
Dynamic Model Predictive Control
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Abstract: In this paper an alternative approach to model predictive control is presented. In
traditional MPC a finite horizon open loop optimal control problem is solved in each sampling
instance. When uncertainties such as computational delays are present, one can encounter
problems. We propose to parametrize the control sequence in each sampling instant in terms of
a linear feedback controller, i.e. in each sample a dynamic feedback compensator is computed.
Thus, if computational delays are present the control system runs in closed loop, decreasing the
need for ad hoc solutions used in traditional MPC.

1. INTRODUCTION

Model predictive control (MPC), see, e.g. Maciejowski
(1991); Garcia, et al. (1989), has been used by the industry
for several years, e.g. in the chemical industry and other
industries with processes with slow dynamics. The main
reason for the success of MPC is the ability to control
constrained multivariable systems. The MPC controller
often relies on an online solution of a finite horizon optimal
control problem, in each sample. Usually, the optimal con-
trol problem is reformulated as finite dimensional convex
optimization problem. For example, a linear system with
linear constraints on states and control variables and a
quadratic step cost can be formulated as quadratic op-
timization problem. There is a rich class of convex opti-
mization problems which are guaranteed to be solvable in
polynomial time. Even with increasing computer power,
on systems with fast dynamics this might not be fast
enough for the MPC scheme. Since if the system must
be sampled too fast the MPC controller will not be able
to finish its required computations in time. This is one
reason why model predictive control is most successful on
slow processes.

Moreover, in practice the optimization solver can have
quite unpredictable execution times, the computations can
exceed the time of one sample or even a few samples. This
obviously leads to reduced performance of the system and
might even lead to instability. One approach to handle
such problems has been studied in Henriksson, D. (2006),
see also the references therein.

To compensate for such computational delays, a new
approach is presented in this paper. Instead of calculating
an optimal sequence of control inputs, an optimal dynamic
controller is computed in each sampling instance. With the
use of the Youla-parametrization, Youla, et al. (1976a,b),
the MPC problem in its original form can be reformulated
to depend on the parameters of the controller in such a
way that the optimization problem can be solved with
the same complexity as the original problem. Without
computational delays, the resulting dynamic controller can

⋆ Authors are listed in alphabetic order.

be shown to be equivalent with the controller obtained
from the original MPC formulation. Also, with this setup,
when computational time delays occur, there is now a
feedback controller which controls the process. This will
improve performance since the system operates in closed
loop at all times. This is contrary to traditional MPC,
which will operate in open loop.

Work that relate to ours can be found in Lofberg (2003)
where the author studies robust MPC. This approach
was later extended in Goulart, et al. (2006). These two
references consider problems that are similar to the ones
considered in this paper, but our approach is different from
theirs.

The outline of the paper is as follows: In section 2 a
short introduction to traditional MPC is given. The main
contribution of the paper is presented in section 3. The
structure of the controller is described and the MPC
formulation is revised to fit the new structure. Difficulties
that arises when computational delays are introduced, are
treated. Two case studies are presented in section 4. In the
first example a double integrator is studied. In the second
example the method of Dynamic MPC is applied on a
DC–DC converter (for a thorough description of DC–DC
converters see e.g. Wernrud (2008)). In section 5 a short
summary of the required on-line computation needed in
Dynamic MPC is given.

2. TRADITIONAL MPC

Consider the discrete, time-invariant, linear plant P

x(k + 1) = Φx(k) + Γ1w(k) + Γ2u(k)

z(k) = C1x(k) + D11w(k) + D12u(k)

y(k) = C2x(k) + D21w(k)

where u is the control input and w the disturbances.
The z vector are referred to as the controlled output, it
contains those signals that we will include in the system
performance index and those that we will put constraints
on. For example states, tracking errors or control variables.
The output y is the measured output that can be used
for feedback. Notice that we do not allow a direct term
of the control input to y. This is due to the fact that to
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determine u(k), a measurement of y(k) is needed and hence
y(k) cannot depend on u(k).

