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Abstract: In this paper a controller based on the so–called robust or structurally stable regulation theory
is designed. The ground vehicle motion control is reformulated as a tracking problem of a desired reference,
generated by an external system. Moreover, the disturbance acting on the vehicle is supposed to be modeled, i.e.
unknown but with a known structure, as happens in many typical situations. The use of immersion techniques
eliminates the dependence of the controller on parameters, so obtaining a controller ensuring zero tracking error.
Since an immersion for the designed control law can not be easily determined, in this paper we consider the
immersion of an approximate expression of the control, so obtaining a bounded tracking error.
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1. INTRODUCTION

Vehicle motion control has become an important prob-
lem in automotive control applications. Such a control is
made possible thanks to the introduction of various “by–
wire” subsystems, such as steer–by–wire, brake–by–wire,
etc. These represent the electronic equivalent of existing
mechanical and hydraulic subsystems.

In the brake stand–alone case there are examples in the
literature of linear or nonlinear systems. For linear brake–
alone systems, the most common control approach is a PD
controller which guarantees simplicity of design, afford-
able tuning and robustness. These controllers, however,
are difficult to integrate with other systems, due to their
local validation (van Zanten et al. [1998]). There are many
types of nonlinear brake–alone systems, such as Adaptive
Braking Systems, Anti–lock Braking System (ABS), etc.,
developed for improving vehicular steerability and sta-
bility by preventing wheel lock in critical circumstances
such as for slippery road conditions during braking (Mauer
[1995]).

In the case of steer–by–wire subsystems, dual servo–
motors are used as steering mechanism and drive interface,
so eliminating the connection between the driver and the
wheel assembly. This decoupling allows the introduction
of actuators such as the active front steer (AFS) or steer–
by–wire (SBW), which impose to the wheels a steer angle
given by the sum of that imposed by the driver and that
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imposed by a controller, in order to track a desired vehicle
reference path. Analogously, the brake–by–wire subsystem
allows the active use of brakes in order to impose to the
vehicle a negative longitudinal force. This force determine
a yaw moment which can be possibly used to improve
a reference tracking. Clearly, servomotor–based steering
systems may help to improve lateral vehicle responsiveness
and, principally, occupant safety.

Various control architectures have been proposed with
the purpose of enhancing vehicle steering. In Ackermann
et al. [1995] linear and nonlinear controls were developed
for the steering system. In Setlur et al. [2006] the prob-
lem of tracking a reference trajectory was solved using a
Lyapunov–based control design. In Burgio and Zegelaar
[2006], input–output linearizing feedback was proposed for
the design of a based integrated vehicle controller, with
steering (AFS, SBW) and brakes actuator. In Acosta-Lua
et al. [2007] it is showed that ground vehicle motion control
can be reformulated as a tracking problem of a desired ref-
erence, generated by an external system. Referring to this
last paper, it must be stressed that the control problem
considered in the present work is particularly challenging
due to the presence of parameter uncertanties/variations
and to the presence of disturbances (wind, etc.) acting
on the vehicle. An important example of external distur-
bance is the crosswind which, in particular cases, can be
particularly strong and can deflect the vehicle’s trajec-
tory, affecting the vehicle’s stability and generate collisions
with peripheries (barriers, curbstones, etc.) or other road
users (Hanke et al. [2001], Bosch [1996]).

In this paper we design of a controller for tracking
a desired yaw reference, while rejecting disturbances like
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crosswind and the effects of parameter uncertainties. For,
we use the so–called robust or structurally stable regula-
tion theory (Isidori and Byrnes [1990], Huang and Rugh
[1992]), to tackle the particular problem. The motion con-
trol can be naturally recast as a tracking problem of a
desired reference, generated by an external system. More-
over, in many typical situations and with a desired order
of approximation, the disturbance acting on the vehicle
can be assumed to be modeled with a known structure.
This allows the use of immersion techniques in order to
eliminate the dependence of the controller on parameters
which are uncertain or slowly varying. This brings to
the design of a controller ensuring zero tracking error.
However, the immersion is the weak point of this “design
process”. In fact, very often this immersion is difficult or
even impossible to find. For this reason in this paper we
consider the immersion of an approximated expression of
the control law ensuring the exact tracking.

The paper is organized as follows. In Section 2 the
mathematical model of a ground vehicle and disturbance
is recalled, and the control problem is formulated. In Sec-
tion 3 some aspects of robust regulation are recalled, while
in Section 4 the control problem is solved. Simulations are
presented in Section 5, and some comments conclude the
paper.

