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AbstractIn order to prevent flooding along the Demer in Belgium, the local water adminis-
trations has installed hyraulic structures and flood reservoirs along the river. Though these
actions have reduced the damage and frequency of flooding events, simulations have shown that
an improved regulation could further decrease the flood risk. In this study a real time control
procedure is being developed by means of model predictive control. For this purpose a full
hydrodynamic model of the river basin has been simplified and a conceptual river model built
in order to limit the model computational times. Afterwards a model predictive controller is
built and used for flood control. A comparison is made between the performances of the model
predictive controller and the currently used controller.

1. INTRODUCTION

Flooding of rivers are worldwide the cause of great eco-
nomic losses. This is also the case along rivers in Bel-
gium. This study focuses on the Demer river, where severe
floodings have occured in the past during periods of heavy
rainfall. In order to prevent these flooding events the local
water administration installed hydraulic structures (with
movable gates) in order to control the discharges in the
river systems. Extra storage capacity for periods of heavy
rainfall was provided through flood control reservoirs.
Structures to control the flow from and into the reser-
voirs were also installed. At this moment, the hydraulic
structures are controlled by a three position controller.
The three position controller determines the control ac-
tions of the gates based on some very simple rules. The
main disadvantage of these rules is that they are only
based on the current measurements of the water levels but
don’t take the future rain predictions into account. This
causes the control actions to be far from optimal. The
local water administration has verified that the damage of
past flooding events could have been significantly reduced
and even completely avoided if different control decisions
would have been applied than the ones obtained by the
three position controller. The main objective of the study
presented in this paper is to come up with a better control
strategy.

1.1 Model Predictive Control

In this work the control strategy to be investigated
is model predictive control(MPC)([Camacho],[Rossiter]).
MPC is a control technique that in the past decennia has
become more and more popular in the process industry.
1 email: toni.barjas-blanco@esat.kuleuven.be

Because the dynamics of river systems are relatively slow,
because to prevent flooding input and state constraints
need to be considered and because future rain predic-
tions need to be taking into account model predictive
control is a suitable control strategy in order to solve the
flooding problem. In the literature several studies can be
found in which automatic control techniques are used to
control a river system ([Brian et al.],[Burt et al.],[Litrico
et al.]). A good overview of the different controllers can
be found in [Malaterre(1998)].There are also several stu-
dies available in which a MPC is used to control river
systems([Overloop(2006)],[Rutz et al.],[Rodellar et al.]).
These works however have as main goal to control the
different water levels to some desired target value and
not to prevent flooding. In these applications it is usually
sufficient to linearize the system around the desired steady
state value in order to obtain good results. This simple
linearization does however not work when trying to avoid
flooding. The main reason is that during periods of heavy
rainfall the complete nonlinear dynamics of the system are
excitated. So in this application it is really important to
use a MPC that is capable of taking the nonlinear model
behaviour into account. In the sequel of the paper such a
MPC will be discussed. As to the authors knowledge, there
are no works published in which MPC is used in order to
avoid flooding, with exception from [Thai(2005)]. However,
in [Thai(2005)] the nonlinear behaviour introduced by the
presence of the gates is not considered which is a strong
simplification of the actual problem.

1.2 Modelling

MPC is a control paradigm that needs the model of the
system in order to determine the optimal control inputs. So
the first step in any application in which an MPC will be
used, is to determine an appropriate model of the system
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Figure 1. Schematic overview of the river system in the
study area

Figure 2. Model scheme for the reduced study area

to be controlled. In this work a discrete time conceptual
model of the river system is determined rather than a
finite element model. The tuning of the parameters of the
conceptual model is done by taking hystorical data into
account. Results of this model will be shown in the sequel.

2. MODELLING

In figure 1 a schematic overview is shown of the river
system in the study area. The local water administration
has an accurate full hydrodynamic model of this river sys-
tem generated in the software package InfoWorks [OBM-
Demer(2003)]. Because of the high computational times
and because it is not straightforward to establish a soft-
ware coupling with this software package, it was necessary
to derive a simplified conceptual model, implemented in an
own software (Matlab). The conceptual model is calibrated
based on simulation results with the detailed InfoWorks
model for 2 historical floods. Since this work is the first
step towards the use of MPC for flooding the focus was
limited to control only the part indicated on the figure
by the (red) circle. A more detailed view of this part is
depicted in figure 2. The river system considered in this
work consists of 10 states (three water levels, four dis-
charges and three volumes) and three inputs. The outputs
of the system are the three water levels. The water level
upstream is hopw , the water level downstream is hafw.
There is one flood control reservoir that can be used to
control the water levels during heavy rainfall; its water
level is hs. There are three gates that need to be controlled
by the controller, namely A, D and K7. There are two
disturbance inputs qman en qopw to model the inflow of
rain storm water(by means of smaller rivers) in the river
system.

