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Abstract: Black box modelling is used here to improve the performances of the PoPMuSiC program that 
predicts protein stability changes caused by single-site mutations. For that purpose previously developed 
statistical energy functions are exploited, which are based on a formalism that highlights the coupling 
between 4 different protein descriptors (sequence, distance, torsion angles and solvent-accessibility), as 
well as the volume variation of the mutated amino acid. As the importance of the different types of 
interactions may depend on the protein region, the stability change is expressed as a linear combination of 
these energetic functions, whose proportionality coefficients vary with the solvent-accessibility of the 
mutated residue. Two alternative structures are considered for these coefficients: a Radial Basis Function 
network, and a MultiLayer Perceptron with sigmoid nodes. These two structures are identified, leading to 
an improvement of the predictive capabilities of PoPMuSiC, and are discussed in terms of their 
biophysical interpretation. 

 

1. INTRODUCTION 

Proteins are the most abundant biological macromolecules. 
They are essential parts of all living organisms and 
participate in every process within cells (Creighton, 1993, 
Lehninger et al., 1993); they provide structure, catalyze 
cellular reactions, protect organisms against injury, transport 
specific molecules like oxygen and carry out a multitude of 
other tasks. Proteins are linear polymers composed of 20 
amino acids, which differ from each other by the succession 
(sequence) of amino acids. This sequence determines the 
(generally) unique three-dimensional structure which allows 
the protein to carry out its biological function. The stability of 
this structure is thermodynamically characterized by its 
folding free energy, that is, the difference in free energy 
between folded and denatured states. 

Proteins are largely used in the industrial world where their 
properties are exploited as well for the design of vaccines as 
in the agro-alimentary field. However, it can be interesting to 
tune certain physicochemical or biological properties through 
the substitution of amino acids by others. Such mutations 
may, for instance, increase the protein’s solubility, or 
maintain its activity under unusual pH or temperature 
conditions. Whatever the modified property, one has to check 
if the considered mutations do not alter the protein structure 
and stability too much. Indeed, structure and stability 
deteriorations can lead to the loss of the main protein 
function. Of course, the experimental determination of the 
change in folding free energy upon mutation leads to the 
most reliable information. However, it is time consuming and 
thus cannot be used to test all possible mutations in a protein. 
This is why predictive methods are developed.  

1.1 Stability prediction methods 

Only a few theoretical methods have been developed to 
estimate stability changes caused by mutations. The earliest 
ones are based on detailed atomic models combined with 
semi-empirical potentials (Basch et al, 1987; Tidor and 
Karplus, 1991). However, such methods are computer time-
consuming and cannot be used to test a large set of mutations. 
To avoid this problem, faster methods have been developed. 
They rely on rougher descriptions of the protein structure and 
approximate energy functions (Muñoz and Serrano, 1994, 
Miyazawa and Jernigan, 1994, Sippl, 1995), or bind stability 
changes to shape, flexibility and volume of the substituted 
and neighbouring amino acids (van Gunsteren and Mark, 
1992, Shortle et al., 1990, Eriksson et al., 1992). The 
performances of these methods are reasonably good. 
However, the tests were restricted to a small number of 
mutations in a single protein, usually even at a single site, 
and it became manifest that these methods are not general 
enough to predict stability changes caused by mutations on 
any point in any protein. 

To propose a more general prediction model, some of us 
previously developed the PoPMuSiC (Prediction Of Protein 
Mutation Stability Changes – http://babylone.ulb.ac.be) 
program (Gilis and Rooman, 2000; Kwasigroch et al., 2002). 
The energetic functions used by PoPMuSiC are statistical 
potentials derived from a database of known protein 
structures. More precisely, two types of potentials are 
considered: distance potentials, describing interactions 
between amino acids spatially close to each other, and torsion 
potentials, reflecting the preferences for specific local 
arrangements of the protein chain. The major novelty of this 
method is that the specific environment of the mutated amino 
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acid is taken into account, in order to acknowledge the fact 
that different types of interactions may dominate in the core 
and on the surface of proteins. The change in stability is thus 
estimated by three linear combinations of these two 
potentials, corresponding to three ranges of solvent 
accessibility of the mutated residue. PoPMuSiC has been 
tested on experimentally studied mutations, introduced in 
various environments of seven different proteins and a 
synthetic peptide. The correlation coefficient between 
predicted and measured stability changes is quite good: 
between 0.8 and 0.87 (according to the range of solvent 
accessibility) on 279 out of 296 mutants. 