In model predictive control a finite horizon optimal control
problem is solved in each sample. The cost function is
defined as

V (x(0),u) =

N−1∑

i=0

ℓ(z(i)) + F (x(N)) (1)

where z(i) are the controlled outputs of P when the control
sequence u = (u(0), . . . , u(N −1)) is applied to the system
with initial state x(0). In this paper we assume full state
feedback, and hence the state x(0) is known. Since the
system is time-invariant it can be assumed that the initial
time always is k = 0. The functions ℓ and F are the stage
cost and the terminal cost, respectively. The stage cost ℓ
is assumed to satisfy ℓ(z) ≥ c|z|2. Notice that if a terminal
cost is to be included, it operates on the terminal state.
Other ways of defining the cost function can be found in
Maciejowski (1991).

The objective in MPC is to minimize the cost function
(1) with respect to the control sequence u, subjected
to constraints on both state variables and the control
sequence

min
u∈RN

V (x(0),u)

u(i) ∈ U, 0 ≤ i < N

x(i) ∈ X, 0 ≤ i ≤ N

(2)

where U and X are the sets of allowed control sequences
and states, respectively. To be able to guarantee a unique
optimum, U is usually a convex, compact set and X a
convex, closed set, each with the origin included. When
the optimal control sequence u0 has been determined, only
the first control input u0(0) is applied to the plant P and
the MPC procedure is repeated in the next sample.

Since the plant P is linear, if the stage cost is quadratic
and the sets U and X are convex polytopes (i.e. constraints
on the control sequence and state variables are linear), the
optimization problem becomes convex and can be solved
in a relatively efficient way. Hence it is often suitable to
formulate the problem in such a way.

3. DYNAMIC MPC

The idea of Dynamic MPC, which is presented in this
paper, is similar to traditional MPC. The main goal is to
obtain an optimal control sequence which minimizes a cer-
tain cost function. The difference is that instead of directly
calculate an optimal control sequence in each sample, an
optimal dynamic controller is computed. Moreover, we do
not optimize over the control values directly, instead these
are parametrized via a dynamic compensator which in turn
is linearly parametrized in a finite number of parameters.
Our optimization goal is the same as before, i.e. to solve (2)
in each step. We will give the details below.

3.1 Formulation and Setup

Assuming that P is both stabilizable and detectable, there
exist matrices K and L such that both Φ − Γ2L and
Φ − KC2 are stable. By Youla, et al. (1976a,b); Boyd, et

Observer
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∑ ∑
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u y

er

x̂

+

+

−

−

Fig. 1. Block diagram of the Youla-parametrization used
in the paper

Tzw(z)

Tew(z) Tzr(z)Q(z)

∑
w z

e r

Fig. 2. Block diagram of the Youla-parametrization in the
general form

al. (1991), it is known that the observer based nominal
controller

x̂(k + 1) = Φx̂(k) + Γ2u(k) + Ke(k)

u(k) = r(k) − Lx̂(k)

e(k) = y(k) − C2x̂(k)

(3)

combined with r = Q(z)e for a stable Q(z), gives a
stable system. If Q is viewed as parameter, this is what
is called the Youla-parametrization or Q-parametrization.
A diagram of the system can be found in figure 1.

An important condition in the Youla-parametrization is
that the transfer function Ter ≡ 0, i.e. the transfer function
from r to e is equal to zero. This condition is easily verified
for the system described by P with the controller in (3).
Using this condition, the transfer function of the system
can be expressed as

Gzw(z) = Tzw(z) + Tzr(z)Q(z)Tew(z)

where Tzw(z), Tzr(z) and Tew(z) are the transfer functions
of the system when Q(z) is removed. An illustrative
diagram is found in figure 2.