2. MATHEMATICAL MODEL OF THE VEHICLE
DYNAMICS

The mathematical model of a ground vehicle can be
obtained considering a rigid body connected to the ground
trough tires. The essence of the vehicle dynamics can be
summarized by the yaw and lateral dynamics, as described
in the so–called Single track model or Bicycle model so
considering only three degrees of freedom. Following Bur-
gio and Zegelaar [2006], Setlur et al. [2006], we considered
as actuator an active front steer (AFS) and steer by wire
(SBW), which can force an incremental steer angle δc and
active brakes, which impose negative longitudinal force,
determining a resulting yaw momentum Mb.

In order to explore the application of the regulation
theory to vehicle control, we have considered a simple
model under some simplifying assumptions, usually con-
sidered in the literature (Burgio and Zegelaar [2006])

(H.1) Roll and pitch dynamics are neglected;

(H.2) The motion takes place on an horizontal surface;

(H.3) The longitudinal velocity vx is piecewise con-
stant;

(H.4) The system is rigid;

(H.5) The force exerted by the tire do not saturate.

The vehicle dynamics are hence given by the following
model (Burgio and Zegelaar [2006])

ψ̇ = ωψ

Jω̇ψ = µ
[

Ff (αf , Nf , kf )lf−Fr(αr, Nr, kr)lr
]

+Mb+d

m(v̇y + vxωψ) = µ
[

Ff (αf , Nf , kf ) + Fr(αr, Nr, kr)
]

(1)

where

m Vehicle mass
J Vehicle Inertia momentum

lf , lr Front and rear vehicle lengths
vx, vy Vehicle longitudinal and lateral velocities
ψ, ωψ Yaw angle and yaw rate

µ Maximum tire-road friction coefficient
kf , kr Vectors of the left and right tire longitudinal slips
Nf , Nr Vectors of the left and right tire vertical forces
δd, δr Road wheel angles due to the driver and to

controller
Mb Yaw moment
d External disturbance (typically due to the wind).

Finally, the tire front and rear lateral forces Ff , Fr
depend on the longitudinal slips, the tire slip angles
(αf , αr), and the tire vertical forces

αf = δd + δc −
vy + lfωψ

vx
, αr = −

vy − lfωψ

vx
.

It is common to assume that Ff (x, δd + δr, Fzf , kf ) is
invertible with respect to δc (Burgio and Zegelaar [2006]),
namely the solution of Ff (x, δd + δr, Fzf , kf ) = F̄f for a
fixed F̄f is unique and given by

δc = −δd +
vy + lfwψ

vx
+ F−1

f

(

Ff0, Nf , kf
)

.

Under this hypothesis of invertibility (Burgio and Zegelaar
[2006]), Ff can be regarded as an input, since it is possible
to determine the value of δc necessary to impose a desired
force F̄f .

Here x, y, z denote the axes of a reference frame
fixed with the vehicle. In order to consider the external
disturbance d, we will introduce a reference frame fixed
with respect to the road. Let X , Y , Z denote the axes of
this frame. The yaw angle ψ determines the attitude of the
reference frame fixed with the vehicle with respect to that
fixed with the road.

The external disturbance d is typically due to the
wind. Blasts of lateral wind, or crosswind, can determine
dangerous situations (Hanke et al. [2001]). It is usual
to consider 12 ranges of wind force, depending on the
wind velocity, according to the so–called Beaufort scale
(Bft). The occurrence of wind blasts can be dangerous
with regard to automobile safety, and the consequent
lateral offset has to be reduced by the control system
in order to reduce the possibility of accidents. Let us
consider the occurrence of wind with respect to the ground,

with constant velocity vW =
(

vw,X vw,Y 0
)T

in the
(X,Y, Z) frame. In the frame (x, y, z) fixed with the vehicle
the wind velocity components are

vw,x = vw,X cψ + vw,Y sψ

vw,y = −vw,X sψ + vw,Y cψ

vw,z = 0

where c(·), s(·) stand for cos(·) and sin(·). The resulting
wind velocity vw is a combination of the apparent wind
velocity vx due to the vehicle forward motion plus the
component vw,x, and the apparent wind velocity vy due to
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the vehicle lateral motion plus the crosswind velocity vw,y,
namely

v2
w = (vx + vw,x)

2 + (vy + vw,y)
2.

