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Abstract: In this paper, stability conditions for distributed systems with general Integral
Quadratic Constraints (IQC) on the interconnections are derived. These results take the form of
coupled Linear Matrix Inequalities (LMIs), where the multipliers are shaped by the underlying
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in a way similar to the gain-scheduling controller design in Linear Parameter Varying (LPV)
systems.
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1. INTRODUCTION

Over the past few years, there has been renewed research
interest in the distributed control of large scale systems;
see for example, Langbort et al. [2004], Dullerud and
D’ Andrea [2004], Langbort et al. [2006], Ugrinovskii et al.
[2000], Scorletti and Due [2001], Chen and Lall [2003].
Many of these systems are formed by interconnecting mul-
tiple homogeneous or heterogeneous subsystems. These
systems typically exhibit overall complex dynamical be-
havior dictated by their distributed nature and the dy-
namical interactions between the subsystems.

In physically distributed systems, the observations are
highly distributed and this has motivated the develop-
ment of new research directions in control theory, namely
control under communication constraints. In particular,
researchers have considered control problems with non-
ideal communication links such as limited bandwidth
(Tatikonda [2000], Nair and Evens [2000]), delay, and
packet dropout between sensors, actuator of these subsys-
tems. See the special issues Antsaklis and Baillieul [2004],
Antsaklis and Baillieul [2007]. Standard control design
techniques for these systems often fail because of the high
dimension of the system and the high communication and
computation costs to implement centralized control algo-
rithms. Decentralized control schemes have been deployed
for large-scale applications in special cases. Some synthe-
sis methods have also been proposed for decentralized
controllers that guarantee performance, however, these
decentralized controllers are generally conservative.

Recently, a distributed control theory for spatially-invariant
distributed systems has been developed by Langbort et al.
[2004]. It was shown that the controllers have ’identical’
structure as the underlying subsystems. A Linear Matrix
Inequality (LMI) based control synthesis algorithm for this
class of interconnected systems was developed in D’ An-
drea and Dullerud [2003], Dullerud and D’ Andrea [2004]
using a multidimensional system theory. These results
were further extended in Langbort et al. [2004], Langbort

et al. [2006] and Di et al. [2006] to distributed system over
an arbitrary graph under various connections. Specifically,
the results take the form of a set of coupled linear matrix
inequalities. The design variables for the LMIs are shaped
by the interconnections.

The distributed control approach described above can also
be derived using gain-scheduling techniques for Linear
Parameter Varying (LPV) systems (Scorletti and Ghaoui
[1998], Packard [1994]). This point of view will be taken in
this paper. The distributed stability results follow from an
application of the S-procedure developed in Yakubovich
[1977], Megretski and Treil [1993], Yakubovich [1992]
where the interconnections are parameterized as a fam-
ily of IQCs. Furthermore, the stability conditions under
perfect communication can be proved via the block S-
procedure if a set of proper quadratic separators is chosen
(Scherer [2001], Iwasaki and Shibata [2001]). As it is shown
below, all the stability results can be interpreted from a
graph separation point view (Safonov [1980], Moylan and
Hill [1978], Iwasaki and Hara [1998]) following a similar
proof as in Scorletti and Ghaoui [1998]. While the suf-
ficiency of the distributed stability results can be easily
derived via a graph separation argument, the necessity
part, which can be derived only for special interconnec-
tions, follows from the lossless (D,G) scaling theorem for
LPV uncertainties (Meinsma et al. [2000]). As mentioned
in Langbort et al. [2004], these stability results can be
explained in the general framework of dissipative theory
(Willems [1972]). They are well connected to the integral
quadratic constraints analysis methods since the intercon-
nections are generally modeled by IQCs (Megretski and
Rantzer [1997]). For stability, in the present paper, we
explore this connection so that we can unify all these
stability results and treat systems with more general in-
terconnections in this framework. As for synthesis, based
on a recently extended elimination lemma in Helmersson
[1999], the synthesis inequalities turn out to be convex
in all variables, including the scalings and controller pa-
rameters (Scherer [2001]). However, these techniques can
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only be applied under certain inertia hypothesis on the
multipliers. We further point out that in Langbort et al.
[2004] the synthesis condition for the ideal interconnection
case nK

ij = 3nij was derived with an inertia restriction
on the scaling matrix. it can be shown that there ex-
ist distributed controllers to guarantee the global control
performance without that inertial assumption and under
milder restrictions on the dimension, namely nK

ij = nij

(Hui and Antsaklis [2007]).

