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Abstract: The paper presents a novel control approach for crystallization processes, which can be used for 
designing the shape of the crystal size distribution to robustly achieve desired product properties. The 
method is implemented in a hierarchical structure. On the lower level a supersaturation control approach is 
used that drives the system in the phase diagram according to a concentration versus temperature 
trajectory. On the higher level a robust model-based optimization algorithm adapts the setpoint of the 
supersaturation controller to counteract the effects of changing operating conditions. The process is 
modelled using the population balance equation (PBE), which is solved using a novel efficient approach 
that combines the quadrature method of moment (QMOM) and method of characteristics (MOC). The 
control approach is corroborated through simulations and laboratory experiments. The results illustrate the 
importance of judicious combination of state-of-the art process analytical technology tools and efficient 
optimization algorithms for the successful implementation of the on-line model based control approach. 

 

1. INTRODUCTION 

Crystallization is one of the key unit operations in the 
pharmaceutical, food and fine chemicals industries. Despite 
the long history and widespread application of batch 
crystallization, there remains a disproportionate number of 
problems associated with its control (Braatz, 2002), mainly 
related the complex nonlinear dynamics with nonideal 
mixing, and various disturbances characteristic to these 
systems. The operating conditions of the crystallization 
process determine the physical properties of the products 
which are directly related to the crystal size distribution 
(CSD), shape or polymorphic form. These properties 
determine the efficiency of downstream operations, such as 
filtration, drying, and tablet formation, and the product 
effectiveness, such as bioavailability and shelf-life. With the 
recent change of industrial procedures from Quality-by-
Testing (QbT) to Quality-by-Design (QbD) and the advent of 
process analytical technology (PAT) initiative, especially in 
the pharmaceutical industries, approaches which can be used 
to design desired product properties are of great interest 
(Fujiwara et al., 2005). The classical control objectives 
expressed in characteristics of the size distribution (e.g. 
maximize average size, minimize coefficient of variation) can 
lead to conservative and economically inefficient designs of 
the crystallization systems. The paper presents an approach 
which can be used to directly design the shape of the crystal 
size distribution to achieve desired product properties. The 
method is able for example to minimize filtration time 
without generating unnecessarily large crystals. Since 
dissolution rate depends on the shape of the CSD, when the 
resulting crystals represent the final product (e.g. drugs for 
inhalers) controlling the shape of the CSD can provide novel 
applications in the area of drug delivery, or environmentally 
friendly dosage of pesticides, where particular multimodal 
distributions can be designed to achieve desired concentration 
level of the active ingreadient. The crystallization system is 

modelled via the population balance equation (PBE) which is 
directly used in the optimization procedure where the 
objective function is expressed in terms of the shape of the 
entire CSD. The population balance equation (PBE) is solved 
using a novel approach based on the combination of the 
quadrature method of moments (QMOM) (McGraw, 1997) 
and method of characteristics (LeVeque, 1992). 
Crystallization models are generally subject to significant 
uncertainties. A robust optimization based approach is 
evaluated and it is shown that taking parametric uncertainties 
into account in the problem formulation can lead to 
significant improvement in the robustness of the prodcut 
quality. The control approach is implemented in a 
hierarchical structure where on the lower level a model-free 
crystallization control methodology, the supersaturation 
controller, drives the system in the phase diagram, rather then 
in the time domain, whereas on the higher level a robust on-
line model based optimization algorithm, the so-called 
distributional batch nonlinear model predictive control 
(NMPC), adapts the setpoint of the supersaturation controller 
to counteract the effects of changing operating conditions 
(Rawlings et al., 1993; Nagy and Braatz, 2003). The 
optimization problem is solved using an efficient multistage 
approach implemented in the optimization package OptCon 
(Nagy et al., 2004) . The proposed approach is corroborated 
in the case of a simulated crystallization system. The 
simulation results are supported by laboratory experiments. 
The practical experiments illustrate the importance of 
judicious combination of state-of-the-art PAT tools and 
efficient optimization algorithms for the successful 
implementation of the on-line model based control approach. 
 

