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Abstract: In the last decade a lot of attention was given to non-linear model predictive control.
On one hand, in many applications linear MPC does not suffice to achieve the control goals
over a wide range of operating conditions, while on the other hand many academic challenges
remained in the area of NMPC, such as stability, computational complexity, etc... This paper
discusses the industrial implementation of an NMPC controller at IPCOS and the different
trade-offs made during the design, with the aim of clarifying the different criteria that are used
in an industrial context. Results are illustrated on a chemical batch reactor.
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1. INTRODUCTION

Both academically and industrially NMPC has received
increasing amounts of interest in the last decade. However,
many differences exist between what is used in indus-
trial practice and what is being researched in academia.
Only some of these differences can be attributed by a
delayed adoption of new technologies in industry. This
paper addresses some of these differences as they are
perceived by the authors based on the NMPC technology
developed at IPCOS for the control of – among others
– batch processes. The aim is not so much to introduce
academically novel techniques, but rather to discuss exist-
ing techniques from a different point of view and to point
out those aspects that are either not frequently treated in
academic papers or that result in the fact that industrial
MPC techniques fall outside of the existing theoretical
frameworks developed within academia.

REWRITE: The next section first gives a brief introduc-
tion on batch processes, after which Section 3 explains the
modeling costs of the corresponding approaches. Section 4
explains the main characteristics of the NMPC controller
developed at IPCOS, after which Section 5 highlights sev-
eral features that illustrate some specific design choices
that were made and compares them to current academic
practice. Finally Sections 6 and 7 discuss the results of
the developed NMPC controller and give the conclusions
of this paper.

2. BUSINESS CASE

In order to understand some of the decisions discussed in
this paper, it is important to understand the business case
of APC 1 projects from both the vendor and the customer
point of view.

The most common customer benefits of APC projects
largely consist of increased production capacity in capacity-
1 Advanced Process Control

constrained situations (batch-time reduction, throughput
maximization, . . . ), decreased operational costs (less off-
spec product due to decreased process variance, decreased
energy consumption, . . . ). These (recurrent) benefits have
to be compared to the implementation cost of the APC
project, which is predominantly determined by licenses
and the cost of human resources. Typically, customers
expect a ROI 2 within 6 to 12 months. Therefore, in
the development of new technology, the main criterion
should be the optimization of this ROI, either in terms
of improving benefits for the customer, or improving the
efficiency of APC project execution.

On the other hand, from a vendor point of view, devel-
oping new technology should also be in equilibrium with
the size of the targeted market, the chances of penetrat-
ing that market and the expected benefits. Developing
and implementing the new technologies into robust and
reliable end products should therefore be doable with
acceptable efforts.

Very often, in academic papers, only controller perfor-
mance is investigated, which can be linked to customer
benefits. The existence of a good trade-off between im-
proved benefits on one hand and increased project ex-
ecution cost (e.g., additional tuning parameters, cost of
model construction) and complexity of implementation
(e.g., drastically new optimization technologies) on the
other hand is often not investigated. However, in indus-
trial practice, this trade-off is the most essential part of
every technological decision when developing new tech-
nologies.

3. BATCH PROCESSES

In this section some more technical background is given
based on which the non-linear modeling and control
technology of IPCOS has been developed. This helps to
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understand several key decisions in the development of
the technology.

In recent years batch processes have regained popularity
due to the possibility they offer to industry to produce
relatively small quantities of a variety of products with
a large added value (Bonvin [1998]). Examples of such
products are fine chemicals, pharmaceutical products and
certain classes of polymers.

In many situations up to 100 or more different products
are produced in a single reactor. With only limited re-
strictions in terms of product type continuity between
subsequent batch runs, these reactors offer larger pro-
duction flexibility compared to continuous processes. This
added flexibility represents the main advantage of batch
processes and forms a significant competitive advantage
in quickly fluctuating markets.

However, this flexibility directly translates into a higher
level of complexity for the modeling and control of such
processes. Classic (linear) MPC does not suffice because
of changing gains and time constants:

• with fed-batch processes, the content of a reactor can
vary up to about a factor of 10 within one batch run,
which has similar effects on the gain and/or time
constants of the temperature dynamics.

• heat conductivity between the reactor wall and the
reactor contents can also vary by a factor of 5
(sometimes non-monotonically) within a batch run

• in flow-controlled cooling coils and jackets, the re-
lation between coolant flow rate and heat extraction
can be very non-linear, with saturation effects occur-
ring for large coolant flows.