The remainder of the paper is organized as follows. The
interconnected system is introduced in Section 2, where
each of the individual Linear Time Invariant (LTI) subsys-
tems is represented in state space form, and operators are
introduced to model the interconnections. The main result,
the performance and stability analysis theorem for the
global systems with a general IQC for the interconnections
is presented in Section 3. As an application of this result,
stability conditions for several interconnections are also
derived. In Section 4, based on the stability results for the
specific interconnections and the elimination lemma, we
present results for the synthesis of distributed controller.

Notation The notation is standard. Real and negative
reals are denoted by R, R+. Rn×m is the set of n×m real
matrices. The transpose (complex conjugate transpose)
of matrix M is denoted by MT (M∗). Let U ∈ Rr×n

with r < n. U⊥ denotes an orthogonal complement of
U , i.e UU⊥ = 0 and [UT U⊥] is of full rank. We use Rn

S
to denote n × n real symmetric matrices. If M ∈ Rn

S ,
then M > 0(M ≥ 0) indicate M is positive definite
(positive semidefinite) matrix, and M < 0(M ≤) denotes
negative definite (negative semidefinite) matrix. For any
matrix P , ker(P ) stands for the null space of P . The
inertia of a symmetric matrix A is the ordered triple
in(A) = (i+(A), i0(A), i−(A)) where i+(A), i−(A), i0(A)
are the numbers of positive, negative and zero eigenvalues
of A, all counting multiplicity.

A block diagonal matrix with Xk, . . . , Xl is denoted
diagk≤i≤lXi = diag {Xk, . . . , Xl} on the diagonal, like-
wise, if e1, . . . , eL are elements of sets E1, . . . , EL, catk≤i≤lei

will designate the elements (ek, . . . , el) ∈ Ek× . . . El when
1 ≤ k ≤ l ≤ L. We will sometimes write diagi and cati

instead of diag1≤i≤L and cat1≤i≤L.

The Euclidean norm of a vector x ∈ Rn is denoted
by ‖x‖ = (xT x)1/2. The space of square integrable n-
dimensional functions f : (0,∞) → Rn is denote by Ln

2 ;
this is abbreviated as L2 when n is clear from context
or not relevant. The inner product between two signals
in L2 is denoted by < ·, · >. The Fourier transform of
a L2 function f is denoted as f̂(jω). The norm of an
L2 signal and the induced norm of an operator on L2

is denoted by ‖ · ‖, so for an operator F : L2 → L2,
‖F‖ = supu∈L2

‖Fu‖
‖u‖ . An operator ∆ : Ln

2 → Ln
2 is said

to be contractive if ‖∆v‖ < ‖v‖,∀v ∈ Ln
2 . Lower case δ’s

always denote operators from L1
2 to L1

2. Then for u, v ∈ Ln
2 ,

the expression v = δInu is defined to mean that uk of u
and vk of v satisfy uk = δvk. An operator δ : L2 → L2

is called self-adjoint if < u, δv >=< δu, v >,∀u, v ∈ L2.
Note that all real-valued static Linear Time Varying (LTV)
operators are self-adjoint.

2. PROBLEM FORMULATION

2.1 Problem Formulation

The global system consists of an assembly of L subsystem
Gi, i = 1, . . . , L, connected arbitrarily.

Each subsystem Gi is described by the following state-
space equation:[

ẋi(t)
wi(t)
zi(t)

]
=

 Ai
TT Ai

TS Bi
Td

Ai
ST Ai

SS Bi
Sd

Ci
Tz Ci

Sz Di
zd

[
xi(t)
vi(t)
di(t)

]
(2.1)

xi(0) = x0
i (2.2)

where xi(t) ∈ Rmi , di(t) ∈ Rpi , zi(t) ∈ Rqi , vi(t), wi(t) ∈
Rni for all t ≥ 0. In (2.1), di is the disturbance and zi is the
performance associated with Gi, while vi and wi are the
overall interconnection signals used by Gi. For each given i,
vi and wi are further partitioned into vij , wij respectively,
i.e., the nij-dimension signal that is shared by Gi and Gj .
We model the interconnection via an operator ∆ij , such
that,

vij = ∆jiwji, ∀i, j, 1 ≤ i, j ≤ L (2.3)
For example, a simple case would be, wij = vji which is
called ideal/perfect interconnection. However, we generally
model the interconnection signal subspace asW(∆ij), such
that

W(∆ji) =
{[

vij

wji

]
∈ L2nji

2 : vij = ∆jiwji

}
(2.4)

We denote v = cativi, where each vi can be further
partioned as vi = catjvij . Note that the dimension of
vij , vi and v are nij , ni and N where ni =

∑L
j=1 nij ,

N =
∑L

i=1 ni. The global system signals, x = catixi, w =
catiwi, z = catizi, d = catidi are similarly defined.

