
Performance and stability analysis of
discontinuous PWA systems by piecing

together PWQ functions

Ravi Gondhalekar ∗ Jun-ichi Imura ∗

∗ Dept. of Mechanical and Environmental Informatics, Tokyo Institute
of Technology, 2-12-1-W8-1 Oo-Okayama, Meguro-ku, Tokyo 152-8552,

Japan. E-mail: {ravi.gondhalekar,imura}@cyb.mei.titech.ac.jp

Abstract: An algorithm for evaluating the cost performance of discontinuous autonomous
discrete-time piecewise affine systems is presented. The algorithm performs reverse reachability
analysis and constructs a piecewise quadratic trajectory cost function over the entire region of
attraction of the origin while explicitly taking into account the exact spatial evolution of the
trajectories and the exact switching structure of the system as a whole. Available explicitly, this
cost function can be integrated in order to evaluate the cost performance of the entire system.
The reverse reachability algorithm is applied to the problem of constructing Lyapunov functions.
The resulting Lyapunov functions are less conservative than other forms of Lyapunov function
commonly used for stability analysis of autonomous discrete-time piecewise affine systems.
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1. INTRODUCTION

Piecewise affine (PWA) systems are useful for their ability
to approximate general nonlinear systems [Sontag (1981)],
and to describe certain classes of hybrid system [Heemels et
al. (2001)]. Furthermore, finite- and infinite-horizon model
predictive control (MPC) laws for constrained, linear and
PWA plants are given explicitly as a PWA function of the
state, resulting in an autonomous PWA closed-loop system
[Borrelli (2003)]. Analysis of PWA systems seems to focus
on two broad areas; (i) the spatial evolution of trajectories,
e.g. reachability and invariance properties [Raković et al.
(2004); Santis et al. (2004)], without explicit reference
to the trajectories’ cost, or (ii) the energy/cost of the
system and the search for Lyapunov functions for stability
and performance analysis, without explicit consideration
of state trajectories [Ferrari-Trecate et al. (2002)].

In Gondhalekar & Imura (2007) the authors introduced a
novel algorithm for the performance analysis of MPC con-
trol laws for constrained linear discrete-time systems. Such
systems equipped with an MPC controller result in contin-
uous autonomous discrete-time PWA closed-loop systems.
‘Performance’ refers to both spatial and cost properties of
closed-loop state trajectories. Spatial properties of interest
are the (N -step) region of attraction of the origin. Cost
properties of interest are the average closed-loop trajectory
cost over the entire region of attraction of the origin. The
algorithm iteratively performs reverse reachability analysis
of the entire PWA partition, starting from a positively in-
variant central set. The reverse simulation is performed on
entire sets, rather than considering individual trajectories.
This is reminiscent of robust simulation methods [Kantner
(1997)]. At each iteration the sets of states which reach
the central set in the same number of steps as the current
iteration are located, and the explicit piecewise quadratic

(PWQ) nominal closed-loop trajectory cost function con-
structed on these sets. The algorithm terminates when no
new states are located, i.e. when all new sets are empty.
The algorithm is not guaranteed to terminate in a finite
number of steps, but if it does the union of all located
sets corresponds to the region of attraction of the origin.
The algorithm determines four valuable parameters; (i) the
region of attraction of the origin, (ii) the N -step regions
of attraction of the origin, (iii) the explicit trajectory cost
function over the entire region of attraction, and (iv) the
explicit sets of states from which all state trajectories
generate exactly the same region switching sequence.

In this paper first the algorithm introduced in Gondhalekar
& Imura (2007) is generalized to discontinuous PWA sys-
tems. To ensure uniqueness of the system and cost func-
tion, each region of the system partition may be defined as
closed, open, or a combination (clopen). This enables the
analysis of discontinuous PWA systems which have no gaps
between regions. Furthermore, by imposing conditions the
algorithm is also generalized to systems where the origin is
not strictly contained within the interior of a single region
(Sections 3/4). In Section 5 two numerical examples are
given. The first demonstrates how both spatial and cost
performance parameters are determined by the proposed
method. The second demonstrates how the method can
be applied when the origin is on the boundary of multiple
regions, and need not be positively invariant.

