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Abstract: We obtain an intrinsic vector-valued symmetric bilinear form that can be associated
with an underactuated constrained mechanical control system. We determine properties of
the form that serve as sufficient conditions for driving a constrained mechanical system
underactuated by one control to an ǫ-neighborhood of rest from an arbitrary initial configuration
and velocity. We also determine properties of the form which serve as necessary conditions. These
conditions are computable and coordinate invariant.

1. INTRODUCTION

1.1 Background

Mechanics and control theory are two well developed fields
of study. However, their intersection still provides a rich
and challenging research area commonly referred to as
geometric control of mechanical systems. Applications can
be found in diverse fields such as robotics, autonomous
aerospace and marine vehicles, multi-body systems and
constrained systems. The formalism of affine connections
and distributions on a Riemannian manifold provides an
elegant framework for modeling, analysis and control. This
framework has given rise to new insights into nonlinear
controllability in the zero velocity setting motivating mo-
tion planning algorithms [1].

The impetus for this work is a standing limitation in the
theoretical foundation of geometric control of mechanical
systems. The modern development of geometric control of
mechanical systems has been limited, for the most part, to
the zero velocity setting [2]. Controllability results that are
limited to zero velocity states restrict the development of
motion planning algorithms and bound the extension of
controllability and motion planning results to the larger
class of hybrid nonlinear mechanical systems where switch-
ing occurs at nonzero velocity states [4].

One of the practical goals of a nonlinear controllability
analysis for mechanical systems is to provide a structure
for the development of motion planning algorithms for
underactuated systems. A control system is underactuated
if it has fewer actuators than degrees of freedom. The miss-
ing actuation can often be made up for by nonholonomic
constraints, however the cost for the reduction in actuation
is the increase complexity of the controller design.

⋆ This work was supported by the Center for Applied Mathematics

at the University of Notre Dame.

Mechanical control systems with constraints can be de-
scribed by a so-called constrained affine connection. Conse-
quently, the nonlinear controllability analysis developed by
Lewis and Murray [11] was adapted to simple mechanical
systems with constraints [9]. The local representation was
then simplified by Bullo and Zefran [3]. This simplifica-
tion lead to a more efficient method for computing the
Christoffel symbols of the constrained affine connection.
The Christoffel symbols play an important role in com-
puting symmetric products which are used to characterize
the structure of the reachable set from zero initial velocity.

A well-known limitation of the local controllability analysis
of Lewis and Murray [11] and the adaption to constrained
systems is that these results are not feedback invariant.
Several efforts have been made to obtain conditions in
the zero velocity setting from properties of a certain
intrinsic vector-valued quadratic form which does not
depend upon the choice of basis for the input distribution
[2], [6]. Recently, it has been observed that vector-valued
quadratic forms come up in a variety of areas in control
theory which has motivated a new initiative to understand
the geometry of these forms [7].

1.2 Statement of Contribution

The contribution of this paper is twofold. First, we develop
a novel geometric tool that can be used to characterize the
set of reachable velocities in the nonzero velocity setting.
Our unique approach is to use the governing equations of
motion to partition or foliate the velocity-phase manifold.
We develop a method to measure a constrained mechanical
control system’s ability to move among leaves of the
foliation.

Second, we provide a general test for stopping a con-
strained mechanical control system. We obtain computable
results which are dependent upon coordinate invariant
properties of an intrinsic vector-valued symmetric bilinear
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form that can be associated with a constrained mechanical
control system. Specifically, we provide necessary condi-
tions for reaching rest from an arbitrary initial configu-
ration and velocity (see Section III.C, Theorem 9). We
also provide sufficient conditions for driving a class of
constrained mechanical system underactuated by one con-
trol to an ǫ-neighborhood of rest from an arbitrary initial
configuration and velocity (see Section III.C, Theorem 12).
The constructive nature of our results naturally gives rise
to a nonlinear control law for moving among the leaves of
the input foliation however we do not provide an explicit
algorithm. These results are applied to two well-known me-
chanical control systems with nonholonomic constraints:
the roller racer [8] and the snakeboard [12].