Based on the representations of Gi in (2.1), the state space
representation of the global system can be described as[

ẋ(t)
w(t)
z(t)

]
=

[
ATT BTS BTd

AST ASS BSd

CTz CSz Dzd

][
x(t)
v(t)
d(t)

]
(2.5)

v(t) = ∆Prw(t) (2.6)

where ∆ is a (causal) operator from LN2 to LN2 generated
via ∆ij ,

∆ = diagidiagj∆ji (2.7)
and the permutation matrix Pr is chosen such that

w̄ = caticatjwji = Prw = Prcaticatjwij (2.8)
ATT = diagiA

i
TT . All other matrices in (2.5) are similarly

defined. The signals w(t) and v(t) are RN -valued internal
signals. The signal space for for v, w can be described as

W(∆) =

{[
v
w

]
∈ L2N

2 :

[
vij

wji

]
∈ L2nji

2 , vij = ∆jiwji

}
(2.9)

From (2.5), we obtain the transfer function

G =
[

G11 G12

G21 G22

]
(2.10)

which has been partitioned to conform with the vector
(v, d). In this paper, the interconnected system is called
well-posed and stable if the system (2.5) is internally
stable regardless of the uncertainty of the interconnection
operator ∆ij defined by 2.9.
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Definition 2.1. The interconnected system consisting of
subsystems (2.5) and the interconnection constraints (2.9)
is said to be well-posed and stable if the map (I−∆PG11)
has a bounded inverse on L2, for any ∆ in a prescribed
uncertainty set.

Finally, we say that a system (2.5) is contractive if it is
stable and ‖z‖ < ‖d‖ for all d ∈ L2 and all interconnection
uncertainty modelled by ∆ij in 2.9.

3. STABILITY ANALYSIS VIA IQC

The main idea here is to first use integral quadratic
constraints to model the interconnection operator ∆ij .
The performance under the integral quadratic constraints
(IQC) for the internal signal v, w can then be casted as
an unconstrained quadratic optimization problem via the
S-procedure (Megretski and Rantzer [1997]). For the LTI
system, the stability results admit a LMI formulation. For
this purpose, we need the following definitions of IQC and
of a dissipative operator.
Definition 3.1. A class of signal W,W ⊂ {w : w ∈ Ln

2} is
said to satisfy the IQC defined by Π(ω) if σ(w,Π(ω)) ≥
0,∀w ∈ W, where σ is of the form

σ(w,Π(ω)) =
∫ ∞

−∞
ŵ(jω)∗Π(ω)ŵ(jω)dω (3.11)

ŵ(jω) is the Fourier transform of w, and Π(jω) = Π∗(jω)
is a matrix function referred to as the multiplier of σ and
assumed to be bounded on the imaginary axis. In the
sequel, we will refer to condition σ(w,Π(ω)) ≥ 0 (3.11)
as an IQC with multiplier Π(ω).
Definition 3.2. Let H : L2e → L2e be an operator. H is
{X, Y, Z}-dissipative if there exist real matrices X, Y, Z
such that

Φ =
[

X Y
Y T Z

]
is a full rank matrix and with p(t) = H(q(t)), p, q ∈ L2e∫ ∞

0

[
p(t)
q(t)

]T [
X Y
Y T Z

] [
p(t)
q(t)

]
dt ≥ 0 (3.12)

Note that, condition (3.12) can be easily represented in
the frequency domain as an IQC of the form (3.11). If
H is stable and time-invariant, Π(ω) is restricted to be a
constant matrix. We often call (3.12) an IQC in the time-
domain form.

Many important interconnections used in stability analysis
can be characterized by IQC’s with proper multiplier
Π(ω). A collection of commonly used IQC’s has been
summarized in Megretski and Rantzer [1997]. Based on
results on (D,G)-scaling, the following linear time varying
(LTV) operators of fixed block and scalar operators can
be equivalently represented by IQCs with proper constant
multiplier (Π Iwasaki and Hara [1998]).

