedback tuning method has been developed based on this
property. The proposed method requres less number of
experimens compared with the existing results and can
be applied to simultaneous learning control with both
iterative feedback tuning and iterative learning control.
Furthermore, a numerical simulation of a 3 mass-spring
system has exhibited the efficacy of the proposed al-
torithm.
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