2. GEOMETRIC MODEL

2.1 Simple Mechanical Control Systems

We consider a simple mechanical control system which
is comprised of an n-dimensional configuration manifold
M ; a Riemannian metric G which represents the kinetic
energy; a R-valued function V on M which represents
the potential energy; m linearly independent one forms
F 1, . . . , Fm on M which represents the input forces; a
distribution H on M which represents the constraint
distribution; and U = Rm which represents the set of
inputs. We do not require the set of inputs to be a subset of
Rm. This allows us to focus on the geometric properties of
our system that inhibit or allow motion in the foliation as
opposed to a limitation on the set of inputs. We represent
the input forces as one forms and use the associated
dual vector fields Ya = G♯(F a), a = 1, . . . ,m in our
computations. Formally, we denote the control system by
the tuple Σ = {M,G, H,Y, V, U} where Y = {Ya | Ya =
G♯(F a) ∀ a} is the input distribution. Note we restrict our
attention to control systems where the input forces are
dependent upon configuration and independent of velocity
and time. DoCarmo [13] provides an excellent introduction
to Riemannian geometry. A thorough description of simple
mechanical control systems is provided by Bullo and Lewis
[1].

If we set the Lagrangian equal to the kinetic energy minus
potential energy, then the equations are given by

∇γ̇(t)γ̇(t) = − gradV (γ(t)) + ua(t)Ya(γ(t)) (1)

where ∇ is the Levi-Civita connection corresponding to G,
u is a map from I ⊂ R 7→ R

M , γ : I →M is a curve on M .
A controlled trajectory for Σ is taken to be the pair (γ, u)
where γ and u are defined on the same interval I ⊂ R.
Note the usual summation notation will be assumed over
repeated indices throughout this paper.

Given a constraint distribution H of rank k, we may
restrict the Levi-Civita connection ∇ to H [9]. Bullo and
Zefran [3] showed that given two vector fields X and Y

on M then the so-called constrained affine connection ∇̃
is given by

∇̃XY = P (∇XY )

where P is the orthogonal projection TM 7→ H . The latter
approach provides a computationally efficient method and

is used to generate the coordinate expression for the
constrained affine connection for the roller racer and the
snakeboard.

The natural coordinates on TM are denoted by ((q1, . . . , qn),
(v1, . . . , vn)) where (v1, . . . , vn) are the coefficients of a
tangent vector given the usual basis { ∂

∂q1 , . . . ,
∂
∂qn }. We

will denote a point in TM by vq. We may lift the second-
order differential equation defined by (1) to TM . This
gives rise to the following system of first-order differential
equations on TM

dqk

dt
= vk, (2)

dvk

dt
=−Γkijv

ivj + uaY ka − gradV k,

where Γkij is the usual Christoffel symbol and i, j, k =
1, . . . , n. Equation (2) is the local representation of the
following vector field on TM

ξ̇(t) =Z (ξ(t)) + ua(t)Y vlft
a (π (ξ(t))) (3)

− gradV vlft (π (ξ(t))) .

where ξ(t) is the total state, Z is the geodesic spray, π is
the canonical projection TM 7→ M , and Y vlft

a , gradV vlft

are the vertical lifts of the vector fields Ya, gradV on M .
Recall that the vertical lift of a vector field X at the point
vq is denoted by Xvlft

vq
and is the tangent vector at t = 0

to the curve t 7→ v + tX .

A critical tool used to analyze distributions and mechani-
cal control systems is the symmetric product. Given a pair
of vector fields X,Y , their symmetric product is the vector
field defined by

〈X : Y 〉 = ∇XY + ∇YX.

We denote the closure of the distribution Y with respect
to the symmetric product by Sym∞(Y). Recall that a
distribution Y is geodesically invariant if and only if it is
closed with respect to the symmetric product [10]. Also, we
denote the flow of a vector field X on M by ΦXt : M →M .

2.2 Roller Racer

In this section we introduce the geometric model of the
roller racer (RR) (Fig. 1).

θ

ψ

x

y

l1

l2

Fig. 1. Roller Racer
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The configuration manifold for RR is SE(2)×S with local
coordinates (x, y, θ, ψ). The Riemannian metric is given by

G =mdx⊗ dx+mdy ⊗ dy + (I1 + I2)dθ ⊗ dθ

+I2dψ ⊗ dθ + I2dθ ⊗ dψ + I2dψ ⊗ dψ,

where m > 0 is the mass of the body of RR, I1 > 0 is
the moment of inertia of the body about its center of mass
and I2 > 0 is the moment of inertia of the wheel assembly
about the pivot point. The constraint one-forms are given
by

ω1 = sin (θ) dx− cos (θ) dy,

ω2 = sin (θ + ψ) dx− cos (θ + ψ) dy

−(l2 + l1 cos (ψ) dθ − l2dψ.

The single control force is a pure torque F 1 = dψ.