Lemma 3.1. • Suppose δ̃ : L2
n → L2

n, if the LTV
operator δ̃ is self-adjoint and contractive, then for any
D ∈ Rn×n

S , D ≥ 0 and G = −GT , δ̃In is (−D,G, D)-
dissipative.

• Suppose δ : L2
n → L2

n, if the LTV operator is
contractive , then for any D ∈ Rn×n

S , D ≥ 0, δIn

is (−D, 0, D)-dissipative.

• There is a contractive LTV operator, ∆ : L2
n → L2

n
such that p = ∆q if and only if ∆ is (−I, 0, I)-
dissipative.

Definition 3.3. A quadratic performance criterior is a
quadratic functional σp(z, d) defined as

σp(z, d) =
∫ ∞

0

[
d(t)
z(t)

]T [
Πp1 Πp2

ΠT
p2 Πp3

] [
d(t)
z(t)

]
dt (3.13)

A system satisfies the σp-performance criterion over a
set of disturbances W if the system is well-posed, inter-
nally stable and its performance measurement z satisfies
σz(z, d) < 0.

The following proposition gives a sufficient condition for
the system that satisfies the performance criterion σp < 0
over a class of signals W which can be characterized
by IQCs. If the operator ∆ used to model the intercon-
nection v = ∆w can be characterized by several IQCs,
σw1, σw2, . . . , σwn, then the performance can be formu-
lated as a convex feasibility problem over the set of IQCs
via the S-procedures,

σp(z, d) +
n∑

i=1

λiσwi(w) < 0, ∀w ∈ L2. (3.14)

The following proposition proved in Scorletti and Ghaoui
[1998] is a direct application of the S-procedure to the
interconnected system (2.5) and (2.6).
Proposition 1. Suppose the operator ∆P in (2.6) is
{X, Y, Z}-dissipative, then the interconnected systems
(2.5), (2.6) satisfies σp(z, d) performance (3.13), if there
exists symmetric matrix XT ∈ Rm×m

S , XT > 0, such that
the following LMI holds true.

MT PM < 0 (3.15)
where

M =


I 0 0

ATT BTS BTd

0 I 0
AST ASS BSd

0 0 I
CTz CSz Dzd



P =


0 XT 0 0 0 0

XT 0 0 0 0 0
0 0 X Y 0 0
0 0 Y T Z 0 0
0 0 0 0 Πp1 Πp2

0 0 0 0 ΠT
p2 Πp3


Note here, we are only use the sufficient part of the S-
procedure to derive the above sufficient performance con-
ditions. From the lossless (D,G) scaling theorem for linear
time invariant(LTI) systems with LPV uncertainties, we
know that for the contractive operators (δ̃, δ and ∆) con-
sidered in lemma 3.1, the above results are both necessary
and sufficient (Meinsma et al. [2000]) with proper multi-
pliers X, Y, Z, and they are referred to as (D,G)-scalings
for such LTV operators. Generally speaking, the sufficient
part of Proposition 1 can be easily proved via a sepa-
ration of graph argument. The inner matrix in equation
(3.15) can be interpreted as a hyperplane that separates
the graph of the linear time invariant system and the
operators that model the time-varying interconnections.
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The necessary part follows the idea proposed in Shamma
[1994] for the full block uncertainty LTV ∆ to construct
a causal destabilizing operator when strict separation of
the two graph is violated; the scalar case δ, δ̃ has been
proved in Megretski and Treil [1993], Meinsma et al. [2000]
respectively. For the contractive operator list in lemma
3.1, the above proposition is a LMI reformulation of the
necessary and sufficient conditions presented in Meinsma
et al. [2000] via an application of the KYP lemma to the
LTI system (2.5) with scaling matrices X, Y, Z.

