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Abstract: A convex approach is proposed to deal with switched discrete-time systems with
time-varying delays. It uses a parameter dependent Lyapunov-Krasovskii functional that allows
to assure the robust stability or the robust stabilization of a switched system for arbitrary
switching functions. The analysis and the design conditions are formulated as simple feasibility
tests of linear matrix inequalities (LMIs). The presented conditions encompass previous results
found in the literature, yielding less conservative and convex design methods. The design
conditions can take into account the rate of variation of delay and deal with decentralized
control. A design example is presented to illustrate the efficacy of the proposed LMI conditions,
including some time-simulations.
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1. INTRODUCTION

The class of switched systems encompasses systems in
many fields, such as chemical process, transportation sys-
tems, communication systems, etc. In control systems,
switching among different structures is an essential fea-
ture in some applications, for example in electrical power
converters Montagner et al. [2004], sludge process Gómez
Quintero et al. [2004] and network controlled systems
Lin et al. [2003]. Switched discrete-time systems with
state delay have been extensively investigated in the last
years Johansson and Rantzer [1998], Liberzon and Morse
[1999], Daafouz et al. [2001], Daafouz et al. [2002] but
some open problems still deserve attention. In general,
two main problem types have been investigated in the
class of switched systems (see DeCarlo et al. [2000]): the
first problem type considers how to design a controller
that assures the stability of the entire system despite of
arbitrary switching functions. The second one is related
to the search of switching sequences that stabilize the
system. In this paper, the first problem type is addressed
in the context of switched discrete-time systems with time
varying delay. Recently, an important number of studies
has been published about switched delayed systems. See,
for instance, Xie and Wang [2004], Phat [2005], Montagner
et al. [2005], Yu et al. [2007], Du et al. [2007].

In Xie and Wang [2004], quadratic stability approach,
i.e., Lyapunov-Krasovskii functionals with constant ma-
trices, is used conjointly with system augmentation to
design switched gains for discrete-time system with con-
stant delay and an arbitrary switching function. Riccati-
like inequalities yielding sufficient conditions for the robust

⋆ This work was supported in part by the Brazilian agencies CNPq
(485496/2006 − 2) and FAPEMIG (TEC 840/05).

stability and stabilizability of switched discrete-time sys-
tems with constant state delay are given in Phat [2005].
A Lyapunov-Krasovskii functional with a constant matrix
dealing with delayed states and other depending on the
switching function, that deals with the delay-free dynamic
part, is presented yielding convex synthesis conditions for
switched gains is investigated in Montagner et al. [2005].
In Yu et al. [2007], a parameter dependent Lyapunov-
Krasovskii functional is used to propose some convex
conditions to deal with switched discrete-time systems
affect by constant delay, subject to actuator saturation and
norm-bounded uncertainties presented at each operation
mode. H∞-filtering design conditions are proposed in Du
et al. [2007] by means of a switched Lyapunov-Krasovskii
functional. Similar approach has been taken before, in the
context of stabilization of switched delay-free discrete-time
systems in Daafouz et al. [2002]. Note, however, that none
of the cited works can deal with time-varying delays.

Thus, this paper is focused on the problem of stability
analysis and stabilization of arbitrary switched discrete-
time systems with time-varying delay. Some convex con-
ditions formulated as feasibility tests of linear matrix
inequalities (LMIs) are proposed. Parameter dependent
Lyapunov-Krasovskii functionals are used to assure the
asymptotic stability of the entire system. It has been veri-
fied that the proposed conditions leads to less conservative
results and encompass the quadratic stability approach.
Some numerical examples, including time-simulation, are
presented to illustrate the efficacy of the proposed condi-
tions.

Notation: The notation used here is quite standard. R is
the set of real numbers, R

m×n is the set of m×n matrices
with real entries and N (N∗) is the set of natural numbers
(excluded the zero). In and 0 denotes, respectively, the
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n × n identity matrix and the null matrix of appropriate
dimensions. M > 0 (M < 0) means that matrix M is
positive (negative) definite. M ′ is the transpose of M . The
symbol ⋆ stands for symmetric blocks in the LMIs.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following switched discrete-time system with
delayed states

xk+1 = A(α(k))xk + Ad(α(k))xk−dk
+ B(α(k))u(α(k)),

xk = φ(k), k ∈ [−d̄, 0] (1)

where k is the sampling time, uk = u(α(k)) ∈ R
p is the

input control signal, xk ≡ x(k) ∈ R
n is the state vector,

xk−dk
≡ x(k − dk) ∈ R

n is the delayed state vector,
dk ≡ d(k) is the time-varying state delay limited by

d ≤ dk ≤ d̄ (2)

with (d, d̄) ∈ N
∗ × N

∗ representing the possible variation
band of the delay value. The uncertain parameter α(k) is
directly related to the arbitrary switching function

σk ≡ σ(k) : N → I, I = {1, . . . , κ} (3)

where I is the set of selectable subsystems and κ is the
number of subsystems. Defines

αi(k) =

{

1, for i = σk

0, otherwise
(4)

Thus, the system matrices [A(α(k))|Ad(α(k))|B(α(k))] ≡
[A|Ad|B](α(k)) ∈ R

n×2n+p are switched matrices depend-
ing on the switching function (3) and can be written as

[A|Ad|B](α(k)) =

κ
∑

i=1

αi(k)[A|Ad|B]i (5)

Therefore, function σk can select one of the subsystems
[A|Ad|B]i, i = 1, . . . , κ, at each instant k. Consider the
following standard hypothesis w.r.t. switched system (1):

Hypothesis 1. The switching function is not known a pri-
ori, but it is available at each sample-time, k.