2. POPULATION BALANCE MODELLING OF BATCH 
CRYSTALLIZATION PROCESSES 

Considering a single growth direction with one characteristic 
length L , and a well-mixed crystallizer with growth and 
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nucleation as the only dominating phenomena the crystal size 
distribution (CSD) expressed in the number density function 
( , )nf L t , is given by the population balance equation (PBE) 

with the form 
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with initial condition given by the size distribution of seed, 
0( , 0) ( )seedf L f L= , t  is time, ( , ; )gG S L θ  is the rate of 

crystal growth. ( ; )bB S θ  is the nucleation rate, satS C C= −  
is the supersaturation, C  is the solute concentration, ( )satC T  
is the saturation concentration at the temperature T , and gθ  
and bθ  are vectors of growth and nucleation kinetic 
parameters, respectively.  The partial differential equation 
can be reduced to a system of ODEs by applying a 
combination of the method of characteristics (MOC) and 
quadrature method of moments (QMOM). The aim of the 
MOC is to solve the PBE by finding characteristic curves in 
the L t−  plane that reduce the PBE to a system of ODEs.  
The L t−  plane is expressed in a parametric form by 

( )L L= Z  and ( )t t= Z , where the parameter Z  gives the 
measure of the distance along the characteristic curve. 
Therefore, ( , ) ( ( ), ( ))n nf L t f L t= Z Z , and applying the chain 
rule gives, 
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Comparing (2) with (1) we find t=Z  and the characteristic 
equations can be derived. Solving these together with the 
system of equations which results by applying the QMOM, 
we can calculate the dynamic evolution of ( , )nf L t  by the 

following  ODEs, 
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with initial conditions 0 0 3 0 0[ (0), , (0), , ( )]seedx L f Lµ µ= …  
where the  jth moment jµ  and its quadrature approximation 
is defined by 
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The number of quadrature points ( qN ) and the corresponding 
weights ( iw ) and abscissas ( iL ) can be determined through 
the product-difference (PD) algorithm (McGraw, 1997) or via 
direct solution of a differential-algebraic (DAE) system that 
results by setting the condition of no error if the integral from 
the moment definition is replaced with its quadrature 
approximation. The solute concentration is given by 

3 3( ) (0) ( ( ) (0))v cC t C k tρ µ µ= − −    (5) 
 

where cρ  is the density of crystals and vk  the volumetric 
shape factor. The nucleation kinetics is given by  
 

b
bB k S= ,   (6) 

 

for primary  nucleation and by 
 

3
b

bB k S µ= ,   (7) 
 

for secondary nucleation mechanisms, with nucleation 
parameters ,[ , ]b bk bθ = . The growth rate is expressed by a 
generic size dependent growth rate 
 

(1 )g p
gG k S Lγ= + ,  (8) 

 

with growth parameters ,[ , , ]g gk g pθ γ= . 

Solving the system of ODEs (3) with different initial 
conditions obtained by varying 0L , the shape of the 
distribution can be obtained with desired resolution. Note that 
the proposed solution method can be used for the efficient 
solution of generic PBEs, including the case when 
agglomeration or breakage mechanisms are also considered 
together with nucleation and growth.  
 