The crosswind induces a pitching moment, around the y
direction, a roll moment in the x direction, and a yaw
moment d (Bosch [1996], Hanke et al. [2001], Rajamani
[2006]). Since we suppose that the roll and pitch dynamics
can be neglected (assumption (H.1)), we will considered
only the disturbance d. In terms of the front surface of
the vehicle As, the overall length lf + lr of the vehicle,
the air density ρ, and the aerodynamic coefficient cψ, the
expression of d is

d = As(lf + lr)ρcψv
2
w/2.

In the following, it will be useful to consider a change
of coordinates, where in the place of vy one considers the
lateral velocity

vn = vy − lnsωψ, lns =
J

mlf
(2)

with lns the distance between the vehicle center of mass
and the neutral steer point. Typically, this point is close
to rear axle. Hence,

d = α0v
2
w = α1 + α2V

2
y + α3sψ + α4cψ

− α5Vy sψ + α6Vy cψ

Vy= ωψ + vn/lns α0 = As(lf + lr)ρcψ/2

α1= α0(v
2
x + v2

w,X + v2
w,Y ) α2 = α0l

2
ns

α3= 2α0vxvw,Y α4 = 2α0vxvw,X
α5= 2α0vw,X lns α6 = 2α0lnsvw,Y .

Considering x =
(

ψ ωψ vn
)T

, u =
(

Ff Mb

)T
as

state and input vectors, from (1),(2) one obtains the
mathematical model of a vehicle

ψ̇ = ωψ

ω̇ψ = −a1ωψ + a2vn + a3ω
3
ψ − a4v

3
n − a5ω

2
ψvn

+ a6ωψv
2
n + a13 + a14V

2
y + a15sψ + a16cψ

+ a17Vy sψ + a18Vy cψ + b1Ff + b2Mb + b4ϕr

v̇n = a7ωψ − a8vn − a9ω
3
ψ + a10v

3
n + a11ω

2
ψvn

− a12ωψv
2
n − a19 − a20V

2
y − a21sψ − a22cψ

− a23Vy sψ − a24Vy cψ − b3Mb − b5ϕr.

(3)

The parameter expressions are give in Appendix. In (3)
the rear tire lateral force Fr has been expanded up to the
third order

Fr = −Cα tanh atan
vy − lrωψ

vx
= −Cα tanh atanβ

= −Cαβ +
2

3
Cαβ

3 + Cαϕr , β =
vn−(lr−lns)ωψ

vx
with Cα the lateral tire stiffness and ϕr the higher order
terms in the expansion of the function tanh atan(·). How-
ever, note that no approximations of Fr has been consid-
ered. In the following we suppose that these parameters
are uncertain, and their nominal values will be denoted by
ai0, bj0, i = 1, · · · , 24, j = 1, · · · , 5.

The output to be controlled is the yaw angle y =
ψ. The Robust Output Regulation Problem (RORP) for

Ground Vehicles can be formulated as in Isidori [1995], and
consists of having the output ψ asymptotically tracking
the desired reference ψr, with a desired yaw rate ωψ,r,
and asymptotically rejecting the perturbation d, despite
variations in the parameters of the system. At the same
time, we will require that the lateral velocity vn will
tend to zero asymptotically. This has a clear physical
interpretation. In the context of the regulator theory, this
means to consider the tracking error e = ψ − ψr and to
determine a controller which force this error to zero.

Note that if the parameters which appear in the def-
inition (2) can be considered known, it is possible to
suppose vn − vr,n a further output of the system, with
vr,n a function tending asymptotically to zero. This would
simplify the following developments.

3. THE ROBUST REGULATION OUTPUT
PROBLEM FOR GROUND VEHICLES

As usual in the regulation theory, the reference signal
is generated by a so–called exosystem

ẇ = s(w)

ψr = ψr(w).

Equations (3) are in the form ẋ = f(x,w, u, µ), with µ
the system parameter vector, having e = ψ − ψr(w) =
h(x,w, µ) as output. Hereinafter we assume that the
matrices

A0 =

[

∂f

∂x

]

(0,0,0,0)

B0 =

[

∂f

∂u

]

(0,0,0,0)

C0 =

[

∂h

∂x

]

(0,0,0)

stand for the nominal values of the linear part of the
system, assumed at µ = 0. The following result gives
sufficient conditions for the existence of a solution to the
RORP, in terms of the existence of a linear immersion
(Isidori [1995]).