The conceptual model derived here is of the reservoir type.
The equations are determined according to the methodolo-
gies described in [Vaes et al.(2002)]. The resulting model is
a discrete time model with a simulation time step of 1 hour.

Figure 3. Comparison of simulation results between the
conceptual and Infoworks models for the floods of
1998 and 2002.

Internally, however, the model uses a 5 minutes simulation
time step. The equations to describe the discharges over
the gates make the model of the system hybrid. The model
was validated by comparing its simulation results with
data from 1998 and 2002 generated by the InfoWorks
model. In figure 3 this validation is shown for water level
hafw. The first 600 hours correspond to the year 1998 and
the next hours to the year 2002. It can be seen that the
conceptual model provides a relatively good match with
the simulation results by the detailed InfoWorks model.

3. CONTROLLER DESIGN

MPC has a typical structure that can cope with all issues
related to controlling a river system. The main issues are
the following:

(1) The calculation time of a MPC controller limits its
use to control systems with relatively slow dynamics.
Because river systems have slow dynamics MPC can
be applied to them.

(2) The gates of the control structures in the water sys-
tem have some important physical limitations that
have to be taken into account. The gates have upper
and lower limits that can never be violated in reality.
There is also a restriction on the speed of the gate
movement as the gates cannot move infinitely fast in
real time. MPC is capable of taking both constraints
into account.

(3) In order to prevent flooding it is necessary to im-
pose upper limits on the different water levels. In an
MPC framework this can be imposed by means of
constraints.

(4) Taking the rainfall predictions into account is a very
important issue when trying to prevent flooding.
MPC is capable of taking this into account by mo-
delling the rainfall as a known disturbance input into
the system.

(5) The model of the considered river system in this work
is nonlinear. MPC is well suited to tackle this.

In the remainder of this section the principles of
MPC will be explained as well as the implementation
for the case study.
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3.1 Principles of MPC

MPC is a control strategy that uses the model of the
system in order to make future predictions on which an
optimal input sequence is determined in order to minimize
an objective function. The three basic components of MPC
are the following:

(1) A process model is used to determine the future
outputs within a time window with length N, the pre-
diction horizon. These future outputs are determined
by the future control actions and the current state of
the system.

(2) An objective function is minimized. The objective
function is typically a quadratic function that tries
to minimize the water level errors and the gate
movement by adjusting the unknown control inputs.
Typically the objective function is also subject to
constraints.

(3) Once the sequence of future control actions that mi-
nimizes the desired objective function is determined,
only the first set of control actions is implemented on
the system. The system is then updated by measuring
(estimating) the new state of the system and the
process is repeated.

3.2 Implementation of MPC

The best known MPC is the linear MPC in which the
process model is a linear time invariant system. This may
seem restrictive but since in most control applications the
goal is to steer the output to some predefinied reference
output and keep it there, linear MPC seems to work
very well in practice. Furthermore, most nonlinear MPC
strategies for nonlinear process models are based on linear
MPC. Therefore, in the following a further outline of the
linear MPC will be given and afterwards will be discussed
how to extend this to come to the nonlinear MPC used in
this work.

The linear time variant state space system of interest in
this work has the following form:

x(k + 1) = Akx(k) + Bku(k) + Dkd(k), (1)
y(k + 1) = Cx(k + 1). (2)

with x(k) the state vector of the system at time k, u(k)
the input vector (gates) at time k, d(k) the disturbance
vector (rainfall) at time k, y(k) the output vector (water
levels) of the system at time k, Ak, Bk and Dk time variant
system matrices and C a time invariant system matrix.
Now, assume

Y T
p = [ yk+1 yk+2 . . . yk+N ] (3)

with Yp the vector containing the future outputs. Taking
the equations of the linear time variant system into ac-
count it is possible to calculate the future outputs as
follows:

Yp = Gxk + Hu + Jd (4)

with the matrices G, H and J constant matrices deter-
mined by the time variant model. The second component
of MPC is the objective function to be minimized. The

objective function typically has the following form:

min
u

‖Yp(u)− Yr‖Q + ‖u− ur‖R

with

‖x‖Q = x′Qx

,Yr the desired output references, ur the desired input
references and Q and R positive definite symmetrical cost
matrices.