Since then, other predictive methods have been developed. 
Some are based on an approach similar to that of PoPMuSiC 
(Parthiban et al., 2006), others on neural networks (Capriotti 
et al., 2005), on decision trees (Huang et al., 2007), or on 
empirical potentials that describe the physical interactions 
contributing to protein stability (Guerois et al., 2002). 
PoPMuSiC still remains competitive, but it suffers from some 
limitations. In particular, no linear combination of the 
considered potentials allows to evaluate the mutations of 
amino acids with a solvent accessibility between 40% and 
50%, and the number of experimentally characterized 
mutants used to validate PoPMuSiC is relatively small with 
respect to the currently available databases. The aim of our 
work is to overcome these limitations and to improve the 
predictive capabilities of PoPMuSiC. 

2. ENERGETIC FUNCTIONS 

The PoPMuSiC program relies on a set of energetic functions 
that describe the different interactions contributing to protein 
stability. These functions are statistical potentials, extracted 
from a database of known protein structures. Such potentials 
are widely used in theoretical protein studies, as they present 
the advantage of being easily adapted to simplified protein 
representations. We propose to exploit the new formalism of 
derivation of statistical potentials, recently developed by 
some of us (Dehouck et al., 2006), and to use these new 
energetic functions to improve the performances of 
PoPMuSiC. We first define the sequence and structure 
features considered in the representation of the proteins. 

2.1 Simplified protein representation 

The sequence of a protein is described by the nature of the 
amino acid at each position i, si. Its three-dimensional 
structure is represented by several structural descriptors. 
Firstly, each amino acid has several degrees of freedom, 
corresponding to rotations around the chemical bonds of the 
protein backbone. The conformation of an amino acid at 
position i is thus described by the domain of torsion, ti, 
defined by its backbone torsion angles. Seven discrete values 
of t are considered, corresponding to specific local 
organisations of the protein chain (Rooman et al., 1991). 
Secondly, the spatial distance that separates two amino acids, 
at positions i and j, in the folded structure of the protein, is 
referred to as dij. Note that this distance is computed between 
the geometric centres of the amino acids’ side chains, and 
distributed in bins of 0.2Å width. Finally, the solvent-

accessibility of the amino acid at position i, ai, is defined as 
the ratio of its solvent-accessible surface in the considered 
structure, as computed by DSSP (Kabsch and Sander, 1983), 
and in an extended tripeptide Gly-X-Gly (Rose et al., 1985). 
Five discrete values of a are considered (0-5%, 5-15%, 15-
30%, 30-50%, and 50-100%). 

2.2 Statistical potentials 

A form commonly used for statistical potentials derived from 
a set of protein structures is: 

,
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where c1 and c2 are sequence or structure descriptors (i.e. si, 
ti, ai, or dij) of the same amino acid, or of two neighboring 
ones, and P are their relative frequencies of occurrence in a 
large dataset of protein structures. Summing ∆W(c1,c2) over 
all (c1,c2) couples in a given protein yields an estimation of 
this protein’s folding free energy. 

Some of us previously generalized this relationship, to derive 
complex potentials describing the correlations between more 
than two descriptors, while ensuring that each contribution is 
counted only once (Dehouck et al., 2006): 
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where n is the number of descriptors. In this work, we use 24 
different potentials, with n ranging from 2 to 7; they are listed 
in Table 1. Note that two major classes of potentials are 
considered. Local potentials describe the correlations 
between descriptors attached to amino acids close to each 
other along the sequence; ∆Wst, for instance, reflects the 
influence of the nature of an amino acid (si) on the 
conformation (tj) of a neighbouring amino acid. Distance 
potentials describe the correlations between descriptors 
attached to amino acids close to each other in space; ∆Wstd, 
for instance, reflects the propensity of an amino acid of 
nature si, in a conformation ti, to be separated from another 
amino acid (whatever its nature and conformation) by a 
spatial distance dij. 