In the second part of this paper the performance analysis
algorithm is applied to the problem of constructing PWQ
Lyapunov functions for stability analysis of PWA systems
(Section 6). Three common Lyapunov function candidates
are briefly reviewed, and it is explained why the proposed
method generates Lyapunov functions which are less con-
servative than two of them, and possibly all three of them.
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2. PRELIMINARIES

The real number set is denoted by R (R0: non-negative)
and the non-negative integer set by N (N+ := N\0).
The set of consecutive integers {j, . . . , k} is denoted by
Nk

j . Denote by In ∈ {0, 1}n×n the identity matrix, by
0{n,m} ∈ 0n×m the zero matrix and by 0 without sub-
script the zero matrix with dimension deemed obvious by
context. Element j of a vector A is denoted by A[j]. The
vector of entire row j of a matrix A is denoted by A[j,:].
The transpose of matrix A is denoted by AT and the
spectral radius by ρ(A). For matrices A and B of equal
dimension, inequalities A{<,≤,≥, >}B hold component-
wise. For matrix A ∈ Rn×n, A � 0 if and only if xTAx > 0
∀x ∈ Rn\0. The power set of a set X is denoted by 2X. For
a set X ∈ 2Rn

, cX := Rn\X denotes the complement in
Rn, clX the closure, ◦X the interior and Vol : 2Rn → R0,
Vol(X) :=

∫
X dx the volume. A sequence of elements

xi ∈ X ∀i ∈ Nk
j is denoted by {xi ∈ X}ki=j . If the elements’

parent set is obvious by context it is denoted by {xi}ki=j .

Definition 1. A polyhedron P ∈ 2Rn

is defined by a triple
(G, W, D) ∈ Rg×n × Rg × {0, 1}g, g ∈ N+: P(G, W, D)

=

{
x ∈ Rn | ∀l ∈ Ng

1 ,

{
G[l,:]x ≤W[l] if D[l] = 1
G[l,:]x < W[l] if D[l] = 0

}
.

The polyhedron P is defined by g linear inequalities.
Binary vector D indicates whether the inequalities are
strict or not. Polyhedron P may thus be closed, open or
clopen: clP = {x ∈ Rn|G ≤W}, ◦P = {x ∈ Rn|G < W}.
Definition 2. A PWQ function is defined by a collection
of sextets Y = (G,W,D,H,L, C)k ∀k ∈ Q, with set of
region indices Q := NQ

1 , where Q ∈ N+ denotes the total
number of regions of the PWQ partition. Each region is
defined by: Yk := P(Gk,Wk,Dk), Gk ∈ Rσk×n, σk ∈ N+,
Wk ∈ Rσk , Dk ∈ {0, 1}σk . In each region Yk, elements
Hk ∈ Rn×n, Lk ∈ R1×n, Ck ∈ R define a unique quadratic
function fk : Rn → R, fk(x) := xTHkx+Lkx+Ck. The set
Y :=

⋃Q
k=1 Yk is termed the domain of the PWQ function.

Definition 3. A family of PWQ functions is denoted by
Y [p] = (G,W,D,H,L, C)[p]

k ∀k ∈ Q[p], ∀p ∈ P, P = NP
1 ,

where P ∈ N+ is the number of PWQ functions in the
family, and Q[p] is the set of regions in the partition of
PWQ function with index p. The set Ȳ :=

⋃P
p=1 Y[p] is

termed the domain of the family of PWQ functions.