Several approaches have been proposed for designing the 
operating curves for crystallization systems. Generally 
speaking, two main categories can be distinguished, (i) the 
model-based approach (Rawlings et al., 1993) and (ii) the 
direct design (Fujiwara et al., 2005). In the model-based 
design approach the detailed model (3) is used together with 
optimization techniques to determine temperature versus time 
trajectories (Braatz, 2002), which optimize desired product 
properties, usually expressed as functions of the moments of 
the CSD. The direct design approach is based on the 
understanding of the basic concept of crystallization, to 
operate the system within the metastable zone bounded by the 
nucleation and solubility curves (see Figure 1). In this 
technique a supersaturation setpoint profile is chosen 
experimentally and it is followed in the phase diagram using 
a supersaturation controller based on concentration 
measurement. The approach proposed in the paper combines 
the two methods in a hierarchical control algorithm, in which 
a model-based robust optimization determines the operating 
profile in the phase diagram, which is used then as the 
setpoint for the supersaturation controller.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Operations of seeded and unseeded batch cooling 
crystallizers. 
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  3. DISTRIBUTIONAL BATCH NMPC 

The optimal control problem to be solved off-line or on-line 
in every sampling period in the control algorithm (Nagy and 
Braatz, 2003) can be formulated as follows: 
 

min ( , ; )
u

x u θ
∈U
H             (9) 

subject to:                  
 ( ) ( ( ), ( ); )x t f x t u t θ=� ,   (10) 

 ( ) ( ( ), ( ); )y t g x t u t θ= ,   (11) 

 0 0ˆ ˆ( ) ( ), ( )k kx t x t x t x= = ,   (12) 

 ( ( ), ( ); ) 0, [ , ]k Fh x t u t t t tθ ≤ ∈ ,  (13) 

where H is the performance objective, t is the time, tk is the 
time at sampling instance k, tF is the final time at the end of 
prediction, ( ) xnx t ∈ \ is the vector of states, 
( ) unu t ∈ ⊂ RU is the set of input vectors, ( ) yny t ∈ \ is the 

ny vector of measured variables used to compute the 
estimated states (̂ )kx t , nθθ ∈ Θ ⊂ R  is the nθ vector of 
uncertain parameters, where the set Θ can be either defined 
by hard bounds or probabilistic, characterized by a 
multivariate probability density function. The function 
: x xn nf × ×Θ →\ \U  is the twice continuously 

differentiable vector function of the dynamic equations of the 
system, : yx nng × ×Θ →\ \U is the measurement equations 
function, and : xn ch × ×Θ →\ \U  is the vector of 
functions that describe all linear and nonlinear, time-varying 
or end-time algebraic constraints for the system, where c 
denotes the number of these constraints. The objective 
function can have the following general form: 
 

( ( ), ( ); ) ( ( ); )+ ( ( ), ( ); )
F

k

t

F
t

x t u t x t x t u t dtθ θ θ= ∫H M L .  (14) 
 

We assume that : xn × ×Θ →\ \H U is twice continuously 
differentiable. The objective function H  consists of a 
terminal cost function, : xn ×Θ →\ \M , and a running 
cost function, : xn × ×Θ →\ \L U . The form of (14) is 
general enough to express a wide range of objectives 
encountered in NMPC applications (moving or shrinking 
horizon approach on regulation and/or setpoint tracking 
problems, direct minimization of the operation time, optimal 
initial conditions, multiple simultaneous objectives, treatment 
of soft constraints, terminal penalty term for stability 
conditions, etc.).  
 
The repeated optimization problem is solved by formulating a 
discrete form, that can be handled by conventional solvers 
(Biegler and Rawlings, 1991). The batch time [0, ]ft t∈  is 

divided into N equally spaced time intervals ∆t (stages), with 
discrete time steps tk = k∆t, and k = 0, 1, …, N.  The NMPC 
approach is implemented in the Matlab toolbox, OptCon 
(Nagy at al., 2004), which is based on a state-of-the-art large-
scale nonlinear optimization solver (HQP) (Franke et al.), 
which uses a multiple shooting algorithm (Diehl et al., 2002). 
The main idea of the shrinking horizon on-line control 
algorithm is illustrated in Figure 2.  

 
 

Fig. 2. Main idea of the shrinking horizon batch NMPC. 
 