Since the MPC procedure is performed in each step, and
since the the initial state is changed in every step, care has
to be taken when the initial state of the system does not
equal zero. Consider the system

x(k + 1) = Ax(k) + B1w(k) + B2r(k)

z(k) = C1x(k)

e(k) = C2x(k)

If the system has the initial state x(0) 6= 0 then, at time
k, the outputs are

z(k) = C1{A
kx(0) + B1w} + C1B2r

e(k) = C2{A
kx(0) + B1w} + C2B2r

(4)
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where B1 and B2 are appropriate matrices and w =

[w(0), . . . , w(k − 1)]
T

and r = [r(0), . . . , r(k − 1)]
T
. It

follows from (4) the initial state x(0) should only be
associated with one of the input transfer functions. Since
Ter ≡ 0, the initial state must be associated with the
transfer function for w, i.e. the transfer functions Tzw(z)
and Tew(z).

Consider the plant P with the controller (3) combined with
a Q(z) given by

Q(z) = q0 + q1z
−1 + . . . + qN−1z

−(N−1)

where qj ∈ R
nu×ny . It is clear that the closed loop is affine

in the parameters qj . In fact we shall show in section 5
that given an initial condition x(0), the output at time i
can be written as

z(i) = t(i) + h(i)q (5)

where q contains all the parameters in the filter Q(z).
Consider now the following optimization problem

min
q

V (x(0),q)

u(i) ∈ U, 0 ≤ i < N

x(i) ∈ X, 0 ≤ i ≤ N

(6)

where the cost function is given by

V (x(0),q) =

N−1∑

i=0

ℓ(z(i)) + F (x(N)) (7)

and each z(i) is given by (5).

Remark 1. As mentioned, we consider full state feedback.
Further work involves analysis of the output feedback case.

3.2 Stability

From an optimization point of view the two problems (6)
and (2) are similar, in particular in the standard convex
MPC formulation they are equally easy to solve. Moreover,
these two problems are equivalent from a control point of
view

Theorem 2. Let V ∗

d (x(0)) and u∗

d(i) be the optimal cost
and input trajectory corresponding to problem (6), let
V ∗

s (x(0)) and u∗

s(i) be the optimal solution to (2). Then

V ∗

d (x(0)) = V ∗

s (x(0)), and u∗

d(k) = u∗

s(k), 0 ≤ k ≤ N−1

Proof. Let x∗

s(k), 0 ≤ k ≤ N be the states of P corre-
sponding to the input sequence u∗ = (u∗

s(0), . . . , u∗

s(N −
1)). What has to be shown is that there exists a

Q∗(z) = q∗0 + q∗1z−1 + . . . + q∗N−1z
−(N−1)

such that the system with the controller described by (3)
also produces the input sequence u∗, since if the sequence
is the optimum of (2) then Q∗(z) must be the optimum
of (6).

Let x̃∗(k) = x∗(k) − x̂∗(k), it can be shown that

e∗(k) = C2x̃
∗(k) + D21w(k)

Define e∗k = (e∗(0), . . . , e∗(k)) for 0 ≤ k < N . If we use
u∗

d(k) = r∗(k)−Lx̂∗(k) and r∗ = Q∗(z)e∗, it is easy to see
that Q∗(z) can chosen to satisfy

u∗

d(k) + Lx̂∗(k) = Q∗(z)e∗k
Remark 3. An implication of the theorem is that stability
is insured under the same conditions as for the traditional
MPC with the same cost function and constraints. Such
conditions can be found in e.g. Mayne, et al. (2000).

If constraints on the parameters of Q(z) are included, the
system will be bounded-input bounded-output stable.

Theorem 4. Assume that for the plant P with initial state
x(0), the problem (6) combined with the constraints |qi| ≤
ci, 0 ≤ i ≤ N − 1, is feasible for all times k ≥ 0. The
resulting system when controlling P with Dynamic MPC
is BIBO stable.

Proof. Let Q0
k(z) be the optimal solution to (6) at time

k. As will be seen in section 5

Gzw(z) =

[
A B
Ck Dk

]

where A and B are constant for all times and Ck and
Dk are linearly dependent on the parameters of Q0

k(z).
Since the Youla-parametrization gives stable system, it is
obvious that for bounded inputs w(k) the states x(k) will
be bounded. By the restriction of the parameters of Q0

k(z)
it is also clear that ‖Ck‖2 ≤ c and ‖Dk‖2 ≤ d (for some c
and d), for all k ≥ 0. This gives

‖z(k)‖2 ≤ ‖Ck‖2 · ‖x(k)‖2 + ‖Dk‖2 · ‖w(k)‖2

≤ c‖x(k)‖2 + d‖w(k)‖2

Hence the system is BIBO stable.