Definition 4. An autonomous discrete-time PWA system
is defined by a collection of octets (G, W, D, A, a,H, L,C)j

∀j ∈ S, with set S := NS
1 of region indices, where S ∈ N+

denotes the total number of regions of the PWA partition.
Each region is defined by: Xj := P(Gj ,Wj , Dj), Gj ∈
Rgj×n, gj ∈ N+, Wj ∈ Rgj , Dj ∈ {0, 1}gj . In each region
Xj the dynamics are given by x(i + 1) = Ajx(i)+aj , with
time step index i ∈ N, state transition matrix Aj ∈ Rn×n

and affine term aj ∈ Rn. Elements Hj ∈ Rn×n, Lj ∈ R1×n

and Cj ∈ R define a quadratic single-step cost function
Lj : Rn → R, Lj(x) := xTHjx + Ljx + Cj . Any two
distinct regions have disjoint interiors: ◦Xj ∩ ◦Xk = ∅ if
j 6= k ∀(j, k) ∈ S× S. The dynamics and cost function are
continuous over common closed boundaries: Ajx + aj =
Akx + ak ∧ Lj(x) = Lk(x) ∀(j, k) ∈ S × S s.t. x ∈ Xj

∧ x ∈ Xk. The set X :=
⋃S

j=1 Xj is termed the system’s
domain. A state trajectory is denoted by {x(i)}ki=j , with
{x(i)}∞i=j termed well-defined if x(i) ∈ X ∀i ∈ N.

Using clopen regions allows to model uniquely defined,
discontinuous PWA systems with no gaps between regions.
Using only closed regions this is not possible without
using switching rules for states in multiple regions. Such
rules cannot be incorporated into the proposed algorithm.
However, the continuity condition of Definition 4 allows to
model continuous portions of discontinuous PWA systems,
or continuous PWA systems, using only closed regions. Not
every uniquely defined PWA system according to other
definitions can be modeled according to Definition 4.

3. PERFORMANCE ANALYSIS PROBLEM

Define the region of attraction of the origin of a PWA
system of Definition 4 as: A := {x ∈ X| limi→∞ x(i) = 0,
x(0) = x}, and the running cost J : X → {R, ∅} of a
trajectory starting from state x: J(x) :=

∑∞
i=0 L (x(i)),

x(0) = x, L (x(i)) = Lj(x(i)) if x(i) ∈ Xj . For a
state x ∈ X which does not result in a well-defined
state trajectory {x(i) ∈ X}∞i=0 we write J(x) = ∅. The
performance analysis problem is then stated as follows:
Problem 5. Determine:
a) Region of attraction of origin: A.

b) Average running cost: J̄ :=
1

Vol(A)

∫
A

J(x)dx.

In order to be able to apply the proposed method to
Problem 5 we make a number of assumptions.
Assumption 6. The PWA partition has a finite number of
regions: S <∞.
Assumption 7. ∀ {x(i) ∈ X}∞i=0 s.t. limi→∞ x(i) = 0
∃(l, j) ∈ N× S, l <∞ s.t. x(i) ∈ Xj ∀i ≥ l.
Remark 8. Assumption 7 states that all state trajectories
which converge to the origin require a finite number of
steps to reach a positively invariant set which either
contains or borders the origin 1 , and that this positively
invariant set must be a subset of or equal to a region of
the PWA partition. This implies that a state trajectory
which converges to the origin makes a finite number of
region switches. Assumption 7 is critical for the proposed
algorithm to work, and is the major limitation to its
application. Entering a positively invariant reach set is
required for initialization of the proposed algorithm. The
finiteness condition l < ∞ could be relaxed. In that case
the proposed algorithm is not guaranteed to terminate
within a finite number of iterations.

Define the set of indices of regions into any one of which all
state trajectories which converge to the origin must pass
into and remain: S0 := {j ∈ S|∃(x(0), l) ∈ X × N, l < ∞
s.t. x(i) ∈ Xj∀i ≥ l}.
Assumption 9.