2.3 Volume variations 

Besides these energetic functions, another parameter 
influencing the mutant stability is envisaged: the volume 
difference ∆V between the wild-type and the mutant amino 
acids. If the mutant amino acid is smaller, a cavity is created, 
which usually destabilizes the protein (Eriksson et al., 1992). 
On the other hand, if the mutant is larger, it induces a stress 
in the structure, which may also have a destabilizing effect. 
As the amplitude of these effects are not necessarily similar, 
we consider them separately, by introducing ∆V1 and ∆V2 : 
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Table 1.  Selection of statistical potentials 
Local 

Potentials 
∆Wst, ∆Wstt, ∆Wsst, ∆Wsttt, ∆Wsstt, ∆Wssst, 

∆Was, ∆Waas, ∆Wass, ∆Waaas, ∆Waass, ∆Wasss, 
∆Wast, ∆Waast, ∆Wasst, ∆Wastt 

Distance 
Potentials 

∆Wsd, ∆Wasd, ∆Wstd, ∆Wastd,  
∆Wsds, ∆Wasdas, ∆Wstdst, ∆Wastdast 

 
3. MODELLING PROTEIN STABILITY CHANGES WITH 

ARTIFICIAL NEURAL NETWORKS 

PoPMuSiC models free energy changes with three linear 
combinations of potentials corresponding to three solvent-
accessibility ranges, A ≤ 20%, 20 < A ≤ 40%, and A ≥ 50%, 
where A is the solvent accessibility of the mutated amino 
acid. These relationships highlight the dominating influence 
of different types of interactions at the protein surface and in 
the protein core. However, no model exists for the 
accessibility range 40 ≤ A < 50%. Besides the use of the new 
statistical potentials described above, a possible improvement 
is to replace the three linear combinations by only one, valid 
for all values of A. Its expression would be 
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where ∆∆GP is the predicted change in folding free energy 
upon mutation, ∆∆Wi represent the 24 potentials listed in 
Table 1, and αi(A) are the proportionality coefficients which 
vary with the solvent accessibility of the mutated residue. To 
identify the αi(A) functions, we consider two different neural 
network structures: a radial basis function network and a 
multilayer perceptron. 

3.1 Radial Basis Function network (RBF) 

It consists in a neural network with one input node, the 
solvent accessibility of the mutated residue (A), three hidden 
neurons whose Gaussians cover the whole range of solvent 
accessibility and a linear output layer which provides the 27 
αi(A) (Fig. 1). Larger amounts of hidden neurons have been 
tested but they lead to redundant information. The 
mathematical expression of this network is 
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where wji and bi are the weights and bias, respectively, Cj is 
the center of the jth Gaussian, and rj defines its width. 

In this case, the model (5) is completely linear with respect to 
the weights wji and biases bi, but the Cj and rj must be 
determined nonlinearly. The proposed systematic 
identification procedure is the following: (a) Initial values of 
the centers and widths are selected to ensure a good covering 
of the whole solvent accessibility range. (b) This first 

estimate of the centres and widths allows a linear estimation 
of the weights and biases thanks to a least squares estimator: 

( ) ,ˆ JArgMin
wb

wb
θ

θ =  with 

( ) ,
2
1

1

2
,,∑

=

∆∆−∆∆=
N

s
sPsM GG

N
J  (6) 

where J is the cost function, θwb is a vector containing all 
parameters wji and bi (with i=1,2,3 and j=1,2,…,27), N is the 
number of mutants, ∆∆GM,s is the experimentally measured 
stability change of mutant s and ∆∆GP,s its predicted value, 
which is a function of θwb through (4) and (5). (c) Once a first 
estimation of the whole set of parameters is available, the 
coefficients are released in order to refine the model. 
Actually, only the centres and widths are re-estimated while 
the weights and biases are deduced linearly, with (6), from 
the new Gaussian parameter values: 

( ).ˆ JArgMin
Cr

Cr
θ

θ =  (7) 

Note that constraints on the Cj and rj values are introduced in 
the estimator to limit the recovery of the Gaussians, in order 
to avoid redundancy or compensation effects. Different 
values of the maximal recovery were tested. 

 

 Fig. 1. Radial Basis Function network structure 

After these three identification steps, 114 parameters (3 Cj, 3 
rj, 81 wji, and 27 bi) have been estimated. As this high 
parameter amount may lead to overfitting and weak cross 
validation results, network pruning techniques have to be 
processed. Classic reduction parameter is preferred as it may 
be directly interpreted from a biological point of view. For 
instance, a weight cancellation would reflect the absence of 
solvent-accessibility influence on the contribution of a 
potential. Since centres and widths cannot be eliminated 
without major degradation of the model, only weights and 
biases are potentially cancellable. As they are estimated in a 
last linear identification step independently of the nonlinear 
estimation of the centres and widths, we compute only the 
covariance on the weights and biases assuming the centres 
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and widths are well known. The proposed parameter 
reduction procedure works in numerous steps in order to 
avoid too fast cancellation of significant parameters. Table 2 
gives dimensionless thresholds determined by the trial and 
error method. Once hardly assessable parameters are 
cancelled out according to the mentioned thresholds, the 
remaining parameters are re-identified according to (6-7). 