These effects necessitate the application of a non-linear
control law. On top of that, the need to take certain
restrictions into account, such as cooling constraints, max-
imal allowable adiabatic temperature, etc... necessitates
the use of non-linear MPC controllers.

The increasing (batch) market, together with other po-
tential applications such as e.g. crystallization, led to the
development of a non-linear MPC control architecture at
IPCOS. The next section first describes the non-linear
models used in the controller

4. NONLINEAR MODELING

Before being able to discuss the NMPC implementation,
the control models and their identification are discussed.

In academic research, two main strategies can be found:
full black-box modeling (neural networks, (Wiener)- Ham-
merstein, Volterra kernels, . . . ) on one hand and full
rigorous modeling on the other hand.

Full non-linear black box modeling has some important
disadvantages from a practical point of view:

• Black-box models are typically not reliable for
extrapolation and therefore tests over a large range
of operating conditions should be performed. It can
be expected that this would have a profound impact
on production and hence is not acceptable in a
production environment.

• Even if testing over a large operating range is accept-
able, this would, in typical situations, still require
an excessive amount of tests, using up to 100
or more batch runs (different temperature profiles,
feeding patterns, cooling patterns, . . . and all com-
binations thereof). Given the necessary supervision
during these tests, this is not acceptable from a
project cost point of view.

• Another important disadvantage of black-box models
is that they are incapable of predicting vari-
ables that are not measurable, such as excess
(unreacted product present in reactor) and adiabatic
temperature.

On the other hand, rigorous modeling is often not possible
due lack of fundamental understanding of certain
process details. In batch reactors, for example, reaction
kinetics are often not understood in detail. For these
reasons, going through a full rigorous modeling process
is also prohibitively expensive from an ROI point of view.

Therefore, for processes requiring nonlinear control, a
hybrid modeling approach (Vandecraen et al. [2007]) is
chosen, where rigorous modeling is chosen for those model
parts that are well understood and a suitably parameter-
ized black-box modeling approach is chosen for the re-
maining parts. For batch processes, all reactor peripherals
(condensors, heat exchangers, cooling coils, . . . ) are mod-
eled rigorously, whereas the reaction kinetics are mod-
eled by means of an application-specifically parameterized
black-box model.This hybrid modeling approach (not to
be confused with hybrid models having both continuous
and discrete states) leads to discrete-time nonlinear state
space models, consisting of an interconnection of rigorous,
semi-rigorous and black box submodels. For details, we
refer to Vandecraen et al. [2007]. The main message here
is that in order to obtain sufficiently accurate models with
limited effort (cfr. Section 2), a mix between rigorous and
black-box modeling is required. This approach is rarely
(e.g., Potočnik et al. [2004]) found in academic literature.

However, the NMPC framework discussed here is also able
to cope with other model structures. These can include
rigorous models (e.g. gProms or other modeling packages)
or any other type of non-linear models (neural network,
Wiener, Hammerstein, Volterra kernels, . . . ) as long as
predictions and linearized models can be generated with
sufficient efficiency. Due to the availability of a Matlab

interface, new model types can be tested with much
flexibility.

5. CONTROLLER DEVELOPMENT

In this section the extension of the classic linear INCA 3

controller towards nonlinear models is explained. Figure
1 illustrates the block structure of the controller.

The classic INCA controller is set up in a block structure,
where every block is triggered in a fixed order. In the clas-
sical linear INCA controller the following block sequence
is executed:

• Prediction: Compute the values of the outputs over
the prediction horizon based on an initial guess of the
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optimal solution (e.g., a shifted sequence of optimal
values of the previous sample instant).

• Static Optimization: Compute the optimal steady
state value for the process relative to the current
steady state value (i.e., the values at the end of the
horizon).

• Dynamic Optimization: Perform a full dynamic
optimization to compute the optimal input sequence
that brings the system from the current state to the
computed optimal steady state (at the end of the
horizon).

Although performing the optimization step in
two phases (static and dynamic) is not often
considered in academic research, it is a standard
technique in industrial implementations. This
technique allows the smaller-scale static opti-
mization to be computed more rigorously, e.g.
using prioritized constraints (see Section 6.2).

This block structure makes sure that a block of the control
engine can be replaced or modified without drastically
affecting the other blocks. This makes it possible to easily
test new control algorithms or model structures without
losing maintainability of the code. As a first step towards
an NMPC implementation this block execution order has
been made configurable. In this way it is possible to e.g.
eliminate or replace specific blocks for certain control
problem areas (e.g. to skip the static optimization for
chemical batch reactors) or perform multiple optimization
steps. In subsequent steps the different model blocks that
are affected by the type of control model that is used,
have been updated to tackle nonlinear control problems.
These blocks are highlighted in Figure 1.