[
x(i) ∈ Xj ∀i ∈ N ∧ limi→∞ x(i) = 0

]
∀x(0) ∈ Xj ∀j ∈ S0.
Remark 10. Assumption 9 states that regions Xj ∀j ∈ S0

are positively invariant with stable dynamics. If Assump-
tion 7 but not 9 is satisfied, then regions Xj ∀j ∈ S0 can
1 Note that it is not strictly necessary for the region to contain the
origin. Rather, the closure must contain the origin (see Section 5.2).
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be re-partitioned so that Assumption 9 is satisfied. The
resulting system is more complex, i.e. has more regions.
Remark 11. Suppose the origin is contained in the interior
of a single region with stable dynamics: 0 ∈ ◦Xj , ρ(Aj) <
1, aj = 0. If region Xj is not positively invariant then
it can be re-partitioned such that the origin is contained
within the interior of a positively invariant region. Thus,
the proposed approach can always be employed when the
origin is contained in the interior on one region, although
finite termination is not automatically guaranteed.
Assumption 12.
(i) Lj(x) ≥ 0 ∀x ∈ Xj ∀j ∈ S (ii) Cj = 0 ∀j ∈ S0

Remark 13. Assumption 12 implies that the one-step cost
is positive semi-definite, and that Lj(0) = 0 ∀j ∈ S0. The
latter condition ensures that the running cost is finite for
state trajectories which converge to the origin. Note that
this does not imply a zero one step cost at the origin.
Possibly Lj(0) 6= 0 if 0 ∈ Xj . It is possible that j 6∈ S0 for
some Xj 3 0 (see the example in Section 5.2).

Problem 5 is hard to tackle directly. To simplify it,
define the N -step regions of attraction of the origin AN :
A0 :=

⋃
j∈S0

Xj , AN := {x ∈ X|x(N) ∈ A0, x(i) 6∈ A0

∀i ∈ NN−1
0 , x(0) = x} ∀N ∈ N+. The positively invariant

region A0 is called the central set. The state trajectory
from any initial state in AN requires exactly N steps to
reach A0. Clearly

⋃N+1
k=0 Ak ⊇

⋃N
k=0 Ak, as a trajectory

which reaches the central set in N + 1 steps must pass
through the set of states which reach the central set in
N steps. By Assumption 7 there exists an N̂ < ∞ s.t.
AN̂+1 = ∅. Thus A =

⋃N̂
k=0 Ak. The state trajectory from

any initial state within the region A of attraction of the
origin requires at most N̂ steps to reach the central set A0.

The following conceptual algorithm solves Problem 5:
Algorithm 14.

1. Set A0 =
⋃

j∈S0
Xj and compute the explicit PWQ cost

function Y [1] for A0.
2. For N = 1, 2, 3, . . . determine AN and compute the

explicit PWQ cost function Y [N+1] for each AN .
3. Stop when AN = Y[N+1] = ∅. Set N̂ = N − 1. Then

A = Ȳ =
⋃N̂

k=0 Ak.
4. Integrate the explicit PWQ cost function family Y [p]

to find J̄ .

Step 1 is solved by Y [1] = (Gj ,Wj ,Dj ,Hj ,Lj , Cj)j∈S0 :

Gj = Gj , Wj = Wj , Dj = Dj ,
Hj solves AT

j HjAj −Hj + Hj = 0 ,
Lj = Lj(In −Aj)−1 , Cj = 0

 . (1)

Step 2 is solved by the reverse reachability algorithm of
Section 4. For step 3, existence of an N̂ <∞ s.t. AN = ∅
is ensured by Assumption 7. The integration of Step 4 can
be performed numerically, or analytically in simple cases.
Performing step 4 is not discussed in this paper.

4. REVERSE REACHABILITY ALGORITHM

The reverse reachability algorithm proposed here solves
step 2 of Algorithm 14 by repeated use of the following

geometric fact for a PWA system region Xj and PWQ
function region Yk: {x(0) ∈ Xj |x(1) ∈ Yk} = P(Ḡ, W̄, D̄),

Ḡ :=
[

Gj

GkAj

]
, W̄ :=

[
Wj

Wk − Gkaj

]
, D̄ :=

[
Dj

Dk

]
.