IQC for the interconnections We introduce the following
IQC to model the global interconnection, v = ∆Pw. For
each i = 1, . . . , L, let us introduce the quadratic form on
Rni × Rni , such that

Pij(vij , wij) =
[

vij

wij

]T

Xij

[
vij

wij

]
(3.16)

The scaling matrix Xij is further partitioned into four
nij × nij blocks as

Xij =
[

X11
ij X12

ij

(X12
ij )T X22

ij

]
(3.17)

We are now able to state our first analysis conditions. The
proof of Theorem 2 follows from Proposition 1 by utilizing
the diagonal structure of the global system (2.5).
Theorem 2. The interconnected system (2.5), (2.6) is well-
posed, stable and contractive if there exist symmetric
matrices, Xi

T ∈ Rmi×mi

S and Xij ∈ R2nij×2nij

S , Xi
T > 0

such that
MT

i PiMi < 0 (3.18)
for all i = 1, . . . , L. where

Mi =


I 0 0

Ai
TT Ai

TS Bi
Td

0 I 0

Ai
ST Ai

SS Bi
Sd

0 0 I

Ci
Tz Ci

Sz Di
zd

 (3.19)

Pi =


0 Xi

T 0 0 0 0

Xi
T 0 0 0 0 0

0 0 P 11
i P 12

i 0 0

0 0 (P 12
i )∗ P 22

i 0 0

0 0 0 0 −I 0
0 0 0 0 0 I

 (3.20)

P 11
i = diag1≤j≤LX11

ij (3.21)

P 22
i = diag1≤j≤LX22

ij (3.22)

P 12
i = diag1≤j≤LX12

ij (3.23)

and

σ(PX) =

∫ ∞

0

[
v
w

]T

PX

[
v
w

]
dt

=
∑

1≤i,j≤L

∫ ∞

0

[
vij

wij

]T
[

X11
ij X12

ij

(X12
ij )T X22

ij

][
vij

wij

]
dt

≥ 0 (3.24)

As applications of Theorem 2, it is of interest to use the
above stability results to model different interconnections.

Ideal Interconnections Here we assume that ∆i,j=Inij
,

∀i, j = 1, . . . , L, i.e., at anytime t

vij(t) = wji(t), ∀i, j, t ≥ 0 (3.25)
In this case, suppose we choose for all 1 ≤ i, j ≤ L

X11
ij + X22

ji = 0

X12
ij + (X12

ji )T = 0

then

σ(PXideal
) =

∑
1≤i,j≤L

∫ ∞

0

[
vij

wij

]T

Xij

[
vij

wij

]
dt

= 0

The family of multiplier Xideal can thus be characterized
by the two sets of matrices,{

X11
ij ∈ Rnij×nij

S , i, j = 1, . . . , L

}
and {

X12
ij ∈ Rnij×nij

S : X12
ii skew-symmetric, 1 ≤ j ≤ i ≤ L

}
Once we have identified the IQC for such interconnection
∆ij = Inij

, we have the following proposition, as an
application of Theorem 2.
Proposition 3. The interconnected system (2.5), (2.6) is
well-posed, stable and contractive for all ∆ij = Inij

if
there exist symmetric matrices, Xi

T ∈ Rmi×mi

S and X11
ij ∈

Rnij×nij

S for all i, j = 1, . . . , L, and matrices X12
ij ∈

Rnij×nij

S for all i ≥ j with X12
ii skew-symmetric, such that

Xi
T > 0 and the LMIs(3.18) hold true for all i = 1, . . . , L

with

P 11
i = diag1≤j≤LX11

ij

P 22
i = diag1≤j≤L −X11

ji

P 12
i = diag

(
diag1≤j≤iX

12
ij ,diagi≤j≤L − (X12

ji )T
)

Directed interconnection with ∆ij = δInij
, ‖δ‖ ≤ 1. Let

us now consider the new class of interconnected systems
with ∆ij = δijInij

and ‖δij‖ ≤ 1. We are seeking a new
IQC to model such interconnections.

Following similar derivation, we can parameterize the
multipliers Xij by the following sets of matrices{

X11
ij ∈ Rnij×nij

S : X11
ij < 0, i, j = 1, . . . , L

}
Besides, we require X22

ji = X11
ij and X12

ij = 0 for all
i, j = 1 . . . , L.

In this case, it is easy to verify

σ(PXδ
) =

1

2

∑
1≤i,j≤L

〈[
vij

wij

]
,

[
X11

ij 0

0 −X11
ji

][
vij

wij

]〉
+

〈[
vji

wji

]
,

[
X11

ji 0

0 −X11
ij

][
vji

wji

]〉
=

∑
1≤j≤i≤L

< vij , X11
ij vij > − < wji, X

11
ij wji >

≥ 0

Once we have found the IQC to model the interconnection
δij , it’s straightforward to apply Theorem 2 to get the
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sufficient part of the propositions that follow below. The
necessary part follows from the lossless-(D,G)-scaling the-
orem for LTV uncertainties; the details are omitted here.
Proposition 4. The interconnected system (2.5), (2.6)
is well-posed, stable and contractive for all ∆ij =
Inij

δ, ‖δ‖ ≤ 1 if and only if there exist symmetric matrices,
Xi

T ∈ Rmi×mi

S and dij ∈ R for all i, j = 1, . . . , L, such
that Xi

T > 0, dij < 0, X11
ij = dijInij and LMI (3.18) are

satisfied for all i = 1 . . . , L, with P 11
i = diagj(X11

ij ), P 22
i =

diagj(−X11
ji ) and P 12

i = 0.