The most straightforward way to incorporate nonlinear
models is to update the prediction block. Since the control
models are discrete-time this step is extremely straight-
forward and boils down to a sequential evaluation of a
nonlinear function over the prediction horizon. The main
extension of this block is the incorporation of linearization
functionality. This functionality computes linear state
space models along the predicted input and state trajec-
tory and stores these to be used in the steady state and
dynamic optimization.

In the steady-state and dynamic optimization steps a
QP based optimization step is performed. Also here,
the block structure allowed an evolutionary approach to
the extension of the controller to nonlinear models. The
following extensions were implemented:

(1) extension of the steady-state optimization to incor-
porate a linearized model, linearized at the end of
the prediction horizon.

(2) extension of the dynamic optimization to incorporate
a linearized model, linearized at the beginning of the
control horizon.

(3) extension of the dynamic optimization to incorporate
multiple linear models, linearized at several (possibly
all) samples within the control horizon.

The resulting extensions effectively allow the execution of
a single SQP iteration to solve the NMPC optimization
problem. Due to the configurable nature of the block ex-

Fig. 1. Block structure of the INCA NMPC controller.
Blocks affected by the use of nonlinear models are
highlighted.

ecution order, multiple SQP iterations can be performed
within one sampling period. Performing only a single SQP
iteration can be compared to so called real-time variants
of optimization algorithms such as that used in Diehl et al.
[2002].

By choosing the above strategy towards an NMPC im-
plementation, all intermediate implementations could al-
ready be validated industrially before moving on to the
next phase. Another benefit of evolutionary development
is market adoption. Small, incremental product improve-
ments often have much faster market adoption, since the
(perceived) risk is much smaller. Therefore, the above
development approach can also be considered a strategic
decision.

6. FEATURES

In this section several key features of the INCA NMPC
controller are highlighted and compared to current aca-
demic results and interests in order to point out some
interesting research opportunities.

6.1 Sequential optimization

A relatively straightforward sequential optimization tech-
nique is employed for the dynamic optimization. Input
trajectories are reparameterized using move blocking,
with user-configurable move times. Mostly quadratically
or exponentially spaced move times are employed. The
linearized models are used to construct a linear equality
constraint matrix expressing the behavior between in-
put corrections and the resulting output corrections. A
quadratic cost function is used with weights on inputs,
outputs and their derivatives.

This approach does not follow the recent trend towards
simultaneous approaches (e.g. Diehl et al. [2002], Gattu
and Zafiriou [1992]), due to the evolutionary approach
explained above. Allowing validation of intermediate de-
velopment steps was a key factor to decide for this evo-
lutionary approach above a revolutionary approach using
e.g. multiple shooting or other, more invasive approach. It
is not excluded, however, that in future implementations
more advanced optimization techniques will be evaluated.
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Fig. 2. Illustration of the concept of prioritized con-
straints.

6.2 Prioritized constraints and ideals

In the optimization stages of the INCA control architec-
ture the concept of prioritized constraints has been built
in (see Fig. 2) Constraints are handled starting with the
highest priority class and proceeding to constraints and
ideals with lower priority until no more degrees of freedom
are left. Within each class constraint violation and ideal
deviation trade-offs are defined by means of L2 penalties.

As depicted in Figure 2, ROC (Rate Of Change) con-
straints on the MVs (Manipulated Variables) have the
highest priority, followed by constraints on the absolute
values of MV constraints (MV POS constraints) and CV
(Controlled Variables) constraints and ideals. The lowest
priority class tries to minimize the MV moves.

The above mechanism of different priority classes and L2

penalty functions within each priority class gives the user
the ability to specify to the controller whether to make a
trade-off between requirements or to give one requirement
absolute priority above the other. Using either L1 or L2

penalty functions without the notion of priorities, the end-
user would only be able to achieve one of the above effects.
The notion of priorities is especially useful in non-linear
control because, without priority classes, the different
trade-offs between requirements would be different from
one sample to another due to changing model gains, which
would make tuning the controller especially cumbersome.

Despite the fact that using priority classes has
significant practical benefits and is used by sev-
eral APC vendors (Qin and Badgewell [2003]),
only a limited number of publications (e.g.,
Tyler and Morari [1997], Vada et al. [1999,
2002]) can be found on the subject. The exten-
sion of existing theoretical results towards MPC
controllers with prioritized constraints has not
been published up to the authors’ knowledge.