The running cost J(x) ∀x ∈ P(Ḡ, W̄, D̄) is given by:

J(x) = Lj(x) + fk(Ajx + aj)

= xTHjx + Ljx + Cj + (Ajx + aj)
THk(Ajx + aj)

+Lk(Ajx + aj) + Ck
= xT

[
Hj + AT

j HkAj

]
x +

[
Lj + 2aT

j HkAj + LkAj

]
x

+
[
Cj + aT

j Hkaj + Lkaj + Ck
]

.

These two results are applied iteratively to construct a
family of PWQ functions Y [p] ∀p ∈ N+. For each p the
domain of Y [p] corresponds to the (p − 1)-step region of
attraction of the origin: Ap−1. Each PWQ function Y [p] in
turn is constructed by using the above two tools for each
combination of PWA system region j ∈ S\S0, and every
region Y[p−1]

k ∀k ∈ NQ[p−1]

1 , where Q[p−1] is the number
of regions of the PWQ function generated the iteration
previously. The algorithm is formalized in Algorithm 15.
Algorithm 15. (Reverse reachability algorithm)

− Initialize : p← 1 , Y
[p]
1 s.t. Eq.(1)

−While Y[p] 6= ∅ Do

− l← 0

− For : k = 1, . . . , Q[p]

− For : j ∈ S\S0

− l ← l + 1

− G[p+1]
l ←

[
Gj

G[p]
k Aj

]
− W [p+1]

l ←
[

Wj

W [p]
k − G

[p]
k aj

]
− D[p+1]

l ←
[

Dj

D[p]
k

]
− H[p+1]

l ← Hj + AT
j H

[p]
k Aj

− L[p+1]
l ← Lj + 2aT

j H
[p]
k Aj + L[p]

k Aj

− C[p+1]
l ← Cj + aT

j H
[p]
k aj + L[p]

k aj + C[p]
k

− End For

− End For

− p← p + 1

−End While

5. NUMERICAL EXAMPLE

5.1 Continuous PWA System: Linear-Quadratic Regulator

The double integrator with sample-period τ = 0.2s,

x(i + 1) =
[

1 0.2
0 1

]
x(i) +

[
0.02
0.2

]
u(i),
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x1

x2
X1

X2

X3

X4

Fig. 1. PWA system partition. 4 regions.

control input u(i), constraints u(i) ∈ {u ∈ R|‖u‖∞ ≤ 1}
∧ x(i) ∈ {x ∈ R2|‖x‖∞ ≤ 2} ∀i ∈ N and running cost
function J(x) =

∑∞
i=0

[
xT(i)x(i)+ uT(i)u(i)

]
, x(0) = x is

considered. The constrained linear-quadratic regulator is
given by the PWA control law of Eq. (2) for the partition
plotted in Fig. 1 with K = −[0.841, 1.546]. Regions X2 and
X3 could be combined into one. The split has been retained
in order to visualize the region switching behavior.

u∗(i) =

{
Kx(i) if x(i) ∈ X1

+1 if x(i) ∈ (X2 ∪ X3)
−1 if x(i) ∈ X4

(2)

The cost functions are defined by: H1 = I2+KTK, L1 = 0,
C1 = 0, Hj = I2, Lj = 0, Cj = 1, ∀j ∈ {2, 3, 4}.
Plotted in Fig. 3 is the PWQ partition of the explicit
running cost function over the entire region of attraction
of the origin: A. In this case A also corresponds to the
maximal positively invariant set. The state trajectories
from two initial states close to the lower bound of the
plot are indicated by black dots. These give an indication
of how all states from one particular region of the PWQ
partition switch into the same destination region.

J̄ = 20.67

1.01× J̄

1.1× J̄

Number of nodes per dimension: M

J̃
(M

)

Fig. 2. Numerical approximation of average cost J̃(M) vs.
number of nodes per dimension M . Exact: J̄ = 20.67.

x1

x2

Fig. 3. PWQ running cost function partition. 76 regions.