2.3 Snakeboard

In this section we introduce the geometric model of the
snakeboard (SB) (Fig. 2).

φ

ψ

θ

φ

x

y

l

Fig. 2. Snakeboard

The configuration manifold for SB is SE(2) × S × S with
local coordinates (x, y, θ, ψ, φ). The Riemannian metric is
given by

G =mdx⊗ dx+mdy ⊗ dy + l2mdθ ⊗ dθ

+Jrdψ ⊗ dθ + Jrdθ ⊗ dψ + Jrdψ ⊗ dψ + Jwdφ ⊗ dφ,

where m > 0 is the total mass of SB, Jr > 0 is the moment
of inertia of the rotor mounted on top of the body’s center
of mass, and Jw > 0 is the moment of inertia of the wheel
axles. The constraint one-forms are given by

α1 = sin (φ− θ) dx+ cos (φ− θ) dy + l cos (φ) dθ,

α2 =− sin (φ+ θ) dx+ cos (φ+ θ) dy − l cos (φ) dθ.

The two control forces are pure torques F 1 = dψ and
F 2 = dφ.

3. GEOMETRIC ANALYSIS

3.1 Construction

In this section we expand upon and adapt the definition
of an affine subbundle found in Hirschorn and Lewis [6].
We restrict our attention to configuration manifolds that

admit a well defined global set of basis vector fields how-
ever our results generalize under appropriate conditions.
The basic geometry of our construction can be captured
by assuming H = TM however we can always relax this
assumption by properly accounting for the orthogonal pro-
jection P .

Recall that an input distribution Y on M is a subset
Y ⊂ TM having the property that for each q ∈ M there
exists a family of vector fields {Y1, . . . , Ym} on M so that
for each q ∈M we have

Yq ≡Y ∩ TqM = span
R
{Y1(q), . . . , Ym(q)}.

We refer to the vector fields {Y1, . . . , Ym} as generators for
Y. Let Y⊥ denote an orthonormal frame {Y ⊥

1 , . . . , Y ⊥
n−m}

that generates the G-orthogonal complement of the input
distribution Y. Note that even though Y⊥ is canonically
define, we must choose an orthonormal basis. It is clear
that {Yq,Y

⊥
q } form a basis for TqM at each q ∈M . Note

that Y = {Y1, . . . , Ym} is a set of m linearly independent
vector fields while Y⊥ = {Y ⊥

1 , . . . , Y ⊥
n−m} is a set of n−m

orthonormal vector fields. This basis will be used to define
an affine subbundle and construct an affine foliation of the
tangent bundle.

An affine subbundle on M is a subset A ⊂ TM having
the property that for each q ∈ M there exists a family of
vector fields {Y0, . . . , Ym} so that for each q ∈ U we have

Aq ≡A ∩ TqM

= {Y0(q) = Y ⊥
1 (q) + · · · + Y ⊥

n−m(q)}

+ span
R
{Y1(q), . . . , Ym(q)}.

An affine foliation, A, on TM is a collection of disjoint
immersed affine subbundles of TM whose disjoint union
equals TM . Each connected affine subbundle A is called
an affine leaf of the affine foliation. Now let us apply this
framework to a simple mechanical control system.

Definition 1. (Input Foliation). Let (M,G, V,Y, U) be a
simple mechanical control system with the input dis-
tribution Y generated by {Y1, . . . , Ym} and the cor-
responding G-orthogonal distribution Y⊥ generated by
{Y ⊥

1 , . . . , Y ⊥
n−m}. An input foliation AY is an affine fo-

liation whose affine leaves are affine subbundles given by

As(q) = {vq ∈ TM | 〈〈Y ⊥, vq〉〉 = s, s ∈ R
n−m}.

Remark 2. The input foliation is parametrized by s ∈
R
n−m. Note that when s = 0, A0 = Y and A0(q) = Yq

where Y is an immersed submanifold of TM and Yq is a
linear subspace of TqM . Thus, the input distribution Y is
a single leaf of the affine foliation.

Given a basis of vector fields {X1, . . . , Xn} onM , we define
the generalized Christoffel symbols of ∇ to be

∇Xi
Xj = Γ̂kijXk.

Note that when Xi = ∂
∂qi we recover the usual Christoffel

symbols of ∇. We introduce the symmetrization of the
generalized Christoffel symbols.
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Definition 3. We define the generalized symmetric Christof-
fel symbols for ∇ with respect to the basis of vector fields
{X1, . . . , Xn} on M as the n3 functions Γ̃kij : M → R

defined by

Γ̃kijXk =
1

2

(

Γ̂kij + Γ̂kji

)

Xk

=
1

2
〈Xi : Xj〉.