Consider the case of parameter uncertainty, with 

nθδθ ∈ R defined as the perturbation about the nominal 
parameter vector θ̂ . The real uncertain parameter vector is 
then given by ˆθ θ δθ= + . Assuming zero mean, normal 
measurement errors, and known covariance matrix, the set of 
possible parameter values is given by the hyperellipsoidal 
confidence region, defined as 

 

 1 2ˆ ˆ( ) { : ( ) ( ) ( )}T
nθθα θ θ θ θ θ χ α

∆ −Θ = − − ≤V ,        (15) 
 

where α  is the confidence level, 2 ( )nθ
χ α  is a quantile of the 

chi-squared distribution with nθ  degrees of freedom, and 
n nθ θ

θ
×∈V R is the parameter covariance matrix. Uncertainty 

description (15) results most commonly from typical least-
squares identification procedures from experimental data. We 
denote with ( ( ); )fx tψ θ  the end-point property of interest. 
Considering the mean-variance approach the following 
objective function is used to account for parameter 
uncertainties in the NMPC: 

 

 (1 ) [ ( ( ), )] ( )f fw x t wV tψψ θ= − +H E ,              (16) 
where E and Vψ ∈ R  is the expected value and variance, 
respectively, of the  property at the end of the batch, and 
[0,1]w ∈  is a weighting coefficient that quantifies the 

tradeoff between nominal and robust performance. The main 
advantage of this approach compared to the classical minmax 
optimizations is that the tradeoff between nominal and robust 
performance can be controlled by appropriately weighting the 
two objectives. Expected value and variance can be computed 
efficiently using a second order power series expansion, 

 1
2

TLδψ δθ δθ δθ= + +M … ,                      (17) 

where 
,̂

( / ) n

u
L d d θ

θψ θ= ∈ R , and 2 2

,̂
( / ) n n

u
d d θ θ

θψ θ ×= ∈M R  
are the first and second order sensitivities, respectively. 
Assuming zero mean, normally distributed parameters δθ , 
deriving the expected value and variance of δψ based on (17) 
gives the analytical expressions: 
 

1
[ ] tr( )

2 θδψ = MVE    (18) 

 21
[tr( )]
2

TV L Lψ θ θ= +V MV   (19) 

where tr( )A  is the trace of matrix A . The feasibility of the 
optimization under parametric uncertainty is achieved by 
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reformulating the constraints in a probabilistic sense: 
 

( ( , ; ) 0)i ih x u θ α≤ ≥P ,   (20) 

where P  is the probability and iα  is the desired confidence 
level for the satisfaction of constraint i . The robust 
formulation of (20) can be written using the t-test in the form: 
 

/ 2,[ ] 0, 1, , .
ii n hh t V i c

θα+ ≤ = …E�  (21) 
 

The expected value ( [ ]ihE� ) and covariance (
ih
V ) of the 

constraint ih  can be evaluated using first or second order 
approximations. For first order approximation 

ˆ[ ( , ; )] ( , ; )i ih x u h x uθ θ=E�  and 
i i i

T
h h hV L Lθ= V , whereas for 

second order approximation expressions similar to (18) and 
(19) can be used, with 

,̂
( / )

i

n

uh iL dh d θ

θθ= ∈ R , and 
2 2

,̂
( / )

i

n n

uh id dh θ θ

θθ ×= ∈M R . In this formulation the 
algorithm shows robust performance in the sense of 
constraint satisfaction and decreased variance of the 
performance index. 
 