The average running cost over the entire region of at-
traction was computed: J̄ = 20.67. Completion of the
reachability algorithm and integration of the explicit PWQ
cost function required about 0.53s and 0.51s, respectively.
Suppose one attempted to approximate the average run-
ning cost by performing simulations from a finite number
of initial states, given by an even grid with M nodes
per dimension. Plotted in Fig. 2 is this numerical ap-
proximation J̃(M) against the number of nodes M per
dimension. The solid, horizontal line denotes the exact
average J̄ . The dashed, horizontal lines indicate an over-
approximation by 1% and 10%. The following result is
obtained: J̄ ≤ J̃(M) ≤ 1.01J̄ ∀M ≥ 131. A grid with
M = 131 corresponds to 1312 = 17, 161 simulations.
Computing J̃(131) required 2 roughly 20.4s.

5.2 Discontinuous PWA System

Consider the following system:

X1 : x(i + 1) = x(i) +
[

0.5
0

]
if

{
−1 ≤ x1 ≤ 0

0 ≤ x2 ≤ 1

X2 : x(i + 1) = x(i) +
[

0
−0.5

]
if

{
0 < x1 ≤ 1
0 ≤ x2 ≤ 1

X3 : x(i + 1) = x(i) +
[
−0.5

0

]
if

{
0 ≤ x1 ≤ 1
−1 ≤ x2 < 0

X4 : x(i + 1) = 0.8I2x(i) if
{
−1 ≤ x1 < 0
−1 ≤ x2 < 0

The system partition is plotted in Figure 4. Region bound-
aries are slightly separated in order to emphasize which
boundaries are closed and which are open. Closed bound-
aries are denoted by solid lines, open ones by dashed lines.
Note that this PWA system is discontinuous, uniquely
defined, has no gaps between regions and that 0 ∈ X1.
Region X4 is positively invariant, and it is easy to verify
that all state trajectories {x(i)}∞i=0 ∀x(0) ∈ X\X4 enter
region X4. This system thus satisfies Assumptions 7 and 9.
The one-step cost function is not relevant for the discussion
below, so for simplicity the details are omitted.
2 Computed using MATLAB. No rigorous attempt was made to
optimize programs used for obtaining run-time results.
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x1

x2

X1 X2

X3X4

Fig. 4. PWA system partition. 4 regions. Solid line: Closed
boundary. Dashed line: Open boundary.

The PWQ running cost function partition is plotted in
Figure 5. No distinction is made between closed and open
boundaries, although the algorithm does properly take this
into account. The cost function is uniquely defined and
has no gaps between regions. Also plotted in Figure 5 are
two state trajectories, from initial states x(0) = 0 and
x(0) = [−0.6, 0.6]T. Of particular interest is the trajectory
starting at the origin. Clearly this system is not stable,
because the origin is not invariant. It is therefore futile
to attempt performance analysis by Lyapunov methods
[Ferrari-Trecate et al. (2002)], because no Lyapunov func-
tion can exists. In a practical sense however, the system is
stable, as all trajectories converge to the origin. Another
point of interest is that the running cost function is discon-
tinuous. Consider the origin. As the origin is not invariant
J(0) > 0. However for x ∈ X4, J(x)→ 0 as x→ 0.

6. STABILITY ANALYSIS PROBLEM

Definition 16. Consider a PWA system of Definition 4 and
functions V : D→ R0, ∆V : D× D→ R, D ∈ 2X, D 3 0:

V (x) > 0 ∀x ∈ D\0 ,

V (0) = 0 ,

∆V (x(0), x(1)) := V (x(1))− V (x(0)) < 0 .

Then V (x) is called a Lyapunov function, D the domain of
V , and the origin of the system is termed Lyapunov stable.

Problem 17. For a PWA system of Definition 4, find a
Lyapunov function V (x) with largest possible domain D.