Since the Dynamic MPC is equivalent to traditional MPC,
when there are no computational delays, advantages of
Dynamic MPC shows up when such delays are introduced.
Assume that at some time k, the time required to find
the optimal solution to the MPC problem is longer than
the sample time. Not to leave the system uncontrolled, the
optimal solution from the previous time instant k−1 needs
to be used. A straight-forward strategy in traditional MPC
is to let the second control signal in the optimal control
sequence be used as input to the system. This strategy
is relying on open loop control, since the input does not
rely on the current measure of the output. Dynamic MPC
uses feedback to determine each control input. That is,
even though no new optimal solution has been found yet,
this strategy takes into account recent measured outputs
when computing the next input. Hence, deviations of the
measured outputs from the predicted outputs will be taken
into account when the input is determined.

A FIR-filter Q(z) that is not ready at the time interval
it was initially supposed to be optimal for, is in some
sense outdated. Since the filter is optimized for the initial
state at the time instant when the optimization began,
it is most likely not optimal at the current state. To
improve the performance of the system, we can update the
complete controller by simulating it for the time when the
optimization took place. Assume that the filter is delayed
d samples and let umeas(k) be the inputs to the plant and
ymeas(k) be the measured outputs of the plant for the time
during which the filter is being calculated, i.e. 0 ≤ k < d.
Using the representation of the observer in (3), the update
is performed according to

x̂(k + 1) = Φx̂(k) + Γ2umeas(k) + Ke(k)

xQ(k + 1) = AQxQ(k) + BQe(k)

e(k) = ymeas(k) − C2x̂(k)

where AQ and BQ comes from the state space representa-
tion of Q(z). Now x̂(d) and xQ(d) are the updated states
that should be used to initialize the controller.
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4. EXAMPLE

4.1 Double Integrator Example

To illustrate the presented ideas, first an example of the
double integrator will be examined. The double integrator
is

ẋ =

(
0 1
0 0

)
x +

(
0
1

)
u

y = (1 0)x

which is discretized with a sample interval of 0.1s. The
discrete model is set up according to figure 1, such that w
contains the reference value, r, and z contains both y and
the tracking error, r − y. The objective is to minimize the
cost

N∑

k=1

(r(k) − y(k))2 +

N∑

k=1

p · (∆u(k))2

under constraints on the velocity, |x2| ≤ 0.1, and on the
inputs, |u| ≤ 0.3. The position y is to follow the reference
trajectory r = 0.3. ∆u(k) is the difference between the
current and the previous input signal, i.e. ∆u(k) = u(k)−
u(k − 1). The prediction horizon N is set to 30 and the
weight p = 0.3.

As seen by proposition 2, if there is no computational de-
lay, the system will be equivalent to a system controlled by
a traditional MPC controller. The response of the reference
trajectory r = 0.3 is found in 3(a). The corresponding ve-
locity and control input are found in figures 3(b) and 3(c),
respectively.

Now, suppose that there is a constant computational delay
of 5 samples, i.e. if the optimization starts at time k,
the optimum will not be determined and used until time
k+5. Note the a constant computational delay is often not
encountered. Depending on which constraints are active,
the computations in the optimization takes different time
to perform. But varying computational delays will not in
general be different compared to constant delays, assuming
that the controller does not know that the computational
delay is not constant.

If traditional MPC is used to control the process, with the
strategy that for an input sequence u computed for time
k (and is ready to use at k + 5), the input that is used
at time k + i for 5 ≤ i ≤ 9, is u(i). The resulting system
will be unstable and the response to the step r(k) = 0.3
is presented in figure 4(a). The velocity and the applied
control signal are found in figure 4(b) and 4(c).