4. APPLICATION OF THE ROBUST OPTIMAL 
CONTROL AND BATCH NMPC FOR 

CRYSTALLIZATION PRODUCT DESIGN 

For the case studies the crystallization of hydroquinone in 
water was considered as the model system, for which 
nucleation and growth kinetics were determined 
experimentally using image analysis. It was found that 
hydroquinone has a size dependent growth of the form (8), 
hence the shape of the CSD changes significantly during the 
batch. Different product design problems were considered, 
when various objective functions expressed as desired shapes 
of the CSD were optimized and the required temperature 
profiles were determined. The novel feature of the proposed 
approach is that the optimization is performed in the phase 
diagram, and a concentration trajectory as a function of 
temperature ( )setC f T=  is obtained. This allows the direct 
application of the widely accepted supersaturation control in 
conjunction with the NMPC. The optimization problem can 
be expressed by the generic robust formulation: 
 

2
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min{(1 ) ( ( , ; ) ( , ))

[ ( , ; ]}
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n k f n k fC T
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n f

w f L t f L t
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min max

min max
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. . ( )
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s t T T t T

dT
R R

dt
C t C

≤ ≤

≤ ≤

≤

   (23) 

where ( , )desired
n k ff L t  is the desired (setpoint) CSD with a 

given shape at the end of the batch, minT , maxT , minR , maxR  
are the operating constraints determined by the bounds and 
minimum and maximum rate changes of the temperature 
profiles, respectively, C  is the concentration and maxC  is the 
maximum concentration at the end of batch required to 
achieve a desired crystallization yield. For most 
crystallization processes there are significant variations in the 
metastable zone width (MSZW), which is incorporated in the 
optimization by considering uncertainties in the nucleation 

parameters ( ,[ ]b bk bθ = ). Figure 3 shows the metastable zone 

width in the phase diagram delimited by the solubility and 
nucleation curves. Because of the uncertainties in the 
nucleation kinetics there is a nucleation region, with a width 
given by the 99% confidence intervals obtained via Monte 
Carlo simulations. The operating profiles resulted by solving 
(22)-(23) for the nominal case ( 0w = ) and one robust case 
( 0.3w = ) are shown in the phase diagram in Figure 3. The 
target CSD was monomodal with a shape biased toward 
larger particles to improve filtration. The robust operating 
profile corresponds to a trajectory, which is further away 
from the nucleation zone throughout the entire batch. The 
operating profiles are implemented using a supersaturation 
controller. Figure 4 shows the time-domain representation of 
the operating curves corresponding to Figure 3. Since the 
robust profile operates at lower superasaturation the cooling 
is slower than in the nominal case resulting in longer batch 
time for similar yield. The robust operating policy also 
indicates slower cooling and even a slight increase in the 
temperature during the initial part of the batch when the 
nuclei are generated. This is in correlation with the often used 
industrial practice, according to which slow cooling and 
moderate increase in temperature after the onset of nucleation 
can result in improved consistency in the final CSD. Monte 
Carlo simulations were performed by randomly sampling 
(100 samples) the uncertain parameter space bθ  and applying 
the nominal and robust temperature profiles. Figure 5 
demonstrates that the robust operating curve leads to 
significantly reduced variability in the product quality 
compared to the nominal operating policy.  
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Fig. 3. Phase diagram with nominal ( 0w = ) and robust 
( 0.3w = ) operating curves for monomodal target CSD. 
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Fig. 4. Time-domain representation of the nominal and robust 
operating profiles corresponding to Figure 3. 
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Fig. 5. Monomodal target and product CSDs resulting from 
Monte Carlo simulations with the uncertain nucleation 
parameters using the nominal and robust operating profiles. 
 
In the production of crystalline products often a desired 
dissolution profile (for example to achieve constant 
concentration level of pharmaceutical ingredients for a longer 
period) can be achieved by obtaining a desired multimodal 
CSD. To test the performance of the approach for crystalline 
product design with tailored dissolution profile the 
optimization was repeated for the case of a bimodal target 
distribution. Figure 6 shows the desired distribution at the 
end of the batch and the results of the Monte Carlo 
simulations corresponding to the nominal and robust 
operating profiles shown in Figure 7 in the phase diagram 
and in Figure 8 in time domain, respectively. The same initial 
distribution was used as in the previous case. The trajectories 
during the first part of the batch are very similar to those 
obtained for the monomodal CSD target. To obtain the 
bimodal distribution the controller drives the process to cross 
the nucleation curve for the second time. In both cases similar 
crystallization yield is obtained. The robust operating profile 
results in longer batch time. The consistency of the product 
CSD is significantly better for the robust temperature 
trajectory than for the nominal operating curve. 
 