Proposition. The RORP is solvable by means of a linear
controller if the pair (A0, B0) is stabilizable, the pair
(A0, C0) is detectable, there exist mappings xss = π(w, µ)
and uss = γ(w, µ), with π(0, µ) = 0 and γ(0, µ) = 0, both
defined in a neighborhood W ◦×P of the origin, satisfying
for all (w, µ) ∈ W ◦ × P the so–called regulator equations

Lsπ(w, µ) = f(π(w, µ), w, γ(w, µ), µ)

0 = h(π(w, µ), w, µ)
(4)

(“Lsπ” represents the Lie derivative of π in the direction
of s), and, for some set of q real numbers a0, a1, · · · , aq−1,

Lqsγ(w, µ) = a0γ(w, µ) + a1Lsγ(w, µ)

+ · · · + aq−1L
q−1
s γ(w, µ)

(5)

and moreover the matrix
(

A0 − λI B0

C0 0

)

is nonsingular for every λ which is a root of the polynomial
p(λ) = λq+aq−1λ

q−1 + · · ·+a1λ+a0 having non–negative
real part. ⋄

Hence, we need to check the stabilizability of the pair
(A0, B0) and detectability of the pair (A0, C0) where in
our case
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A0 =





0 1 0
0 −a10 a20

0 a70 −a80



 , B0 =





0 0
b10 b20
0 −b30





C0 =
(

1 0 0
)

.

It is easy to check that the reachability and observability
matrices have full rank, and then matrices K, G1 can
be designed so that

(

A0 + B0K
)

and
(

A0 − G1C0

)

are
Hurwitz. The next step is to determine the center manifold

xss = π(w, µ) =
(

πψ(w, µ) πωψ(w, µ) πvn(w, µ)
)T

and

the steady–state control uss = γ(w, µ) =
(

γFf (w, µ)

γMb
(w, µ)

)T
solutions of the regulation equation (4), which

in our case become

Lsπψ = πωψ

Lsπωψ = −a1πωψ+a2πvn+a3π
3
ωψ

−a4π
3
vn
−a5π

2
ωψ
πvn

+ a6πωψπ
2
vn

+ a13 + a14π
2
Vy

+ a15sπψ + a16cπψ

+ a17πVy sπψ + a18πVy cπψ + b1γFf + b2γMb
+ b4ϕ̄r

Lsπvn = a7πωψ − a8πvn − a9π
3
ωψ

+ a10π
3
vn

+ a11π
2
ωψ
πvn − a12πωψπ

2
vn

− a19 − a20π
2
Vy

− a21sπψ

− a22cπψ − a23πVy sπψ − a24πVy cπψ − b3γMb
− b5ϕ̄r

0 = πψ − ψr

(6)

with πVy = πωψ + πvn/lns, and ϕ̄r = ϕr
∣

∣

ωψ=πωψ
vn=πvn

. From

the last and the first equations of (6) one easily gets πψ =
ψr, πωψ = Lsψr = (∂ψr/∂w)s(w). From the remaining
equations

L2
sψr = −a1Lsψr + a2πvn + a3(Lsψr)

3 − a4π
3
vn

− a5(Lsψr)
2πvn + a6(Lsψr)π

2
vn

+ a13 + a14π̃
2
Vy

+ a15sψr + a16cψr + a17π̃Vy sψr + a18π̃Vy cψr
+ b1γFf + b2γMb

+ b4ϕ̃r

Lsπvn = a7Lsψr − a8πvn − a9(Lsψr)
3 + a10π

3
vn

+ a11(Lsψr)
2πvn − a12(Lsψr)π

2
vn

− a19 − a20π̃
2
Vy

− a21sψr − a22cψr − a23π̃Vy sψr − a24π̃Vy cψr
− b3γMb

− b5ϕ̃r

where π̃Vy = Lsψr + πvn/lns and ϕ̃r = ϕr
∣

∣

ωψ=Lsψr
vn=πvn

one

easily works out the steady state control components γFf ,
γMb

. For, from the second equation note first that πvn
always exists since a8 > 0. Then, consider that the control
requirements are fulfilled considering a function πvn(w)
such that lim

t→0
πvn(w(t)) = 0 for every initial condition

w(0). Once πvn has been fixed, one gets

γ(w, µ) =

(

b1 b2
0 −b3

)

−1(
κ1

κ2

)