Now, consider a Dynamic MPC controller. A controller
that is computed during the time interval [k, k + 5] is
used to control the process during the interval [k + 5, k +
9]. Before the controller can be used, at time k + 5,
the controller states must be updated. This is done as
explained in the last section.

In figure 4(d) the trajectory of the system can be found
when the reference of 0.3 is followed. Figure 4(e) shows the
velocity of the system and figure 4(f) the input.

4.2 Buck Converter Example

To give a more realistic example we consider a type of
switch-mode DC–DC converter, called a Buck converter
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(a) The position of the double in-
tegrator
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(b) The velocity of the double in-
tegrator
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0.2

0.25

0.3

0.35

(c) The input to the double inte-
grator

Fig. 3. Plots of the position, velocity and input of the dou-
ble integrator controlled with traditional or Dynamic
MPC, without computational delay.

(see figure 5). Switch-mode converters are used in many
applications such as any kind of power supplies. Due to
the non-linear behaviour, these circuits can be challenging
to control.

The output of the Buck converter is the voltage vo and
the inductor current. The control signal is defined by the
duty cycle u as follows: At each sample time k, u(k) takes
a value in the interval [0, 1], which represents the ratio of
the interval [k, k+1] during which the switch in figure 5 is
in position S1. For the remaining part of the interval the
switch is in position S0. The convention is that the switch
first is in position S1 and then in S0 in the sample interval.
This results in a non-linear model for the circuit

x(k + 1) = Φx(k) + Γ(u(k))

vo(k) =
ro

ro + rc

[rc 1] x(k)

with the states x(k) = [iℓ(k) vc(k)]
T
, where iℓ(k) is the

inductor current and vc(k) the voltage over the capacitor.
For further reference of the Buck converter, see e.g. Wern-
rud (2008).

The reference value of the output voltage vo is set to be 20
V. Due to physical requirements the iℓ has to be less than
2.3 A. The constraint on the duty cycle is 0 ≤ u ≤ 0.9. We
assume that a constant computational delay of 10 samples
is present. The resulting voltage of the Buck converter
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(a) The position of the double in-
tegrator (traditional MPC)
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(b) The velocity of the double in-
tegrator (traditional MPC)

0 5 10 15 20 25 30
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) The input to the double inte-
grator (traditional MPC)

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) The position of the double in-
tegrator (Dynamic MPC)
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(e) The velocity of the double in-
tegrator (Dynamic MPC)
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(f) The input to the double inte-
grator (Dynamic MPC)

Fig. 4. Plots of the results of the double integrator when
controlled with either traditional MPC or Dynamic
MPC, in presence of a constant computational delay
of 5.
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Fig. 5. Synchronous Buck converter.

when controlled with either traditional MPC or Dynamic
MPC, is shown in figure 6.

5. THE ON-LINE OPTIMIZATION PROBLEM

The purpose of this section is to give a brief review of
how to exploit the Youla-parametrization for numerical
computation, see Boyd, et al. (1991, 1988). In particular,
we will show that the computational work required to solve
the Dynamic MPC problem is similar to the work required
in the traditional MPC formulation.

We have seen that the closed loop of any stabilizable linear
system takes the form

Gzw(z) = Tzw(z) + Tzr(z)Q(z)Tew(z)
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(a) Output voltage vo, when tradi-
tional MPC is used.
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(b) Inductor current iℓ, when tra-
ditional MPC is used.
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(c) Duty cycles u, when traditional
MPC is used.
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(d) Output voltage vo, when
Dynamic MPC is used.
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(e) Inductor current iℓ, when
Dynamic MPC is used.
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(f) Duty cycles u, when
Dynamic MPC is used.