The performance of the batch NMPC approach is tested in 
the case of sudden change in the nucleation curve. Similar 
scenarios may happen in practice due to accidental seeding, 
resulting from crusting or imperfectly cleaned crystallization 
vessel. The hierarchical implementation of the approach, 
which consists of the batch NMPC at the higher level and the 
supersaturation controller (SSC) at the lower level, is shown 
in Figure 9. The NMPC uses concentration, temperature and 
CSD measurements to repeatedly calculate the operating 
profile ( )setC f T=  in the phase diagram, which is sent as a 
setpoint to the SSC. An estimator can be used when full CSD 
measurement data is not available. The focused beam 
reflectance measurement (Lasentec FBRM) from Mettler-
Toledo with a conversion algorithm to transform the chord 
length distribution into CSD is an ideal PAT tool which can 
provide in situ full CSD information in real-time. In the ideal 
case the operating profile resulted form the batch NMPC is 
equivalent to the nominal or robust open-loop optimization. 
When a disturbance is detected the NMPC will alter the 
operating profile to correct the predicted effect of the 
disturbance on the final CSD. Figure 10 shows the operating 
profiles obtained from the NMPC. 
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Fig. 6. Bimodal target and product CSDs resulting from 
Monte Carlo simulations with the uncertain nucleation 
parameters using the nominal and robust operating profiles. 
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Fig. 7. Phase diagram with nominal ( 0w = ) and robust 
( 0.3w = ) operating curves for the bimodal target CSD. 
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Fig. 8. Time-domain representation of the nominal and robust 
operating profiles for the bimodal target CSD. 
 

 
 

Fig. 9. Architecture for robust control of the shape of CSD 
for batch cooling crystallization. 
 
When the shift in the nucleation curve occurs continuing the 
original operating curve results in excessive undesired 
nucleation. The NMPC drives the process in the 
undersaturated region by increasing the temperature. This 
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dissolves the particles resulted from the unwanted second 
nucleation event. Figure 11 shows that the batch NMPC is 
able to achieve the desired target CSD despite the second 
nucleation event. When the original nominal profile is 
implemented it leads to significant secondary nucleation, 
which results in smaller average size and bimodal CSD. The 
resulted temperature profile is significantly faster 
(Figure 10B) in the nominal case since the excessive 
nucleation consumes the solute from the solution faster.  
 
The experimental implementation of the approach confirmed 
the simulation results. Figure 12 shows the micrographs of 
the crystals obtained using the nominal profile and the 
trajectory resulted from the adaptive approach via the batch 
NMPC when the shift in the nucleation curve was induced by 
seeding. Significantly higher quality crystals were obtained 
by re-optimizing the supersaturation profile during the batch. 
Results were also confirmed by FBRM data. 
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Fig. 10. Phase-diagram (A) and time-domain (B) 
representation of the nominal and batch NMPC profiles in the 
case of shift in the nucleation curve. 
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Fig. 11. Target and product CSD at the end of the batch for 
nominal operating curve and batch NMPC. 

        
 

Fig. 12. Microscopic images of the crystal products obtained 
with nominal profile (A) and batch NMPC (B) in the case of 
shift in nucleation curve due to accidental seeding. 
 

5. CONCLUSIONS 
 

The paper presents a novel hierarchical robust control 
approach for the design of crystalline products by shaping the 
crystal size distribution. A distributional optimization 
approach is used to design a robust concentration versus 
temperate profile, which is used as a setpoint for a lower 
level supersaturation controller. The population balance 
model is solved using a novel combined quadrature method 
of moment and method of characteristics approach. 
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