Table 2.  Steps of the RBF parameter reduction procedure 
Step 1 2 3 4 5 6 7 8 

Variance 
threshold 

100 10 5 2.5 1.5 1 1 1 

Covariance 
threshold 

100 10 5 2.5 1.5 1 1 1 

3.2 MultiLayer Perceptron (MLP) 

As the proportionality functions αi(A) should reproduce the 
dominating influence of different interactions at the protein 
surface and in the core, we assume a priori that these 
functions present a sigmoid profile. However, the RBF 
structure does not ensure such a profile. This is why a second 
network architecture is considered. It consists in 27 
independent perceptrons with one sigmoid hidden neuron and 
a linear output (Fig. 2). The mathematical expression of this 
network is 

,
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ii
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where ci is the inflexion point of the ith sigmoid, and ri its 
slope.  

 

Fig. 2. MultiLayer Perceptron network structure 

Regarding the parameter identification, this model is also 
linear with respect to the weights wi and biases bi. Hence, 
these parameters can be deduced linearly once slopes and 
inflection points are determined. The identification procedure 
is similar to that described above for the RBF model: (a) The 
inflection points ci are initially fixed to 50%, in the middle of 
the solvent accessibility range. As for the initial slopes ri, 
three different values are tested separately: 0.1, 1, and 2.5. (b) 
The weights wi and biases bi are estimated linearly according 
to (6). (c) All parameters are released in order to refine the 

model through non-linear optimisation (7). As for the RBF 
model, only the hidden parameters are re-estimated while the 
weights and biases are deduced linearly from the new 
sigmoid parameter values. 

After this identification, 108 parameters (27 cj, 27 rj, 27 wi, 
and 27 bi) have been estimated. Parameter reduction is 
conducted in several steps, as for the RBF model (Table 2). 
However, contrary to the RBF model, all parameters are 
considered: hardly assessable slopes and inflection points are 
set to their initial values, and hardly assessable weights and 
biases are cancelled out. 

4. RESULTS AND DISCUSSION 

4.1  Training and validation sets 

A set of experimentally characterized mutants was extracted 
from the ProTherm database (Bava et al. 2004). These data 
were filtered in order to eliminate bad quality inputs, 
according to the following criteria : (a) When the same 
mutant appears several times in the database, only one value 
of ∆∆GM is selected. (b) Measurements performed at a pH 
lower than 6 or higher than 8 are not considered. (c) Multiple 
mutations, mutations involving a proline, and mutations 
with ∆∆GM > 5 kcal/mol are not considered, as they are likely 
to induce structural modifications, which are not modelled by 
PoPMuSiC. (d) We consider only mutations whose stability 
changes are measured with respect to the same reference 
state, i.e. the unfolded conformation. (e) The experimental 
protein structure must be available. (f) If the protein is 
multimeric, free energy changes refer either to the whole 
protein or to a monomer only. Mutations for which this is not 
specified are eliminated. 

As a result, 555 experimentally characterized mutants are 
selected. Among these mutants, 409 are chosen randomly to 
constitute an identification set, with the constraint that they 
must cover the whole solvent accessibility range. The 146 
remaining mutants define the validation set. To ensure that no 
bias arises from the random selection, four pairs of 
identification/validation sets are built and used in parallel. All 
results given below are averages over these four pairs of sets. 

4.2 Prediction of stability changes upon mutation 

  To assess the predictive capabilities of both models, we 
compare them on the basis of J, the average squared 
difference between predicted and measured free energy 
changes ∆∆G, which is the cost function of our optimisation 
procedure (6), and on the linear correlation coefficient 
between the measured and predicted stability changes. It 
appears that the MLP model performs slightly better than the 
RBF model in direct validation, but is somewhat less efficient 
in cross validation (Table 3). 