Fig. 6. The results when the Buck converter is controlled
with traditional MPC and Dynamic MPC, respec-
tively.

where Tzw(z), Tzr(z) and Tew(z) are stable LTI-systems,
depending only on the plant P and the nominal controller.
Now consider the mapping between wj and zi

Gziwj
(z) = Tziwj

(z) + Tzir(z)Q(z)Tewj
(z)

= Tziwj
(z) +

nu∑

k=1

ny∑

s=1

Qks(z)Tzirk
(z)Teswj

(z)

For the discussion in this section we may assume that
nu = 1 and ny = 1, it is trivial to go from this case to the
general MIMO case. Moreover, we will drop the channel
indices for notational simplicity. Accordingly, we denote
the transfer function for any channel by

Gzw(z) = Tzw(z) + Q(z)Tzr(z)Tew(z)

with scalar transfer functions. The only constraint on the
free parameter Q is that it should be a stable rational LTI
transfer functions, i.e. Q ∈ RH∞. Thus the search space
is infinite dimensional. To do numerical computations we
need to restrict the search to a finite dimensional subspace.
A simple choice is a FIR-base, z−l for 0 ≤ l ≤ N − 1.
Consider the candidate parametrization

Q(z) =
N−1∑

l=0

qlz
−l =

[
AQ BQ

CQ DQ

]

where AQ is the right shift matrix, BQ is the first unit
vector and
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CQ = [q1 q2 ... qN−1] , DQ = q0

Note that AQ and BQ are fixed. Let

Tzr(z)Tew(z) =

[
A B
C D

]

then we can take

H = Q(z)Tzr(z)Tew(z) =




AQ BQC BQD
A 0 B
CQ DQC DQ





=

[
Ã B̃

CQ DQC DQD

]

Finally we define

Tzw(z) =

[
Azw Bzw

Czw Dzw

]

Now, if the input to Gzw is w(0) . . . w(k), z(k) is given by

z(k) = t(k)+ [CQ DQC] (Ãkx0 +

k−1∑

p=0

Ãk−1−pB̃w(p))+DQ

where t(k) is output of Tzw. We can write this more
compact as

z(k) = t(k) + h(k)q

where
q

T = [DQ CQ] = [q0 . . . qN−1]

Also note that a realization of Gzw is given by


Ã 0 B̃
0 Azw Bzw

CQ DQCp Czw Dzw + DQD





5.1 Constraints in time-domain

Recall that the composition of a convex function and a
linear function is a convex function. Let cik for 1 ≤ i ≤ m
be convex functions. Since the controlled output z(k) is a
linear function of the decision variables q, constraints of
the form

cik(z(k)) ≤ 0

are convex in q. If the step cost l(z(k)) is convex the
finite horizon Dynamic MPC problem that we have defined
in this paper can therefore be solved as a static finite
dimensional convex optimization problem.
If the Dynamic MPC problem is formulated with only
time-domain constraints, it is sufficient to use a FIR- filter
to parametrize Q(z). We consider only Q(z)’s such that

Q(z) ∈ span{1, z−1, .., z−(N−1)} ⊂ RH∞

If we choose N larger then the optimization horizon Nh,
non of the terms qjz

−j with Nh ≤ j ≤ N −1 will affect the
achieved optimal cost nor the constraint satisfaction. On
the other hand, if we include frequency-domain constraints
the length of the FIR-filter will in general affect the
outcome.

5.2 Constraints in frequency-domain

Again let c be a convex function. A robustness constraint
of the form

c(Gzw(z)) ≤ W (z), z = eiω, ω ∈ [−π, π]

can be well approximated by restricting the last inequality
to a finite set of points ωi. Each such constraint is convex

in q. Some important frequency-domain constraint can be
treated without the need of gridding. Consider for example
the Bounded Real lemma. It says that if A is stable then

||C(zI − A)−1B + D||∞ < γ

if and only if


AT XA − X AT XB CT

BT XA BT XB − γI DT

C D −γI



 < 0

Note that this inequality is linear in X, C and D. We have
noted that in the realization of Gzw the decision variables
enter only in the C and D matrices, thus frequency domain
peak bounds results in convex constraints.

6. CONCLUSIONS

In this paper a new approach to model predictive control is
developed, Dynamic MPC. It is shown that Dynamic MPC
behaves as traditional MPC if there are no computational
delays present. As computational delays are introduced,
Dynamic MPC can take this into account and can in some
cases stabilize a system where traditional MPC fails to do
so.
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