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Abstract: In this paper we proposed a practical robust control using transformed dynamics.
The dynamic model of the flexible manipulator can be split up into two subsystems, however
the transformed dynamics is made into one with the singular perturbation standard form.
The proposed controller has simple structure, more easy tuning factor, and control forms
having direct relation with control performance. The design procedure consists of two parts.
A model based computed torque control part, and robust control part to maintain the tracking
performance using the nonlinear H-infinity control. The designed robust control is applied to
a 6-DOF robot manipulator with joint flexibilities. The proposed robust controller has better
tracking performance and advantage in its application.

1. INTRODUCTION

To manufacture high quality products, we need high ac-
curacy robot manipulator. However, industrial robots are
complex structures with many variable parts such as elec-
tronics cables and tool kits, also there are nonlinear friction
forces, variable viscose values and stiffness coefficients. In
other words, an industrial robot has many uncertainties
such as unmodelled dynamics, parameter variations and
external disturbances. For these reasons, a model based
control has a limits of tracking performance. Therefore,
robust control must be considered.

A recursive design is applied to the design of a stabilizing
controller for a class of nonlinear systems. Every system in
the class is a series connection of a finite number of nonlin-
ear subsystems which are individually stabilizable. Inter-
esting progress in the recursive design has been achieved
in adaptive control of feedback linearizable systems. If the
linearized system is linear with respect to the parameters,
the recursive design can be used to develop an adaptive
control [1]. However this design is not suitable to multi
links industrial robot manipulator.

Since many systems inherently have uncertainties such
as parameter variations, external disturbances, and un-
modelled dynamics, robust control can be considered in
the recursive design. To design robust controllers, it is
usual to use Lyapunov’s second method, as proceeded in
the existing results [2,3]. However, a difficulty of using
Lyapunov’s second method is that a Lyapunov function
for control design is required.

Another robust control, which has attracted attention of
many researchers, is H∞ control. Although the nonlinear

H∞ control is derived by the L2-gain analysis based on
the concept of energy dissipation [4,5], its applications are
not easy to implement due to the difficulty of obtaining
of solution to Hamilton Jacobi inequality (HJ inequality).
The H∞ control problem in nonlinear systems reduces to
the solution to HJ inequality. Many methods have been
proposed in recent papers [6,7,8,9].

In recursive design of the robust control for robot manipu-
lators with joint flexibilities, a fictitious control is designed
as if the link dynamics had independent control. As the
robust control, the nonlinear H∞ control is used. The so-
lution to the HJ inequality can be obtained through a more
tractable nonlinear matrix inequality (NLMI) method due
to the fact that the matrices forming the NLMI are
bounded [9,10]. The control for the joint dynamics, the
second subsystem, is designed recursively to satisfy the sta-
bility and robustness of the overall system by Lyapunov’s
second method. Finally, the saturation-type control input
of a recursive robust control becomes the function of
angular velocity error and bound function denoted the
preceding inequality [11,12,13]. Thus, the designer must
chose between robust range and tracking accuracy.

In this paper we proposed a practical robust controller
which has simple structure, more easy tuning factor, and
control forms having direct relation with control perfor-
mance. Directly we design a robust control using the trans-
formed dynamic equations. The design procedure consists
of two parts. A model based computed torque control
part, and a robust control part to maintain the tracking
performance using the nonlinear H-infinity control. The
designed control is applied to a 6-DOF robot manipulator
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Fig. 1. A 6-DOF industrial robot.

Fig. 2. A SimMechanics model.

with flexible joints. Simulations are performed for this
system with inertia and stiffness uncertainties.

This paper is organized as follows. In Sec. 2, the dynamics
of flexible joint robot manipulator are presented. In Sec. 3,
robust control is designed for the system with uncertain-
ties. In Sec. 4, the simulation is presented with a 6-DOF
industrial robot. In Sec. 5, the conclusions are presented.

2. DYNAMICS OF FLEXIBLE JOINT ROBOT
MANIPULATORS

The target model of the simulation is a heavy payload
industrial robot which handles 165kg load as shown in
Fig. 1. It is very difficult to model a multi-links serial
robot, because of its complex structure in physical rela-
tionship. Thus we used MATLAB/SimMechanics toolbox
that makes it easy to design a flexible joint mechanical
system. Figure 2 is the SimMechanics model of target
robot.

In the flexible manipulator model, the link dynamics is
actuated by the spring torque generated by the angular dif-
ference between motor and link, and the motor dynamics
is actuated by the driving torque.Consider the dynamics
of robot manipulators with joint flexibility. The dynamics
are

M(x1)ẍ1 + C(x1, ẋ1)ẋ1 + G(x1) = K(x2 − x1) (1)

Jẍ2 + Dẋ2 + K(x2 − x1) = τ (2)

where x1 ∈ Rn is the link side angle, x2 ∈ Rn is motor
side angle, M(x1) is the positive definite symmetric inertia
matrix, C(x1, ẋ1) represents the centripetal and coriolis
torque, G(x1) represents the gravitational torque, J de-
notes the diagonal inertia matrix of actuator about their
principal axes of rotation multiplied by the square of the
respective gear ratios, D is the motor damping constant
matrix, and K is the stiffness matrix.