We may define the velocity vector γ̇(t) = γ̇i(t) ∂
∂qi of the

curve γ(t) in terms of the family of vector fields {Y ,Y⊥}.
The new expression for γ̇(t) is in the form

γ̇(t) =wa(t)Ya(γ(t)) + sb(t)Y ⊥
b (γ(t)) (4)

where sb(t) = 〈〈γ̇(t), Y ⊥
b 〉〉γ(t). We now provide a local

expression for a measure of a simple mechanical control
system’s ability to move among the leaves of the input
foliation AY .

Lemma 4. Let (M,G, V,Y, U) be a simple mechanical
control system with an input foliation AY defined above.
The following holds along the curve γ(t) satisfying (1):

d

dt
sb(t) =−

1

2
wa(t)wp(t)〈〈〈Ya : Yp〉, Y

⊥
b 〉〉 (5)

−
1

2
wa(t)sr(t)〈〈〈Ya : Y ⊥

r 〉, Y ⊥
b 〉〉

−
1

2
sr(t)wp(t)〈〈〈Y ⊥

r : Yp〉, Y
⊥
b 〉〉

−
1

2
sr(t)sk(t)〈〈〈Y ⊥

r : Y ⊥
k 〉, Y ⊥

b 〉〉

−〈〈gradV, Y ⊥
b 〉〉

where a, p ∈ {1, . . . ,m}, b, k, r ∈ {1, . . . , n−m}.

Proof. Recall from the definition of an input foliation
that

sb(t) = 〈〈Y ⊥
b , γ̇(t)〉〉. (6)

We could proceed by substituting (4) into (6) and differ-
entiating taking advantage of the compatibility associated
with the Levi-Civita connection. Alternatively, we use the
notion of a generalized symmetric Christoffel symbol. It
follows from the construction of Y⊥ that the bth compo-
nent of Γ̃bij along the the orthonormal vector field Y ⊥

b can
be expressed as a projection using G.

We observe that (5) is quadratic in the parameter w(t).
Now we relate an intrinsic vector-valued symmetric bilin-
ear form to the measure derived in Lemma 4.

Definition 5. Let (M,G, V,Y, U) be a simple mechanical
control system with the input distribution Y generated
by {Y1, . . . , Ym} and the corresponding G-orthogonal dis-
tribution Y⊥ generated by {Y ⊥

m+1, . . . , Y
⊥
n }. We define

the intrinsic vector-valued symmetric bilinear form to be
B : Yq × Yq → D⊥

q given in coordinates by

Bbapw
awp =

1

2
〈〈〈Ya : Yp〉, Y

⊥
b 〉〉wawp,

where a, p ∈ {1, . . . ,m}, b ∈ {1, . . . , n−m}..

Remark 6. If Σ is underactuated by one control then b = 1
and B is a real-valued symmetric bilinear form.

The intrinsic vector-valued symmetric bilinear form de-
fined above is an important measure of how the velocity
components w parallel to the input forces influence the
velocity components s orthogonal to the input forces.
The remainder of the paper will focus on characterizing
computable, coordinate invariant properties of B.

3.2 Control Definitions

The following section contains several control definitions
which are used in the statement of our main results.

Definition 7. We say that Σ is ǫ-stabilizable to rest (ǫ-
STR) if for any ǫ > 0 there exists a piecewise continuous
function ũ : TM → Rm such that the solution to the initial
value problem

ξ̇(t) =Z(ξ(t)) + ũa(ξ(t))Y vlfta (ξ(t)), ξ(0) = (q0, v0),

satisfies |v(T )| < ǫ for some q ∈M and finite T .

Definition 8. Let B be a real-valued symmetric bilinear
form on M and w ∈ Yq.

(ii) The positive set M+ is the set of q ∈ M such that
wTBw > 0 holds for w 6= 0.

(ii) The negative set M− is the set of q ∈ M such that
wTBw < 0 holds for w 6= 0.

(iii) The indefinite set M+/− is the set of q ∈M such that
wTBw may take positive, negative and zero value for
w 6= 0.

(iv) The degenerate set M ∅ is the set of q ∈M such that
wTBw = 0 holds for all w.