Following similar argument, we have the following Propo-
sition 5 below. The sufficient part can be similarly proved
with proper chosen multipliers Xij , while the necessary
part follows from the lossless-(D,G)-scaling theorem for
these LTV interconnection operators (Meinsma et al.
[2000]).
Proposition 5. The interconnected system (2.5), (2.6) is
well-posed, stable and contractive for all LTV ∆ij , ‖∆ij‖ ≤
1, if and only if there exist symmetric matrices, Xi

T ∈
Rmi×mi

S , , Xi
T > 0 and for all i, j = 1, . . . , L, dij < 0,

X11
ij = dijInij and the LMIs (3.18) are satisfied for all

i = 1 . . . , L, with P 11
i = diagj(X11

ij ), P 22
i = diagj(−X11

ji )
and P 12

i = 0.

The necessity part of the following proposition has been
proved in Langbort et al. [2004] as an extension of the
standard S-procedure, and the sufficient part can be
similarly derived via Theorem 2.
Proposition 6. The interconnected system (2.5) , (2.6) is
well-posed, stable and contractive for all LTV unitary
operator δij , 1 ≤ j ≤ i ≤ L with ∆ij = Inij

δij and
δji = δ−1

ij for i ≥ j if and only if there exist symmetric
matrices, Xi

T ∈ Rmi×mi

S and X11
ij ∈ Rnij×nij

S for all
i, j = 1, . . . , L, and matrices X12

ij ∈ Rnij×nij

S for all i ≥ j

with X12
ii skew-symmetric, such that Xi

T > 0 and the
LMIs(3.18) hold true for all i = 1, . . . , L.

Before we apply the stability analysis results to controller
synthesis, the following remark is in order.
Remark 3.1. Theorem 2 unifies stability results for dif-
ferent interconnections which can be modeled as integral
quadratic constraints. This theorem renders the perfor-
mance specification based on the interconnected implicit
uncertain systems to an explicit expression through S-
procedure with multipliers Xij , which are shaped by the
structure and properties of the interconnection operator
∆ij . Generally speaking, Theorem 2 reflects the simple
idea of topological separation of the graph generated via
the LTI plant and the LTV uncertainty. Although sufficient
stability conditions can be easily derived in this frame-
work, the necessity part is challenging; it has been shown
only in special cases (Langbort et al. [2004], Megretski and
Treil [1993], Meinsma et al. [2000] and Shamma [1994]).

4. SYNTHESIS VIA THE ELIMINATION LEMMA

The synthesis part of this paper follows the same line of
the derivation presented in Langbort et al. [2004], which
is based on the extended elimination lemma (Helmersson
[1999]). We want to point out that for the synthesis

condition in Theorem 2, we need nK
ij = nij ; this is enough

since the inertia constraints are automatically satisfied
if the associated LMIs are feasible and the multipliers
are nonsingular. Note that in Langbort et al. [2004], the
stricter requirement on the controllers dimension, namely
nK

ij = 3nij , is used.

Now let us consider each of subsystem Gi with control
input ui and a measured output yi, in addition to the
signals given in (2.1), such that

 ẋi(t)
wi(t)
zi(t)
yi(t)

 =

 Ai
TT Ai

TS Bi
Td Bi

Tu

Ai
ST Ai

SS Bi
S Bi

Su

Ci
T Ci

S Di Di
zu

Ci
Ty Ci

Sy Di
yd Di

yu


 xi(t)

vi(t)
di(t)
ui(t)


vij = ∆jiwji

for all t ≥ 0 and i = 1, . . . , L, here ∆ji is an operator
used to model the interconnection. In the rest of this
paper, without loss of generality, we assume that Di

yu = 0
for all i. Similarly to the controllers considered in the
LPV literature, we are seeking controllers with similar
structure as the plant: another interconnected system K
with subsystems Ki, i = 1, . . . , L given by[

ẋK
i (t)

wK
i (t)

ui(t)

][
(Ai

TT )K (Ai
TS)K (Bi

T )K

(Ai
ST )K (Ai

SS)K (Bi
S)K

(Ci
T )K (Ci

S)K Di
K

][
xK

i (t)

vK
i (t)
yi(t)

]
(4.26)

such that the closed loop system is well-posed, stable and
contractive. In addition, we require nK

ij = 0 whenever
nij = 0, which means if there is no interaction between Gi

and Gj , the controllers Ki and Kj will not communicate
with each other either.