=





1
b1
κ1 + b2

b1b3
κ2

− 1
b3
κ2





where

κ1 = L2
sψr + a1Lsψr − a2πvn − a3(Lsψr)

3 + a4π
3
vn

+ a5(Lsψr)
2πvn − a6(Lsψr)π

2
vn

− a13 − a14π̃
2
Vy

− a15sψr − a16cψr − a17π̃Vy sψr−a18π̃Vy cψr−b4ϕ̃r

κ2 = Lsπvn − a7Lsψr + a8πvn + a9(Lsψr)
3 − a10π

3
vn

− a11(Lsψr)
2πvn + a12(Lsψr)π

2
vn

+ a19 + a20π̃
2
Vy

+a21sψr+a22cψr+a23π̃Vy sψr+a24π̃Vy cψr+b5ϕ̃r.

It is clear that this control does not ensure the fulfillment
of the regulation requirements in presence of parameter
perturbations of the parameter vector µ. For, an appro-
priate immersion of γ(w, µ) has to be determined.

3.1 Approximate Solution to the RORP

Unfortunately, in the case under study the term ϕ̃r,
due to Fr, renders difficult the determination of such an
immersion. It is hence natural to consider the following
approximation

γa(w, µ) =

(

γFf ,a
γMb,a

)

=





1
b1
κa,1 + b2

b1b3
κa,2

− 1
b3
κa,2



 (7)

where

κa,1 = L2
sψr + a1Lsψr − a2πvn − a3(Lsψr)

3 + a4π
3
vn

+ a5(Lsψr)
2πvn − a6(Lsψr)π

2
vn

− a13 − a14π̃
2
Vy

− a15sψr − a16cψr − a17π̃Vy sψr − a18π̃Vy cψr

κa,2 = Lsπvn−a7Lsψr+a8πvn+a9(Lsψr)
3−a10π

3
vn

− a11(Lsψr)
2πvn + a12(Lsψr)π

2
vn

+ a19 + a20π̃
2
Vy

+ a21sψr + a22cψr + a23π̃Vy sψr + a24π̃Vy cψr.

Using this approximated control, with γa(w, µ) = 0,
equations (4) are not verified anymore, since

∂π(w, µ)

∂w
s(w) 6= f(π(w, µ), w, γa(w, µ), µ)

0 = h(π(w, µ), w, µ)

namely π(w, µ) is not rendered invariant by γa(w, µ).
Hence, even if the control u would force the system
trajectory on π(w, µ), the flow do not remain on it, and a
nonzero error is determined.

3.2 A Case study

For the sake of clarity, in the following we determine
an immersion for γa(w, µ) for a specific reference path,
corresponding to ψr = λr sωt = w1 with λr = 1/6 and the
exosystem given by

ẇ1 = ωw2

ẇ2 = −ωw1.

Moreover, it is convenient to choose πvn = 0. This is
congruent with the constraints previously commented on
πvn . Therefore, (7) becomes

γa =

(

γFf ,a(w, µ)
γMb,a(w, µ)

)

γFf ,a = β0 − β1w1 + β2w2 + β3w
2
2 + β4w

3
2 + β5sw1

+ β6cw1 + β7w2sw1 + β8w2cw1

γMb,a = −θ0 + θ1w2 − θ2w
2
2 − θ3w

3
2 − θ4sw1 − θ5cw1

− θ6w2sw1 − θ7w2cw1

(8)

with the βi and θi given in Appendix. Finally, the deter-
mination of an immersion is easier if γFf ,a(w, µ), γMb,a,
are polynomials in w1, w2. Hence, we will assume the

approximations sw1 ≃ w1 − 1
3!
w3

1 , cw1 ≃ 1 − 1
2!
w2

1 .

Therefore, from (8)
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γFf ,a = β0 − β1w1 + β2w2 + β3w
2
2 + β4w

3
2 + (β5

+ β7w2)
(

w1−
1

3!
w3

1

)

+ (β6 + β8w2)
(

1−
1

2!
w2

1

)

γMb,a = −θ0 + θ1w2 − θ2w
2
2 − θ3w

3
2 − (θ4

+ θ6w2)
(

w1−
1

3!
w3

1

)

− (θ5 + θ7w2)
(

1−
1

2!
w2

1

)

and their immersions are given by ζ̇12 = Φa,1ζ1, γFf ,a =

Γ1ζ1, and ζ̇2 = Φa,1ζ2, γMb,a = Γ2ζ2, respectively, with
Φa,1 = Φa,2, Γ1 = Γ2 and

Φa,1 =









0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a0 a1 · · · a9









, Γ1 =









1
0
...
0









T

a0 = a1 = a3 = a5 = a7 = a9 = 0, a2 = −576ω8,
a4 = −820ω6, a6 = −273ω4, a8 = −30ω2.