By taking (4) into account the cost function can be written
as a function of the unknown input vector u and initial
state xk, this leads to a quadratic objective function which
together with the constraints imposed to the system leads
to the following (constrained) quadratic program (QP)
that has to be solved at each time instant:

min
u

u′(H′QH + R)u + 2(x′
kG′QH + d′J ′QH − Y ′

rQH − u′
rR)u

Au ≤ b
(5)

In this work the process model is not a linear time variant
but a highly nonlinear one. However, the results of the
linear time variant system can be used in order to solve
the control problem with the nonlinear process model by
means of the following steps:

(1) Simulation of the nonlinear model within the predic-
tion horizon N with the inputs obtained by solving
the QP in the previous time instant. This leads to a
trajectory of future states.

(2) At each time instant within the prediction horizon
a linearization around the simulated future states is
done. The linearization in this work was done itera-
tively by use of forward differences. The linearization
gives rise to different linear systems at each sampling
time which are the characteristics of a linear time
variant system.

(3) The QP (5) related to this linear time variant system
is solved and a sequence of optimal inputs is obtained.

(4) The previous steps are repeated with the recently
computed optimal input sequence until convergence
or until time runs out. After convergence the first
input is applied to the system, the systems gets an
update and the MPC strategy is repeated.

In literature [Allgöwer et al.] it has been shown that this
procedure converges to a local minimum of the nonlinear
control problem. In this work this procedure was used in
order to obtain the results presented in section 4.

3.3 Local uncontrollability

An important problem that arises when controlling the
gates is local uncontrollability. The river model discussed
in section 1.2 is hybrid. The system consists of several
modes that each have their own discharge equation. In
some modes the discharge equations are independent from
the regulating gate. In this situation the row of the Bk
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matrix in (1) corresponding to that gate is a zero row. Such
a mode renders the gate locally uncontrollable which can
lead to serious complications as the MPC controller will
not be capable of determining a suitable control action for
that gate.

An example of an uncontrollable mode is the mode where
the gate is much higher than his adjacent water levels. A
small movement of the gate doesn’t change the discharge
over it as the discharge stays equal to zero causing the
gate to be locally uncontrollable. Most of the time gates
regulating the discharges to the reservoirs are in this mode.
Such gates only become controllable if the water level
before the gate rises above the gate position by which
a change to a controllable mode is realized. But waiting
until the water level rises above the gate position before
the MPC controller can control the gate can turn out to
be too late for avoiding flooding. Similar uncontrollability
issues arise in other modes.

In order to deal with this important problem the matrices
Ak, Bk and Dk of the time variant system (1) are calcula-
ted on basis of a fuzzified model of the conceptual model.
This fuzzified model is exactly the same as the conceptual
model in the controllable modes. In the uncontrollable
modes the equations are fuzzified in order to make them
controllable. Suppose f i

z(x, u) is the discharge equation for
uncontrollable mode i in the fuzzified model and f i(x) the
discharge equation for the same mode in the conceptual
model then:

f i
z(x, u) = f i(x) + αf

j
(x, u) (6)

with f
j
(x, u) a modified version of model equation f j(x, u)

from the controllable mode j and α a tuning parameter.
Remark that mode j is the mode adjacent to mode i,
meaning that the system can switch from mode i to
mode j without having to enter any other mode first.
By doing this all the modes are controllable but the
drawback is that predictions of the MPC controller are
less accurate. The role of the tuning parameter α is to
reduce this inaccuracy of the predictions but without
losing the gained controllability. Also remark that the
modified equation f

j
(x, u) is modified in such a way that it

is a logical extension to f j(x, u). For example, in case of the
uncontrollable mode where the gate is much higher than
its adjacent water levels, suppose the adjacent controllable
mode has the following equation

q = f1(x, u) (7)

than the fuzzified model is as follows:
qz = 0− αf1(x, u). (8)

The logical extension in equation (8) is ensured due to
the minus. In order to see this suppose the gate is lowered
until the system is in the controllable mode where equation
(7) holds. By raising the gate the discharge will decrease
until at some point the discharge is equal to zero. The
logical extension of further raising the gate is that the
discharge switches from sign and increases in absolute
value, even if in reality the discharge will stay equal to
zero if the gate is raised more. This is important because
by this logical extension the MPC controller knows that
if the discharges over the valve should be positive, the

gate should be lowered. Without the minus an increase
in discharge in the fuzzified model could also be achieved
by further raising the gate, causing the MPC controller to
make wrong decisions.

3.4 Constraint and cost function strategy

The local water administration has some specific desires
that should be achieved as close as possible during nor-
mal periods. However, during periods of heavy rainfall
these desires change and the focus shifts more to flood
prevention. This means that the objective function and
constraints should change also during operation. Another
reason for introducing a variable cost function and vari-
able constraints is whenever the QP (5) turns out to be
infeasible. Constraints with less priority will be discarded
and their corresponding weights in the cost function will be
modified. In the following this constraint and cost function
strategy is discussed in more detail.