The elastic torques at the joints are

h = K(x2 − x1). (3)

Because the inertia matrices are non-singular, the equa-
tions of motion of the flexible system (1) and (2) are
changed to the following singular perturbation standard
form

M(x1)ẍ1 + C(x1, ẋ1)ẋ1 + G(x1) = h (4)

K−1Jḧ + K−1Dḣ + [JM−1 + I]h (5)

= [JM−1C − D]ẋ1 + JM−1G + τ

If K−1 → 0, (1) and (2) become the equations of a quasi-
steady state system such as

[M(x1) + J ]ẍ1 + [C(x1, ẋ1) + D]ẋ1 + G(x1) = τ, (6)

which approximates the rigid manipulator model. If the
parasitic elasticity parameter K−1 is not very small, also
the ’flexible’ terms in the equations of motion have to be
compensated for in the robust control, instead of approxi-
mating only the rigid manipulator system with K−1 → 0.

Considering the flexible robot model (4) and (5), by
substituting the elastic forces h(t) of (4) into (5) we get

K−1Jḧ + K−1Dḣ + [M + J ]ẍ1 + [C + D]ẋ1 + G = τ.
(7)

Therefore we can design a controller using this transformed
dynamics. The designed controller has simple structure,
more easy tuning factor, and control forms having di-
rect relation with control performance, because it is de-
signed using a system dynamics directly instead of a back-
stepping method.

3. ROBUST CONTROLLER

The link motion of the robot cannot be directly controlled
by the driving torque because of elastic interconnecting
mechanism. So usually it is assumed that there is a ficti-
tious control to be used in the position of the motor angle
as virtual input for robust stabilization of the link dynam-
ics. And because the fictitious control is not real control,
the real control is recursively designed to make the overall
system robustly stable. These control method is called
back-stepping based robust control. However the finally
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saturation-type control input of the back-stepping based
robust control becomes the function of angular velocity
error and bound function denoted the preceding inequality
[9,10,12,13]. Thus, the designer must chose between robust
range and tracking accuracy. In this paper, we proposed
actual robust control satisfying those two main properties.

To design the robust control, we use the transformed
dynamics (7) directly. The design procedure consists of
two phases. A model based computed torque control part,
and robust control part to maintain the tracking perfor-
mance against model uncertainties. The control input, τ
is proposed as

τ = τct + τro (8)

where τct is a model based computed torque control input,
and τro is a robust control input to designed with H∞

theory.

A model based computed torque control input is designed,
which controls the nominal model, as

τct = [M̂ + Ĵ ](ẍ1d + Λ1ė1 + Λ2e1) (9)

+ [Ĉ + D̂](ẋ1d + Λ1e1 + Λ2

∫

e1) + Ĝ

+ K̂−1Ĵ(ḧd + Kdėr) + K̂−1B̂(ḣd + Kp er)

where M̂ , Ĵ , Ĉ, D̂, Ĝ, and K̂ are the matrixes with
nominal parameter values. For simple derivation.

To use the H∞ theory, the new state s, which is the
modified error for motor side joint tracking, is defined as

s = −ė1 − Λ1e1 − Λ2

∫

e1 (10)

where e1 is link side angular errors, e1 = x1d − x1, and
x1d is a desired position. If the elements approach zero at
t → ∞, the tracking errors of joints approach zero.

Then, the transformed dynamics (7) is re-expressed by the
state s such as

ṡ = As + Bw + Bτr, (11)

where A = −[M̂ + Ĵ ]−1[Ĉ + D̂], B = [M̂ + Ĵ ]−1, and

w = {[M̂ + Ĵ ] − [M + J ]}ẍ1 + ([Ĉ + D̂] − [C + D])ẋ1 +

[Ĝ−G] + K̂−1Ĵ(ër + Kdėr) + K̂−1B̂(ėr + Kper) which is
a disturbance vector caused by model uncertainties.

The performance index matrix, z is designed such as

z = Hs + Rτro, HT R = 0, RT R > 0 (12)

where H and R are the constant matrices of suitable
dimensions.

There exists a non-negative function V (s) = sT Ps ≥ 0.
The time-derivative of the non-negative energy storage
function is

V̇ = 2sT PT ṡ (13)

= 2sT PT (As + Bw + Bτr)

= sT (PT A + AT P )s + 2sT PT (Bw + Bτr).

Introducing γ2‖w‖2 − ‖z‖2 into the upper equation,

V̇ = γ2‖w‖2 − ‖z‖2 − γ2‖w −
1

γ2
BT Ps‖2 (14)

+ ‖Rur + R−T BT Ps‖2 + sT {PT A + AT P

+
1

γ2
PT BBT P − PT B[RT R]−1BT P + HT H}s

+ 2sT HT Rτro.

If there exists a matrix P satisfying the following HJ
inequality such as

PT A + AT P +
1

γ2
PT BBT P (15)

−PT B[RT R]−1BT P + HT H ≤ 0

and control input is designed such as

τro = −[RT R]−1BT Ps. (16)

Then the derivative of the storage function satisfies

V̇ ≤ γ2‖w‖2 − ‖z‖2, (17)

which achieves L2 − gain property.