Here superscripts K, C are introduced to denote the con-
troller signals and closed-loop signals respectively. The
state variable for the subsystem xC

i has dimension mC
i =

mi + mK
i ,

xC
i =

[
xi

xK
i

]
.

The interconnection signal wC
ij , v

C
ij has dimension nC

ij =
nij + nK

ij ,

wC
ij =

[
wij

wK
ij

]
(4.27)

vC
ij =

[
vij

vK
ij

]
(4.28)

We further require
wC

ij = ∆jiv
C
ji (4.29)

. since the controller K and the plant G share the same
interconnection operator ∆ij between each subsystem.

We are now ready to apply the analysis result to the close-
loop systems.
Proposition 7. The closed-loop system is well-posed, sta-
ble and contractive if there exist symmetric matrices

(Xi
T )C ∈ R

mC
i ×mC

i

S and X11
ij ∈ R

nC
ij×nC

ij

S for all i, j =

1, . . . , L, and (X12
ij )C ∈ RnC

ij×nC
ij for all i ≥ j, with (X12

ii )C

skew symmetric , such that (Xi
T )C > 0 and

(MC
i )T PC

i MC
i < 0 (4.30)

with
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MC
i =


I 0 0

(Ai
TT )C (Ai

TS)C (Bi
T )C

0 I 0
(Ai

ST )C (Ai
SS)C (Bi

S)C

0 0 I
(Ci

T )C (Ci
S)C (Di)C

 (4.31)

PC
i =


0 (Xi

T )C 0 0 0 0
(Xi

T )C 0 0 0 0 0
0 0 (Z11

i )C (Z12
i )C 0 0

0 0 (Z12
i )∗C (Z22

i )C 0 0
0 0 0 0 I 0
0 0 0 0 0 −I

(4.32)

for all i = 1, . . . , L. and

(Z11
i )C = diagj(X

11
ij )C

(Z22
i )C = diagj − (X11

ji )C

(Z12
i )C = diag(diag1≤j≤i(Xij12)C ,diagi<j≤L((X12

ji )T )C)

The following synthesis result can be derived if we use
the elimination lemma Helmersson [1999] to eliminate con-
troller parameters from the above closed-loop performance
conditions.
Proposition 8. There exist distributed controllers with
state representation (4.26) with nK

ij = nij and inter-
connection ∆ij = I such that such the closed-loop
system conditions (4.30) are satisfied if and only if
there exist symmetric matrices (Xi

T )G, (Y i
T )G ∈ Rmi×mi

S

and (X11
ij )T

G, (Y 11
ij )T

G ∈ Rnij×nij

S for all i, j = 1, . . . , L,
and matrices (X12

ij )G, (Y 12
ij )G ∈ Rnij×nij for i ≥ j,

with (X12
ii )G, (Y 12

ii )G skew-symmetric such that (Xi
T )G >

0, (Y i
T )G > 0 and (4.36),(4.37),(4.38) are satisfied, where

Ψi,Φi,Mi, Ni are defined as (4.33), (4.34), (3.19), (4.35),
respectively.

Ψi = ker
[

Ci
Ty Ci

Sy Di
yd

]
(4.33)

Φi = ker
[

(Bi
Tu)T (Bi

Su)T (Di
zu)T

]
(4.34)