A difficulty arises from the fact that Φa,1, Φa,2 have
the same eigenvalues. The consequence is that the pair

(

A0 −B0Γ
0 Φ

)

, (C0 0 )

is not observable, and it is not possible to use the clas-
sical controller (Isidori [1995]). Therefore, an alternative
controller is hereinafter proposed. Following (Acosta-Lua
et al. [2007]), we first consider

B10 =





0
b10
0



 , B20 =





0
b20
−b30



 .

Hence, the controller is

ξ̇11 = (A0 +B10K1 −G11C0)ξ11 +B20u2 +G11e

ξ̇12 = −G12C0ξ11 + Φ1ξ12 +G12e

ξ̇21 = (A0 +B20K2 −G21C0)ξ21 +B10u1 +G21e

ξ̇22 = −G22C0ξ21 + Φ2ξ22 +G22e

u1 = K1ξ11 + Γ1ξ12
u2 = K2ξ21 + Γ2ξ22

(9)

where K1, K2 are such that the matrix

Ac = A0 +B10K1 +B20K2

= A0 +B0K
K =

(

K1

K2

)

(10)

is Hurwitz, and G11, G12 G21, G22 make stable the
matrices

Ad,i =

(

A0 −Bi0Γi
0 Φi

)

−

(

Gi1
Gi2

)

(C0 0 ) (11)

i = 1, 2. Let us show that the proposed controller solves
the RORP. For, note that the controlled dynamics are

ẋ = A0x+B10u1 +B20u2 + f0(x, u, w, µ)

ξ̇11 = (A0 +B10K1 −G11C0)ξ11 +G11e+B20K2ξ21
+B20Γ2ξ22

ξ̇12 = −G12C0ξ11 + Φ1ξ12 +G12e

ξ̇21 = (A0 +B20K2 −G21C0)ξ21 +G21eB10K1ξ11
+B10Γ1ξ12

ξ̇22 = −G22C0ξ21 + Φ2ξ22 +G22e

u1 = K1ξ11 + Γ1ξ12
u2 = K2ξ21 + Γ2ξ22.

Considering that e = C0x + h0(x,w), and setting
w = 0, µ = 0 (since the solution π(w, µ) exists for every
value of µ in a neighborhood of µ = 0) one works out

ẋ = A0x+B10K1ξ11 +B10Γ1ξ12 +B20K2ξ21
+B20Γ2ξ22 + Tnl,0

ξ̇11 = (A0+B10K1−G11C0)ξ11+G11C0x+B20K2ξ21
+B20Γ2ξ22 + Tnl,11

ξ̇12 = −G12C0ξ11 + Φ1ξ12 +G12C0x+ Tnl,21

ξ̇21 = (A0+B20K2−G21C0)ξ21+G21C0x+B10K1ξ11
+B10Γ1ξ12 + Tnl,12

ξ̇22 = −G22C0ξ21 + Φ2ξ22 +G22C0x+ Tnl,22
where Tnl denotes the nonlinear terms. Considering the
new variables

e1 = x− ξ11, e2 = x− ξ21, η1 = −ξ12, η2 = −ξ22
one gets

ẋ = Acx−B10K1e1−B10Γ1η1−B20K2e2−B20Γ2η2
+ Tnl,0

ė1 = (A0 −G11C0)e1 −B10Γ1η1 + T̄nl,11

η̇1 = −G12C0e1 + Φ1η1 + T̄nl,21

ė2 = (A0 −G21C0)e2 −B20Γ2η2 + T̄nl,12

η̇2 = −G22C0e2 + Φ2η2 + T̄nl,22

with Ac given by (10) and T̄nl the nonlinear terms in the
new coordinates. The dynamic matrix of the linear part is










Ac −B10K1 −B10Γ1 −B20K2 −B20Γ2

0 A0 −G11C0 −B10Γ1 0 0
0 −G12C0 Φ1 0 0
0 0 0 A0 −G21C0 −B20Γ2

0 0 0 −G22C0 Φ2











whose eigenvalues are those of Ac Ad,1 Ad,2 which are
Hurwitz. This proves that the stability property is ensured.
It remains to check the regulation property. However, as
already mentioned, the center manifold is not rendered
invariant by the approximate steady state control, so that
the exact tracking can not be ensured, and a steady–
state error will appear. In the simulation section it will be
shown that in the case under study one can obtain errors
reasonably small.