3.3 Control Results

The following section contains the main results of this
paper. Our goal is to determine conditions that can be
expressed in terms of coordinate invariant properties of
a real-valued symmetric bilinear form. Our first result is
independent of the control set.

Theorem 9. Let Σ = {M,G, V = 0,Y} be a simple
mechanical system underactuated by one control. If M =
M+, M = M− or M = M∅ then Σ cannot be driven to
rest from an arbitrary initial configuration and velocity.

Proof. It follows from our construction that if Σ is
underactuated by one control then the input foliation AY

is a one-parameter family of affine leaves As. The affine
leaf A0 contains the zero-velocity vector. The first two
assumptions above imply that the system can either reach
all leaves above the initial leaf or reach all leaves below the
initial leaf, respectively. Clearly, if the initial leaf lies above
or below A0, respectively, the system cannot be driven to
A0. The third assumption implies that the input foliation
is invariant and that the system must remain on the initial
leaf thus cannot move toward A0 from an arbitrary initial
configuration and velocity.

It follows from (1) that if we choose ua sufficiently large,
wa can achieve any value for each a = 1, . . . ,m. We need to
show that it is possible to do this with an arbitrarily small
influence on the configuration q and orthogonal velocity
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component s. This idea is captured by the following
lemma.

Lemma 10. Let qi(t1), w
a(t1) and sb(t1) be initial condi-

tions for (1). For any constants D, δ, ǫ > 0 and da with
−D < da < D there exists a constant M > 0 and
ua(t) ∈ C(t1, t2) such that |t1 − t2| < δ and |ua(t)| < M
for all t ∈ [t1, t2] and the following conditions are satisfied:

(i) |w(t) − w(t1)| < D for all t ∈ [t1, t2],
(ii) wa(t2) = da,
(iii) |q(t) − q(t1)| < ǫ, |s(t) − s(t1)| < ǫ for all t ∈ [t1, t2],

where | · | is the appropriate Euclidean norm.

Proof. The proof is a simple consequence of the Mean
Value Theorem for vector-valued functions.

Lemma 11. Let qi(t1), w
a(t1) and s(t1) < 0 be initial

conditions for (1) and let q ∈ M+. For any C, β, σ > 0
there exists a constant N > 0 and ua(t) ∈ C(t1, t2) such
that |t1 − t2| < β and |ua(t)| < N for all t ∈ [t1, t2] and
the following conditions are satisfied:

(i) |s(t) − s(t1)| < C for all t ∈ [t1, t2],
(ii) s(τ) = 0 for some τ ∈ (t1, t2),
(iii) |q(t) − q(t1)| < σ for all t ∈ [t1, t2],

where | · | is the appropriate Euclidean norm.

Proof. Again, the proof is a consequence of the Mean
Value Theorem for vector-valued functions and that ds

dt

is quadratically dependent upon w whereas dq
dt is linearly

dependent on w. If we choose w large enough for arbitrarily
small time then s can be driven to rest while keeping q
within an ǫ-neighborhood of the initial conditions.

Similar statements hold for q ∈ M− and q ∈ M+/−

however we omit them for the sake of brevity. Now we
state our main result.

Theorem 12. Let Σ = {M,G, V,Y, U} be a simple me-
chanical system underactuated by one control. If the criti-
cal points q⋆ of det(B(q)) satisfy the following conditions:

(i) det(B(q⋆))−det(B(ΦYa

δ (q⋆)) < 0 for all q⋆ ∈ cl(M+),

(ii) if m is odd, det(B(q⋆)) − det(B(ΦYa

δ (q⋆)) > 0 for all
q⋆ ∈ cl(M−),

(iii) if m is even, det(B(q⋆)) − det(B(ΦYa

δ (q⋆)) < 0 for all
q⋆ ∈ cl(M−),

and if for all q ∈M∅

(iv) det(B(q)) − det(B(ΦYa

δ (q)) 6= 0,

for some a = 1, . . . ,m and |δ| << 1 then Σ is ǫ-stabilizable
to rest from an arbitrary initial configuration and velocity.

Proof. It follows from Lemma 10 and Lemma 11 that it is
sufficient to show that if the regions M+, M− or M∅ exist
the sufficient conditions (i)− (iv) imply that these regions
are not invariant. Let us examine condition (i). This
implies that the critical points in M+ cannot be a local
minima. If this is the case then we can simply flow along
a vector field parallel to Y that always reduces det(B)
which will eventually drive the system out of cl(M+) and
into either M− or M+/−. A similar procedure can be

followed for initial conditions contained in M−. Condition
(iv) allows the system to move off of M ∅.