6.3 Stability measures

An aspect that has been intensely studied in academia
is that of stability of MPC, which is by now very well
understood (see e.g. Mayne et al. [2000]). However, these
techniques have only been picked up by industry to a very
limited extent.

The stability measures built into the INCA NMPC con-
troller essentially boil down to imposing an end-point
equality constraint (if the steady-state optimization block
is used) and employing a prediction horizon that is sig-
nificantly longer than the control horizon. Persisting sta-
bility problems – if ever encountered – can most often be
avoided by decreasing the bandwidth of the controller by
means of increasing move penalties.

The reasons why this practical approach works in most
cases, although several assumptions, on which typical
stability theories are based, do not hold (time-invariance
of models, constraints and setpoints, state-feedback as-
sumption, ...) can be understood as follows:

• stability theorems based on end-point inequality con-
straints (see Mayne et al. [2000]) make sure the con-
troller drives the system inside an operating region
at the end of the control horizon (imposed by means
of a terminal constraint) for which it can be proven
that the system can be further stabilized without
violating constraints. By doing this in a provable way
some conservativity is introduced: the system most
often can be stabilized for a much larger region but
not in a easily provable way.

• on the other hand, by simply omitting the terminal
constraint, one potentially allows states for which
it is known that the system cannot be stabilized
without violating constraints.

The latter approach, however, seems to be working in
many cases due to the fact that prioritized constraints
are used and therefore the freedom introduced by slight
violations in the lower-priority constraints in al observed
cases allow to avoid infeasibilities. On top of that, the
above situation can already be mostly avoided by choosing
a sufficiently large control and prediction horizon.

The underlying reason why terminal constraints or termi-
nal costs (see Mayne et al. [2000] for an overview) are not
preferred is the fact that they depend on the controller
model and/or the imposed constraints. This fact causes
several impracticalities in an industrial context:

• In practice model gains and imposed constraints
need to be modifiable on-the-fly. Especially during
commissioning this happens frequently and therefore
these modifications should not implicate heavy com-
putations. For large-scale models (many MVs and
CVs) computation of terminal constraints can be
very tedious (see Pluymers [2006]).

• For non-linear models no generic techniques exist for
efficiently computing these terminal regions.

Therefore, all stability measures that are either
based on the controller model or the imposed
constraints are mostly avoided in practical set-
tings. Research efforts to decrease computation
times for these stability measures could help to
bridge this gap.

6.4 Adaptive control

The INCA control architecture can be set up in various
ways to include adaptivity. Adaptivity is built in in three
main areas: model adaptation, constraint adaptation and
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adaptive tuning. All three mechanisms lead to adaptive
control behavior, which allows new information to be
taken into account as it comes in. Essentially, all of the
mechanisms presented in this section violate the assump-
tions underlying current established MPC stability frame-
works and many other theoretical considerations.

Model adaptation One of the main reasons for long-term
failures of MPC controllers is the degrading quality of
the controller model, due to wear, upgrades, . . . in the
real process. In order to cope with such problems one
can employ model adaptation techniques. In the case of
batch control two different mechanisms exist: an inter-
batch observer and an intra-batch observer.

The intra-batch observer is based on an EKF 4 state
estimator, where uncertain model parameters are treated
as additional model states. Model parameters adapted
by this mechanism are those variables that can change
significantly within one batch run and that are easily
observable using an EKF.

The inter-batch observer adapts certain model parameters
in between batch runs. Model parameters adapted by this
mechanism are variables that change relatively slowly and
for which relatively complex computations are needed to
compute an updated value. An example in the framework
of batch applications is cooling coil efficiency due to
fouling or catalyst deactivation.

Other possible mechanisms that can be fitted in the INCA
controller architecture are update mechanisms for remod-
eling black box (sub)models based on new process data
(e.g. refitting static nonlinearities in (Wiener-)Hammerstein
systems, . . . ), or e.g. more complex observer algorithms,
such as moving horizon estimation.

Constraint adaptation In many applications where some
form of constraint pushing is performed, the exact po-
sition of the constraint that should be reached is not
exactly known and time-varying. Examples of this are
cooling constraints in batch processes, where the MPC
controller steers a setpoint of a slave PID controller, who
in turn controls a valve that controls the cooling fluid
flow. The constraint on the setpoint of the slave PID
controller is determined by the valve position saturation.
However, the relationship between setpoint and steady-
state valve position might be unknown and time-varying
due to changing cooling conditions (cooling fluid pressure,
temperature, . . . ). Mechanisms are built into the INCA
NMPC controller for updating the constraint position
based on incoming measurements to avoid unexpected
constraint bumping, which often leads to unwanted control
behavior.