In Fig. 3, the values of the stability changes predicted with 
the MLP model are plotted against the corresponding 
experimentally measured values, for all mutants included in 
the identification and validation sets, respectively. 
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Intriguingly, some mutants are systematically poorly 
modelled, in all pairs of identification/validation sets, and 
with all values chosen for the maximal Gaussian recovery (in 
the RBF model) or for the initial slope of the sigmoids (in the 
MLP model). This does not necessarily imply that the 
energetic functions and/or the structure of the models are 
defective. Indeed, the stability changes measured for some 
mutants may be spoiled by a high experimental error. On the 
other hand, some mutants may involve a significant 
modification of the protein’s backbone structure, which is not 
taken into account by our models. Therefore, we propose to 
exclude these outliers from our datasets and re-identify the 
models. In practice, for each type of model (RBF and MLP) 
all mutants showing a deviation larger than 1.5 kcal/mol 
between the predicted and measured free energy change, in 
more than 90% of the performed identifications (with 
different databases, different maximal Gaussian recoveries or 
different initial slopes of the sigmoids), are rejected. 

Table 3.  Performances of the RBF and MLP models 
Direct validation Cross validation  
J 1 r 2 J 1 r 2 

RBF 
 

0.51 0.70 
 

0.49 
 

0.66 
 

MLP 
 

0.49 
 

0.73 0.62 
 

0.59 
 

RBF 
(without outliers) 

0.30 0.74 0.32 0.70 

MLP 
(without outliers) 

0.33 0.79 0.39 0.74 

1 J is the value of the cost function (6). 
2 r is the correlation coefficient between ∆∆GM and ∆∆GP on all 
mutants of the identification or validation sets. 

 
As expected, after rejection of 81 mutants for the RBF model, 
or 50 mutants for the MLP model, the performances are 
notably enhanced (Table 3): the cost functions values are 
lower and the correlation coefficients higher. We also 
observe that, relatively to the RBF model, the cross 
validation performances of the MLP model are improved. 
Indeed, both models appear mostly equivalent, with slightly 
better values of the cost function for the RBF model, and 
slightly better correlation coefficients for the MLP model. 

4.3 Biophysical interpretation of the model 

A significant advantage of the MLP model over the RBF 
model is that the proportionality coefficients αi(A) evolve 
monotonously with A, which allows an easier interpretation 
in terms of their biophysical significance. 

A few examples of the dependence of αi on A are given in 
Fig. 4. ∆∆Wst describes interactions between amino acids 
close to each other in the sequence. The weight of these 
interactions appears larger on the surface than in the core of 
the proteins. On the other hand, the weight of ∆∆Wsd, which 
is dominated by the hydrophobic effect, is larger in the core. 
These trends are in agreement with a previous study (Gilis 
and Rooman, 2000). Furthermore, as expected, the αi 
corresponding to ∆∆Wsds, which describes specific 
interactions between amino acids close to each other in space, 

remains constant. The αi profile corresponding to ∆V1 is 
intriguing, for steric stresses should be more destabilizing in 
the core, and αi should thus be decreasing. As for ∆V2, the 
creation of a cavity in the core of a protein is unfavourable 
(Eriksonn et al, 1992), which is correctly modelled by the 
increase of the corresponding αi. Finally, the independent 
term is positive at small values of A, and tends to zero when 
A increases, which indicates that mutations in the core are 
usually more destabilizing than expected. Note that this term 
and ∆V1 might compensate each other, which could explain 
the somewhat surprising behaviour of ∆V1. 

 

Fig. 3. Correlation between the measured values of ∆∆G, and 
those predicted by the MLP model, in (a) the identification 

set, and (b) the validation set. Encircled points are 
systematically poorly modelled. 

CONCLUSIONS 

The combination of new energetic functions with neural 
network models that provide weighting coefficients as 
functions of the solvent accessibility allowed us to devise a 
new version of the PoPMuSiC program. Although the 
correlation between predicted and measured stability changes 
is slightly lower than in the previous tests, it must be noted 
that the performances of the first version of PoPMuSiC are 
significantly lower on the new dataset of mutants presented 
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here. The comparison of the RBF and MLP models results in 
favor of the MLP model, as only 50 outliers must be rejected, 
against 81 for the RBF model, to achieve a similar predictive 
power. In addition, the biophysical interpretation of the MLP 
model is much more straightforward. 

 

Fig. 4. Evolution of the proportionality coefficients αi (4) of 
the MLP model, as a function of the solvent accessibility A. 
The energetic function to which each αi refers is indicated. 
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