4. APPLICATION

4.1 Control analysis for the roller racer

This section contains the application of the preceding
theory to the roller racer (RR). It has been shown that the
roller racer cannot be brought to rest using F1 as the single
control input [8], [5]. Let us simplify our calculations by
assuming m = 1, l1 = 1, l2 = 1, I1 = 1 and I2 = 1. Recall
that the geometric model of the RR includes a rank two
constraint distribution H . The projection of the control
vector field G♯(F 1) onto H is given by:

Y =
1

2
cos(θ)(1 − cos(ψ)) sin(ψ)

∂

∂x

+
1

2
(1 − cos(ψ)) sin(θ) sin(ψ)

∂

∂y

+
1

4
(−2 cos(ψ) + cos(2ψ) − 3)

∂

∂θ

+
1

4
(4 cos(ψ) − cos(2ψ) + 5)

∂

∂ψ
.

We construct the single element in the orthonormal set
Y⊥ = {Y ⊥} given Y by:

Y ⊥ =
cos(θ)

√

4
cos(ψ)+1 − 1

∂

∂x
+

sin(θ)
√

4
cos(ψ)+1 − 1

∂

∂y

+
tan

(

ψ
2

)

√

4
cos(ψ)+1 − 1

∂

∂θ
.

Next, we compute the coefficients of the intrinsic real-
valued symmetric bilinear form B. The single coefficient
is

B11 =−
1

2
〈〈〈Y : Y 〉, Y ⊥〉〉

=
(cos(ψ) − 3) sin2(ψ)

4
√

4
cos(ψ)+1 − 1

Now we expand the expression wTBw to get

Bijw
i(t)wj(t) =

(cos(ψ) − 3) sin2(ψ)

4
√

4
cos(ψ)+1 − 1

w1(t)w1(t) (7)

Equation (7) is a quadratic function in w1. Figure 3 reveals
that B is negative definite for all ψ which is equivalent to
M = M−.

It then follows from Theorem 9 that RR given the single
control force F 1 cannot be driven to rest from an arbitrary
initial configuration and velocity.

4.2 Control analysis for the snakeboard

This section contains the application of the preceding
theory to the snakeboard (SB). Let us simplify our cal-
culations by assuming m = 1, M = 1, l = 1, Jr = 1 and
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Fig. 3. Plot of B11(φ) vs. φ

Jw = 1. Recall that the geometric model of the SB includes
a rank three constraint distribution H . The projection of
the control vector fields G♯(F 1) and G♯(F 2) onto H is
given by:

Y1 = cos(θ) tan(φ)
∂

∂x
+ sin(θ) tan(φ)

∂

∂y

+ − tan2(φ)
∂

∂θ
+ sec2(φ)

∂

∂ψ
,

Y2 =
∂

∂φ
.

We construct the single element in the orthonormal set
Y⊥ = {Y ⊥} given Y = {Y1, Y2} by:

Y ⊥ = cos (θ) cos (φ)
∂

∂x
+ cos (φ) sin (θ)

∂

∂x

− sin (φ)
∂

∂θ
.

Next, we compute the coefficients of the intrinsic real-
valued symmetric bilinear form B. The nonzero symmetric
coefficients are

B12 = B21 =−
1

2
〈〈〈Y1 : Y2〉, Y

⊥〉〉

=−
sec(φ)

2
,

Now we expand the expression wTBw to get

Bijw
i(t)wj(t) =− sec (φ)w1(t)w2(t). (8)

Equation (8) is a multivariate function of w1(t) and w2(t)
with degree 2. The graph of this function is a saddle away
from φ ∈ {π2 ,

3π
2 }. This follows from the second derivative

test:

(

∂2Q12

∂w1∂w1

) (

∂2Q12

∂w2∂w2

)

−

(

∂2Q12

∂w1∂w2

)2

= − sec2 (φ) .

By Theorem 12, it is vacuously true that given the input
distributions Y = {Y1, Y2} and away from φ ∈ {π2 ,

3π
2 }

SB is ǫ-STR from an arbitrary initial configuration and
velocity.

5. FUTURE WORK

We plan to use the intrinsic real-valued symmetric bilin-
ear form as a basic framework for motion planning. We
also seek to extend our results to constrained mechanical
systems underactuated by an arbitrary number of con-
trols. This will involve characterizing coordinate invariant
properties of the intrinsic vector-valued symmetric bilinear
form that allow motion in the input foliation.
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