and

(Z11
i ) = diag1≤j≤L(X11

ij )G

(Z22
i ) = −diag1≤j≤L(X11

ji )G

(Z12
i ) = diag

{
diag1≤j≤i(X

12
ij )G,−diagi<j≤L(X12

ji )∗G
}

(Z̃11
i ) = diag1≤j≤L(Y 11

ij )G

(Z̃22
i ) = −diag1≤j≤L(Y 11

ji )G

(Z̃12
i ) = diag

{
diag1≤j≤i(Y

12
ij )G,−diagi<j≤L(Y 12

ji )∗G
}

Zi =


0 (Xi

T )G 0 0 0 0

(Xi
T )G 0 0 0 0 0

0 0 (Z11
i )G (Z12

i )G 0 0

0 0 (Z12
i )∗G (Z22

i )G 0 0

0 0 0 0 I 0
0 0 0 0 0 −I



Z̃i =


0 (X̃i

T )G 0 0 0 0

(X̃i
T )G 0 0 0 0 0

0 0 (Z̃11
i )G (Z̃12

i )G 0 0

0 0 (Z̃12
i )∗G (Z̃22

i )G 0 0

0 0 0 0 I 0
0 0 0 0 0 −I



Ni =


−(Ai

TT )T −(Ai
ST )T −(Ci

Tz)T

I 0 0

−(Ai
TS)T −(Ai

SS)T −(Ci
Sz)T

0 I 0

−(Bi
Td)T −(Bi

Sd)T −(Di
zd)T

0 0 I

 (4.35)

(Ψi)∗M∗
i ZiMiΨi < 0 (4.36)

(Φi)∗N∗
i Z̃iNiΦi > 0 (4.37)

[
(Xi

T )G I
I (Y i

T )G

]
> 0 (4.38)

Proof 4.1. Notice that, the closed loop system for the
individual subsystem with the controller described by
(4.26) is linear in the controller’s parameter Θi with

Θi =

 (Ai
TT )K (Ai

TS)K (Bi
T )K

(Ai
ST )K (Ai

SS)K (Bi
S)K

(Ci
T )K (Ci

S)K Di
K

 (4.39)

Apply now the elimination lemma from Helmersson [1999]
to each individual stability LMI(3.18) condition derived
in Proposition 3 for the closed-loop systems The necessity
part follows instantly. The sufficience part follows from
similar techniques as in Scherer [2001] to construct the
extended multiplier for the overall interconnection wC

ij , v
C
ji.

Conditions (4.36), (4.37), (4.38) are sufficient to construct
the extended multipliers and controller parameters. 2

The following synthesis conditions in Proposition 9 and
Proposition 10 correspond to condtions in Proposition
4 and Proposition 5 respectively, they can be proved
similarly to Proposition 8 via the elimination lemma.
Proposition 9. There exist distributed controllers with
state space representation (4.26) with nK

ij = nij and in-
terconnection ∆ij = δI, ‖δ‖ ≤ 1 such that the closed-loop
system is well-posed, stable and contractive if and only if
there exist symmetric matrices (Xi

T )G, (Y i
T )G ∈ Rmi×mi

S

and matrices (X11
ij )G, (Y 11

ij )G ∈ Rnij×nij

S , (X11
ij )G <

0, (Y 11
ij )G < 0 for all i, j = 1, . . . , L such that (Xi

T )G >

0, (Y i
T )G > 0 and (4.36),(4.36),(4.36) are satisfied for all i

with (Zi
12)G = (Z̃i

12)G = 0, and[
(X11

ij )G −I
−I (Y 11

ij )G

]
≤ 0 for all i, j (4.40)

Proposition 10. There exist distributed controllers with
state space representation (4.26) with nK

ij = nij and
interconnection ∆ij , ‖∆ij‖ ≤ 1 such that the closed-loop
system is well-posed, stable and contractive if and only if
there exist symmetric matrices (Xi

T )G, (Y i
T )G ∈ Rmi×mi

S ,
and xij , yij ∈ R such that xij < 0, yij < 0, (X11

ij )G =
xijInij

, (Y 11
ij )G = yijInij

for all i, j = 1, . . . , L such that
(Xi

T )G > 0, (Y i
T )G > 0 and (4.36),(4.37),(4.38) (4.40) are

satisfied for all i with (Zi
12)G = (Z̃i

12)G = 0.

5. CONCLUSION

In this paper, we derived stability conditions for dis-
tributed systems with various IQC constraints on the
interconnections. Technically, the stability results follow
from an application of the S-procedure and can be proved
via a graph separation argument. Our stability theorem
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(Theorem 2) expresses the global performance with im-
plicit uncertainty interconnections in terms of a set of
explicit conditions with design multipliers parameterized
by the uncertainty. Specifically, our results generalize the
stability results presented in Langbort et al. [2004]. They
are applicable to systems with more general interconnec-
tions. The approach used to derive our results relies on the
S-procedure and the connections to the gain-scheduling
techniques in linear parameter varying systems. These
connnections have been made explicit.
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