Adaptive tuning One final very powerful mechanism to
achieve adaptive control is adaptive controller tuning. The
INCA controller can be configured to read certain tuning
variables from an OPC server every sample time. These
variables can in turn be computed by means of calculation
blocks, either in the DCS 5 or in the INCA software. In
this way the tuning of the controller can be adjusted as
a function of time, operating point or e.g. model fidelity
(measured by e.g. the prediction error).

4 Extended Kalman Filter
5 Distributed Control System

Fig. 3. Chemical batch reactor model used to illustrate
controller performance.

7. RESULTS

In this section real-life results of an initial trial of the
developed INCA NMPC controller on a chemical batch
process are given. The reactor (see Figure 3) consists of
the reactor vessel and a premix tank from which the main
vessel is fed. The main vessel is cooled by means of a half-
tube cooling jacket. The MVs of the control problem are
the amount of cooling (jacket inlet temperature) and the
feed flow. The main CV is the reactor temperature, which
is related to product quality. The process operated in this
reactor is an exothermic fed-batch process.

In the classical DSC control recipe a fixed feed flow
pattern is used to make sure no cooling constraints are
hit. Because the cooling capacity is season-dependent this
approach leads to suboptimal batch cycle times.

The INCA NMPC controller was applied to the process –
using the hybrid modeling technology – to achieve shorter
batch cycle teams by means of maximized feeding rates.
Figure 3 shows a comparison between both approaches. It
is clear the the controller achieves a significant batch time
reduction, while controlling the reactor temperature more
tightly. One can see that different requirements are met
at different instants during the batch. After the initial
startup transient the desired feed flow rate is reached
(around sample 400) after which the maximal cooling
limit is reached (around sample 600). The disturbance no-
ticed around sample 700 (INCA control) and sample 850
(DCS control) represents a manual operator intervention
(modification of the stirrer speed) which is not known to
the controller.

Several of the features of the INCA controller described
in this paper are used in this example:

• due to the time-varying and nonlinear dynamics, the
SQP-approach using multiple linear models over the
horizon is needed to achieve stable control perfor-
mance.

• cooling constraints (in terms of lowest obtainable
jacket inlet temperature) are adapted at every sam-
ple instant in order to be able to achieve the highest
feed flows subject to the real cooling constraints.
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Fig. 4. Result of an industrial trial on a fed-batch reactor. Green lines depict result of DCS control using the classical
batch recipe, while blue lines depict result of the INCA NMPC controller. Ideals and constraints are resp. depicted
as dashed and solid red lines. Units are rescaled for confidentiality reasons.

• adaptive tuning is used to achieve robust perfor-
mance during the initial rampup phase and tight
temperature control afterwards.

It is clear that in this complex setting no stability results
based on invariant sets can be used to guarantee stable
control behavior and stability. On the other hand, while
a relatively simple, sequential, one-step SQP based ap-
proach is used for the optimization, good control perfor-
mance is achieved, while mainly still relying on large parts
of the proven infrastructure of the linear INCA controller.

8. CONCLUSION

This paper discusses an industrial implementation of
an NMPC controller. The controller can generically be
coupled with any nonlinear discrete-time model that
provides prediction and linearization functionality. The
controller employs prioritized constraint handling, SQP-
type optimization and adaptive control mechanisms that
make it well-suited for a wide range of processes.

Part of this paper highlights those features where in-
dustrial and academic state-of-the-art differ substantially.
Several interesting research opportunities are pointed out.

Finally, results are shown on a chemical batch reactor in-
dicating good performance of the NMPC implementation
and its successful industrial validation.
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Z. Nagy, and F. Allgöwer. Real-time optimization
and nonlinear model predictive control of processes

governed by differential-algebraic equations. Journal
of Process Control, 12:577–585, 2002.

G. Gattu and E. Zafiriou. Nonlinear quadratic dynamic
matrix control with state estimation. Industrial &
engineering chemistry research, 31, 1992.

A. Marchetti, B. Chachuat, and D. Bonvin. Real-time
optimization of continuous processes via constraints
adaptation. Proceedings of DYCOPS’07, Cancun, Mex-
ico, 2007.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert. Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36:789–814, 2000.

B. Pluymers. Robust Model Based Predictive Control –
An Invariant Set Approach. PhD thesis, Katholieke
Universiteit Leuven, 2006.
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