Constraints The constraints in this work are all lineair
and can be formulated in the following way

Au ≤ b (9)

with

A =

[
Au

A∆u

A∗(ρ, j)

]
, b =

[
bu

b∆u

b∗(ρ, j)

]
(10)

and

A∗(ρ, j) =

 A∗
0(ρ)
...

A∗
j (ρ)

, b∗(ρ, j) =

 b∗0(ρ)
...

b∗j (ρ)

 (11)

with ρ ∈ {1, . . . , nρ}, j ∈ {0, . . . , np},[ A∗
0(ρ) b∗0(ρ) ] =

[ ], [ Au bu ]upper and lower bounds on the inputs,
[ A∆u b∆u ] upper bounds on the maximal gate move-
ment and [ A∗(ρ, j) b∗(ρ, j) ] constraints on the future
water levels of the system. Remark that the constraints
[ A∗(ρ, j) b∗(ρ, j) ] are variable in size depending on the
value of j. For j = 0 the constraints [ A∗(ρ, j) b∗(ρ, j) ] are
empty. The variable j defines a priority in the sense that
if j1 ≤ j2 then constraints

[
A∗

j1(ρ) b∗j1(ρ)
]

have a higher
priority than constraints

[
A∗

j2(ρ) b∗j2(ρ)
]
. The variable ρ

corresponds to a condition on some water levels. Basically
the constraints [ A∗(ρ, j) b∗(ρ, j) ] define an upper bound
on the water levels. In this work there are 3 types of upper
bounds namely surveillance levels, alarm levels and flood
levels, by which nρ = 3. The actual value of ρ depends on
the value of the water levels downstream and upstream.
During normal operation and small rainfall events ρ = 1
and the constraints [ A∗(ρ, j) b∗(ρ, j) ] define surveillance
levels. If the water levels downstream and upstream in-
crease further ρ = 2 and the constraints [ A∗(ρ, j) b∗(ρ, j) ]
define alarm levels. By a further increase of the water levels
ρ = 3 and the constraints define flood levels. If the flood
level constraints get violated, flooding occurs. Note that
the conditions on the water levels defining the switching
of the value of ρ are provided by the local water admini-
stration based on their experience and specific desires.

Now assume xp(k + i) the pth component of the state x at
time step k+i and nx the state dimension and the first nw
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state components corresponding to the water levels. For a
given j the constraints

[
A∗

j (ρ) b∗j (ρ)
]

constrain the states
xp(k + i), for i = 1, . . . , N and p ∈ Sj ⊂ {1, . . . , nw} .
Remark that the indices in S only correspond to water le-
vels of the state vector. So for a given j each

[
A∗

j (ρ) b∗j (ρ)
]

bounds only a subset of all the future water levels. Remark
that water levels related to constraints

[
A∗

j (ρ) b∗j (ρ)
]
with

a lower value for j are more important and therefore have a
higher priority. Also note that if j1 6= j2 than Sj1∩Sj2 = ∅.

Cost Function The cost function can be split into two
parts

J(x,u) = J(x(u)) + J(u) (12)

with J(x(u)) the cost related to the states and J(u) the
cost related to the inputs. On his turn J(x(u)) can also be
split as

J(x(u)) = J1(x(u)) + J2(x(u)) (13)

with

J1(x(u)) =
∑

p∈
j⋃

l=1

Sl

N∑
i=1

qpi(ρ)(xp(k + i)− xr
p)

2 (14)

J2(x(u)) =
∑

p/∈
j⋃

l=1

Sl

N∑
i=1

q∗pi(ρ)(xp(k + i)− xr
p)

2 (15)

for j ∈ {0, . . . , np}.xr
p corresponds to the reference level

for the corresponding state component p. Remark that
the cost function depends on the values of ρ and j and
that ρ and j are the same variable as used in the expla-
nation of the variable constraints. Also note that J1(x(u))
contains the cost of the state components constrained by
[ A∗(ρ) b∗(ρ) ] and J2(x(u)) the cost of the unconstrained
state components. Initially when the variable j = np the
cost function J2(x(u)) = 0. In case the constraints are too
restrictive and lead to an unfeasible QP, the variable j is
updated from jold to jnew meaning that less important
state components get unconstrained. The expression of
the cost of these less important state components then
migrates from J1(x(u)) to J2(x(u)), so the unconstrained
components aren’t weighted anymore in J1(x(u)). Also
because the less important components get unconstrained,
their corresponding weights increase meaning that for a
certain component p, q∗pi(ρ, jnew) > qpi(ρ, jold).