4. SIMULATION RESULTS

We considered simulations based on data from a pro-
totype vehicle (Setlur et al. [2006], Lee et al. [2004], Ra-
jamani [2006]). The nominal parameters are m0 = 1500
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Kg,J0 = 2830 Kg m2, lf0 = 1.3 m, lr0 = 1.5 m, l0 = lr0 +
lf0, Ca0 = 6510 N/rad, vx0 = 28 m/s, µf0 = 0.66,

lns0 = J0/µ0lf0, cψ0 = 0.8, ρ0 = 1.2 Kg/m
3
, As = 1.6 +

0.00056(m0 − 765) = 2.0116 m2 (Rajamani [2006]), with
while the real ones are m = 1.1m0 J = 1.05 J0, lr = lr0,
lf = lf0, Ca = 0.8Ca0, vx = vx0, µf = 0.6 µf0, l = lr + lf ,
lns = J/µlf , As = 2.0956 m2 (calculated with the same
formula), cψ = 1.15cψ0, ρ = 1.15ρ0. The wind components
are

vw,X = 0.45 + DX(t), vw,Y = 0.45 + DY (t)

with DX(t) = DY (t) = 0.1 N random disturbances,
modeled by uniform distributions N .

The results are summarized in Figure 1, which shows
the effectiveness of the proposed control scheme. In par-
ticular, the tracking error ψ − ψr is of the order of 10−4

rad, while the absolute lateral velocity |vn| is less than of 2
m/s. We remind that this last can not be exactly zero due
to the fact that the control law γ has been approximated
in order to obtain an exact immersion.
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Fig. 1 a) Yaw angle ψ and reference ψr ; b) Lateral velocity vn; c)
Tracking error ψ − ψr ; d) Tire–road friction coefficient; e) Wind
velocity vw

CONCLUSIONS

This paper presents an approach to the vehicle dynam-
ics control based on the robust, or structurally stable, regu-
lation. Such a controller takes into account the presence of
parametric uncertainties in the control law. The dynamic
controller is derived considering an approximation of the
exact controller. Such an approximated controller ensures
a zero tracking error in a practical sense (ultimate bound-
edness of the trajectories) of the yaw angle reference, and
small lateral velocities.
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APPENDIX – PARAMETERS IN (3) AND IN (8)

The parameters in (3) are given by

a1= (lr − lns)a2, a2 = Cα
lrµf

Jvx

, a3 =
2(lr − lns)

3

3v2x

a2

a4=
2

3v2x

a2, a5 =
2(lr − lns)

2

v4x

a2, a6 =
2(lr − lns)

v2x

a2

a7= (lr − lns)a8, a8 = Cα
µf (lf + lr)

mlfvx

, a9 =
2(lr − lns)

3

3v2x

a10=
2

3v2x

a8 a11 =
2(lr − lns)

2

v2x

a8, a12 =
2(lr − lns)

v2x

a8

b1=
µf lf

J

, b2 =
1

J

, b3 =
1

mlf

b4= Cα
µlr

J

, b5 = Cα
lf + lr

lf

µ

m

aj+12 = αj/J , aj+18 = αj/(mlf ), j = 1, · · · , 6.

The parameters in (8) are given by

β0=
1

b1

(

b2

b3

a19 − a13

)

, β1 = ω
2 1

b1

β2= ω
1

b1

(a1 − a7

b2

b3

a19), β3 = ω
2 1

b1

(a20

b2

b3

a19 − a14)

β4= ω
3 1

b1

(a9

b2

b3

a19 − a3), β5 =
1

b1

(a21

b2

b3

a19 − a15)

β6=
1

b1

(a22

b2

b3

a19 − a16), β7 = ω
1

b1

(a23

b2

b3

a19 − a17)

β8= ω
1

b1

(a24

b2

b3

a19 − a18),

θ0=
1

b3

a19, θ1 = ωa7

1

b3

, θ2 = ω
2
a20

1

b3

θ3= ω
3
a9

1

b3

, θ4 = a21

1

b3

, θ5 = a22

1

b3

θ6= ωa23

1

b3

, θ7 = ωa24

1

b3

.
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