To derive the HJ inequality for the robust control input,
each matrix term of (11) is substituted into (15), then

− [Ĉ + D̂]Q[M̂ + Ĵ ]T − [M̂ + Ĵ ]QT [Ĉ + D̂]T +
1

γ2
I

− [RT R]−1 + [M̂ + Ĵ ]QT HT HQ[M̂ + Ĵ ]T ≤ 0. (18)

where Q = P−1.

Using the Schur complement, (18) can be described as a
NLMI

[

W [M̂ + Ĵ ]QT HT

HQ[M̂ + Ĵ ]T −I

]

≤ 0 (19)

where W = −[Ĉ + D̂]Q[M̂ + Ĵ ]T − [M̂ + Ĵ ]QT [Ĉ + D̂]T +
1

γ2 I − [RT R]−1. The matrices M̂ and Ĉ are the nonlinear

function. However, those matrices include trigonometric
functions and can be bounded when each joint velocity
range between two empirically determined external values.
Using this fact, we suppose that the matrices forming
above NMLI vary in some bounded sets of the space of
matrices.

[M, J,C,D, K] ∈ Co{[Mi, Ji, Ci, Di,Ki]|i∈{1,2,··· ,L}}
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where Co represents the convex hull and L is the number
of vertices of bounded space. Therefore, if there exists a
solution Q to (20), then it is also a solution to (19) [9].

[

Wi [M̂i + Ĵi]Q
T HT

HQ[M̂i + Ĵi]
T −I

]

≤ 0 (20)

where Wi = −[Ĉi + D̂i]Q[M̂i + Ĵi]
T − [M̂i + Ĵi]Q

T [Ĉi +

D̂i]
T + 1

γ2 I− [RT R]−1. This approach provides a tractable

method for obtaining a constant solution to NLMI, which
can be used to design the robust control input. However,
this approach generally leads to conservative results if the
prescribed bound is large.

Therefore, the stabilizing robust control becomes

τ = τct + τro (21)

= [M̂ + Ĵ ](ẍ1d + Λ1ė1 + Λ2e1)

+ [Ĉ + D̂](ẋ1d + Λ1e1 + Λ2

∫

e1) + Ĝ

+ K̂−1Ĵ(ḧd + Kdėr) + K̂−1B̂(ḣd + Kp er)

− [RT R]−1[M̂ + Ĵ ]−T Ps.

4. SIMULATIONS

The target model of the simulation is a heavy payload
industrial robot which handles 165kg load. We used MAT-
LAB/SimMechanics toolbox to design a flexible joint me-
chanical system. We assumed that this robot has model
uncertainties about it inertia and joint stiffness.

The robust performance of the proposed robust control
for the 6-DOF robot manipulators is verified through
simulation against inertia and stiffness uncertainties. For
estimating the performance of a proposed controller, we
use a rectangular trajectory in the 3 dimensional spaces.

The matrices M̂ and Ĉ include trigonometric functions
and can be bounded when each joint velocity range be-
tween two empirically determined external values. Using
this fact, we suppose that the matrics forming above NMLI
vary in some bounded sets of the space of matrices. There-
fore the NLMI is solved off-line. The performance level can
be determined by parameter γ and weighting matrix H,
and the control input energy can be adjusted by using
matrix D.

The end position errors are shown in Fig. 3. It has very
small size error excepting four corners, starting and stop-
ing times. In these phases, acceleration and deceleration
are so high, so this situations are occupied. Figure 4 show
the joint angle errors. In starting stage, the noisy signal is
caused by initial angular velocity errors.
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Fig. 3. Position errors of robot end point.
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Fig. 4. Joint angle errors.

Figures 5 and 6 show the end position of 6-DOF robot
manipulator with model uncertainties of 30%. The legend
’DT’ means a desired trajectory. The proposed robust
controller has small size error changes, it means that
the proposed control has a robustness to the parameter
uncertainties.

Though the most of robust controllers has a fine perfor-
mance to a inertia uncertainty, it dose not to a stiffness
uncertainty. However the proposed robust control has a
good robustness to a stiffness uncertainty especially. Fig-
ures 7 and 8 show the end position errors. In case of the
stiffness uncertainty, there is a little change of position
errors.

5. CONCLUSIONS

A practical robust control was proposed for flexible joint
manipulators. To design the robust control, we use the
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Fig. 5. Position under mass uncertainties.
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Fig. 6. Position under stiffness uncertainties.

transformed dynamics directly. And the designed con-
troller consists of two phases, a model based computed
torque control part, and robust control part to maintain
the tracking performance against model uncertainties us-
ing H-infinity theory. In case of the saturation-type control
input of a recursive robust control is very difficult to
tuning gain values. However the proposed robust control
has simple structure, more easy tuning factor, and control
forms having direct relation with control performance.
As a result of simulations, the proposed robust controller
has high accuracy performance and robustness against the
disturbances and model uncertainties. Especially it has a
nice robustness to a stiffness uncertainty.
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