6.1 Current Approaches for Solving Problem 17

In Ferrari-Trecate et al. (2002) three common Lyapunov
function candidates for autonomous discrete-time PWA
systems are presented and their relative merits discussed:

V1(x) = xTPx ∀x ∈ X ,

V2(x) = xTPjx ∀x ∈ Xj ∀j ∈ S ,

V3(x) = xTPj(x)x ∀x ∈ Xj ∀j ∈ S .

Candidate V1 results in so-called quadratic Lyapunov
stability. Note that P � 0. Candidate V2 results in so-
called PWQ stability. Note that it is not necessary that

x1

x2

Fig. 5. PWQ running cost function partition. 11 regions.

Pj � 0 ∀j ∈ S, because each local function is only required
to be positive-definite within its region: xTPjx > 0 ∀x ∈
Xj\0 ∀j ∈ S. For V3 the state dependent cost matrices are
given by Pj(x) =

∑N
l=1 Pj(l)ρj(l), with parameter matrices

Pj(l) ∈ Rn×x ∀l ∈ NN
1 ∀j ∈ S, and bounded basis functions

ρj(l) : Xj → R ∀l ∈ NN
1 ∀j ∈ S. The Lyapunov function

candidates are numbered in increasing order of complexity,
but decreasing order of conservativeness.

Assuming the origin of some PWA system is in fact Lya-
punov stable, there are two main reasons why it may
not be possible to determine a Lyapunov function by
using the above Lyapunov function candidates. Firstly,
the domain of the Lyapunov function is assumed to be the
domain of the PWA system. However, a Lyapunov function
can only be located on the domain of attraction of the
origin. Secondly, the conservativeness introduced by the
form of the Lyapunov function candidate may not permit
an actual Lyapunov function to accept that particular
form. There are two key aspects of the candidates’ form.
First, the candidate functions are in some sense purely
quadratic. Candidate V1 is purely quadratic, candidate
V2 is piecewise purely quadratic, while candidate V3 is
piecewise weighted purely quadratic. This sets bounds on
the amount of ‘energy’ which the system can dissipate.
Second, the partitions of candidates V2 and V3 are the
partition of the PWA system itself. This prevents the
Lyapunov function candidate from rigorously taking into
account that for discrete-time PWA systems the state
trajectory from a state within some region may remain
within that region, can transition into any other region, or
may even exit the domain of the system altogether.

6.2 PWQ Lyapunov Functions via Reverse Reachability

The problems of computing cost functions and Lyapunov
functions are closely related, because the ‘running cost’
of a system can be interpreted as an energy function.
The running cost J : A → R0 of Section 5.1 is in fact 3

a Lyapunov function for the region of attraction of the
origin, with domain D = A. Conversely, locating Lyapunov
functions has been used for evaluating the performance of
3 However, note that in the example of Section 5.2 the running cost
J : X→ R0 is not a Lyapunov function, because J(0) 6= 0.
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PWA systems [Ferrari-Trecate et al. (2002)]. The following
discussion focuses on Lyapunov function candidate V2,
which is a generalization of V1. Candidate V3 is excluded,
as it cannot be incorporated into the proposed algorithm.

For a PWA system of Definition 4, suppose it is not
possible (or one is just not able) to establish a Lyapunov
function by employing candidate V2. Suppose, however,
the following Lyapunov function has been determined:

V̂ (x) = xTPjx ∀x ∈ Xj ∀j ∈ S0 ⊂ S.

Reminiscent of Section 3 we call the domain of V̂ the
central set : A0 =

⋃
j∈S0

Xj . Reminiscent of Assumptions 7
and 9 the following assumption is made:
Assumption 18.