Strategy

Solving the QP (5) is equivalent to solving the following
QP:

min
u

J(x,u) (16)

subject to the lineair constraints (9). Under normal con-
ditions this QP has a feasible solution. However, during
heavy rainfalls, the QP can turn out to be unfeasible. In
this situation constraints with a lower priority are removed
from the constraint set which is equivalent to decreasing

the variable j in (11). The variable j keeps getting de-
creased until the QP has a feasible solution. An overview
of the constraint and cost function strategy is given in the
following algorithm:

Algorithm 1.

(1) Determine the value of ρ based on the current water
levels.

(2) Set the value of j.

j := np (17)

(3) Based on the values for ρ and j compose the con-
straints [ A(ρ, j) b(ρ, j) ].

(4) Solve the following QP

min
u

J(x,u) (18)

subject to the constraints [ A(ρ, j) b(ρ, j) ].
(5) • If the QP is feasible, then the optimal inputs

are obtained and the inputs corresponding to the
current time step are applied to the system.

• If the QP is unfeasible, go to the next step in the
algorithm.

(6) Set the value of j to

j := j − 1 (19)

(7) Update the constraints taking the new value of j into
account.

(8) Update the cost function taking the new value of j
into account and ensuring for the unconstrained state
components that q∗pi(ρ, j) > qpi(ρ, j + 1) and go back
to the step where the QP is solved.

Remark that this strategy ensures a feasible solution be-
cause in the worst-case j = 0 and only input constraints
are imposed which can always be satisfied. In case of
infeasibility the strategy ensures the more important con-
straints to be satisfied (if possible) and the less important
ones to be violated as less as possible.

4. EXPERIMENT

The main objective of this experiment is to compare the
current three position controller with the MPC controller.
A three position controller is a controller that consists
of some very simple logical rules based on the current
water levels of the system in order to decide the control
action to be implemented. Both controllers are compared
by a simulation based on the flood event of 1998. In the
following some important details of the simulation are
discussed:

(1) In practice the gates of the river system change each
15 minutes. This time is close to the upper limit of
the computational time of the QP optimization.

(2) Another very important remark is that in this expe-
riment it is assumed that the nonlinear model is per-
fectly known, that the rain predictions are perfectly
known and that the current state of the system is
exactly known at each time step. In practice, however,
this is never the case. But as pointed out in section
5 future work will focus in taking these uncertainties
into account.
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(3) In figure 2 a schematical overview is depicted of the
small river system controlled in this work. The output
of the system are 3 water levels with the following
flood levels:
• hopw ≤ 23.2 m
• hs ≤ 23.2 m
• hafw ≤ 22.75 m

(4) Two constraints are related to the gates and which
are considered as hard constraints, meaning they
should always hold. The first gate constraint limits
all the gate movements to 0.1 m/hour. The second
gate constraints the upper and lower limits of the
gate position and in this work they are the same for
the three gates, namely the gate position should be
between 20 m and 23 m.

(5) An important control objective is to steer hopw as
close as possible to 21.5 m during normal operation.
Concerning the filling of the reservoir it is preferred
to keep its water level beneath 23 m. If more capacity
is needed the reservoir can be filled up until 23.2 m
before it floods. However, filling it up higher than 23
m leads to the flooding of farm land obliging the local
water administration to give the farmers a financial
recompensation.

(6) The rainfall data used in this experiment is based
on the historical flood event of 1998. In the Demer
basin this was the most severe flood event of the last
century.

The results of the experiment are depicted in fi-
gures 4 and 5. The figures show that during nor-
mal operation the MPC controller steers hopw much
closer to its reference level. With the MPC controller
there is almost no flooding. During the second rainfall
peak only hafw violates its flood level for a short
period of time. With the three position controller the
flooding during the second rainfall peak is extremely
big and all the water levels violate their flood level.
The MPC controller clearly outperforms the three
position controller.

5. CONCLUSION AND FUTURE WORKS

In this study a conceptual model for describing water levels
along the Demer was developed. The resulting model was
of the reservoir type. This model was used in order to
compare the performance of the current three position
controller with that of a model predictive controller. In
order to make this comparison the historical flood event
of 1998 was simulated. This simulation showed the MPC
outperformed the three position controller.

Future work will focus on controlling the complete model
of the Demer river instead of a small part of it. The com-
plete model has much more states and is more nonlinear
which will raise challenges concerning computational speed
as well as stability of the QP’s to be solved. Also uncer-
tainties in the model and the rainfall predictions will be
taken into account.
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