(i) ∀{x(i) ∈ X}∞i=0 s.t. limi→∞ x(i) = 0 ∃l ∈ N, l < ∞
s.t. x(i) ∈ A0 ∀i ≥ l

(ii) x(i) ∈ A0 ∀i ∈ N ∀x(0) ∈ A0

Remark 19. Assumption 18 states that all state trajecto-
ries which converge to the origin enter the positively invari-
ant central set A0 (domain of V̂ ). However, Assumption
18 is crucially different from Assumptions 7 and 9. The
number of region switches after a trajectory has entered
the positively invariant central set A0 is not assumed finite.
Remark 20. To satisfy Assumption 18 it may be necessary
to re-partition the PWA system, similarly to Remark 10.

Lyapunov function V̂ solves step 1 of Algorithm 14,
adapted for Problem 17. Step 2 is now performed anal-
ogously to solving Problem 5 in Section 3. Assumption 18
(i) ensures that Step 3 of Algorithm 14 is possible, i.e. that
the reverse reachability algorithm terminates in a finite
number of steps. Step 4 of Algorithm 14 is irrelevant for
Problem 17. The resulting Lyapunov function is as follows:

V (x) = xTHkx + Lkx + Ck ∀x ∈ Xk ∀k ∈ V , (3)
with region index set V and regions Xk (rather than
Xk). The change of region symbol emphasizes that the
PWQ Lyapunov function partition is different from the
PWA system partition. This point is crucial. The reverse
reachability algorithm constructs the regions Xk such that
trajectories from all states x ∈ Xk enter the same region at
the next step. Furthermore, in regions outside the central
set A0 the Lyapunov function is not purely quadratic, but
may contain linear and constant terms also. This indicates
that the Lyapunov function is both arithmetically less
conservative, because the class of piecewise quadratic
functions is a super-class of piecewise purely quadratic
functions, and also spatially less conservative, because the
PWQ Lyapunov function partition properly takes into
account the region switching behavior of the entire system.

6.3 Controlling Energy Dissipation

In the performance analysis problem of Section 3 the
single-step cost function of the system, Lj(x) ∀j ∈ S,
was given, and would have some physical significance
(see Section 5.1). The running cost function J(x) would
therefore inherit this physical significance. For the problem
of constructing Lyapunov functions, the single-step cost
corresponds to the energy dissipation of the system, and
is a design parameter for tuning the Lyapunov function.

Without loss of generality Lyapunov function V̂ (x) ∀x ∈
A0 covering the central set may be assumed to be a
piecewise purely quadratic function. This is because a Lya-
punov function candidate requires that V (0) = 0, and that
a purely quadratic function can approximate any other
smooth function if the domain is chosen small enough.

However, a piecewise purely quadratic Lyapunov function
implies that the single-step cost function has the following
form: Lj(x) = xT

[
Hj−AT

j HkAj

]
x−2aT

j HkAjx−aT
j Hkaj

∀x ∈ Xj . This is on the one hand impossible to achieve,
in general, because from the same PWA partition region
(same j) the state trajectory can switch into any other
target region (different k). Furthermore, the restriction
seems arbitrary. Being able to choose the single-step cost
function Lj(x) = xTHjx + Ljx + Cj ∀x ∈ Xj freely
gives much more flexibility and control to determine the
system’s energy dissipation on the entire state-space.

7. CONCLUSION

An algorithm for determining the exact cost performance
of autonomous discrete-time PWA systems was presented.
The algorithm constructs the explicit PWQ running cost
function over the entire region of attraction of the origin.
Available explicitly, this cost function can be integrated
in order to determine the performance of the system as a
whole. This alleviates the need to perform a large number
of simulations. The algorithm was further applied to the
problem of constructing PWQ Lyapunov functions. The
resulting Lyapunov functions are less conservative than
some commonly used Lyapunov function candidates.

The partitions of PWQ functions generated by the pro-
posed algorithm can be very complex. For the performance
analysis problem there is no way to circumnavigate this.
However, it is useful to generate Lyapunov functions with
simple partitions. In future work, determining Lyapunov
functions of the form of Eq. (3) with low-complexity or
minimal partitions will be investigated.
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