Hypothesis 2. All matrices of system (1) are switched
simultaneously by (3).

Also, assume that:

Hypothesis 3. Both state vectors, xk and xk−dk
, are avail-

able for feedback.

Note that this last hypothesis can be achieved in physical
systems by employing, for instance, a time-stamped in the
measurements or in the estimated states Srinivasagupta
et al. [2004]. An initial problem investigated in this paper
is given below.

Problem 4. Determine if the autonomous system (1)-(2),
i.e. with uk = 0, is stable for any switching function (3).

In case of an unstable system, a state feedback control law
given by

u(k) = K(α(k))xk + Kd(α(k))xk−dk
(6)

where the switched gains [K|Kd](α(k)) ∈ R
p×2n, are

considered to stabilize the respective subsystem i, i =
1, . . . , κ, and assure stable transitions σk → σk+1. In this
case, it is stated the following stabilizing problem.

Problem 5. Find a pair of gains [K|Kd](α(k)) such that
the system (1)-(2) controlled by (6) is stable for arbitrary
switching functions σk.

Thus, the stable switched closed-loop system eventually
achieved by a solution of Problem 5 is written as

xk+1 = Ã(α(k))xk + Ãd(α(k))xk−dk
(7)

with
Ã(α(k)) ≡ A(α(k)) + B(α(k))K(α(k)) (8)

Ãd(α(k)) ≡ Ad(α(k)) + B(α(k))Kd(α(k)) (9)

It is worth to mention that, if the delay dk is not known,
then it is enough to make Kd(α(k)) = 0 in (6). On the
other hand, if dk is known, then the use of K(α(k)) and
Kd(α(k)) may improve the performance of the closed-loop
system (7).

To investigate problems 4 and 5 the following parameter
dependent Lyapunov-Krasovskii candidate functional is
employed:

V (α(k), k) =
3

∑

v=1

Vv(α(k), k) (10)

with

V1(α(k), k) = x′

kP (α(k))xk, (11)

V2(α(k), k) =

k−1
∑

j=k−d(k)

x′

jQ(α(j))xj , (12)

V3(α(k), k) =

1−d
∑

ℓ=2−d̄

k−1
∑

j=k+ℓ−1

x′

jQ(α(j))xj , (13)

where α(k) is given in (4) and matrices P (α(k)) and
Q(α(k)) can assume a different value at each instant k
as a function of the switching function σk. Note that (13)
is defined only for d̄ > d.

3. MAIN RESULTS

Initially, convex conditions to solve Problem 4 are pre-
sented. Then, convex conditions for the design of state
feedback gains K(α(k)) and Kd(α(k)) are given. In both
cases, the Lyapunov-Krasovskii candidate functional is
exploited to obtain less conservative conditions than
those available in the literature. The following Lyapunov-
Krasovskii candidate matrices are used:

P (α(k)) =
κ

∑

i=1

αi(k)Pi (14)

Q(α(k)) =

κ
∑

i=1

αi(k)Qi (15)

Observe that these switched matrices are depend on σk by
(4).

3.1 Robust Stability Analysis

Theorem 6. The switched time-varying delay system (1)-
(5) with uk = 0 is stable for arbitrary switching function
σk, if there exist symmetric matrices 0 < Pi ∈ R

n×n,
0 < Qi ∈ R

n×n, i = 1, . . . , κ, and a scalar β = d̄ − d +
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1, with d and d̄ known, such that one of the following
equivalent conditions is verified

a)

Γ(i, j, ℓ) ≡

[

A′

iPjAi + βQi − Pi A′

iPjAdi

⋆ A′

diPjAdi − Qℓ

]

< 0,

(i, j, ℓ) ∈ I × I × I (16)

b)

Ψ(i, j, ℓ) ≡

[

−Pj PjAi PjAdi

⋆ βQi − Pi 0
⋆ ⋆ −Qℓ

]

< 0,

(i, j, ℓ) ∈ I × I × I (17)

c) There exist matrices Fi ∈ R
n×n, Gi ∈ R

n×n and
Hi ∈ R

n×n, i = 1, . . . , κ such that

Ω(i, j, ℓ) ≡





Pj + F ′

i + Fi G′

i − FiAi

⋆ βQi − Pi − A′

iG
′

i − GiAi

⋆ ⋆

H ′

i − FiAdi

−A′

iH
′

i − GiAdi

−(Qℓ + HiAdi + A′

diH
′

i)



 < 0,

(i, j, ℓ) ∈ I × I × I (18)

Besides this, (10)-(13) with (14)-(15) is a Lyapunov-
Krasovskii functional for considered autonomous system.

Proof. The positivity of the functional (10) is clearly
assured with the conditions of P (α(k)) = P (α(k))′ > 0
and Q(α(k)) = Q(α(k))′ > 0. For (10) be a Lyapunov-
Krasovskii functional, besides its positivity, it is necessary
to verify

∆V (α(k), k) < 0, ∀ [x′

k x′

k−dk
]′ 6= 0 (19)

From hereafter, the α(k) dependency is omitted in the
argument of Vv(k), v = 1, . . . , 3, for simplicity of the
notation. To calculate (19), consider

∆V1(k) = x′

k+1P (α(k + 1))xk+1 − x′

kP (α(k))xk (20)

∆V2(k) = x′

kQ(α(k))xk − x′

k−dk
Q(α(k − dk))xk−dk

+

k−1
∑

i=k+1−d(k+1)

x′

iQ(α(i))xi −

k−1
∑

i=k+1−dk

x′

iQ(α(i))xi (21)

and

∆V3(k) = (d̄−d)x′

kQ(α(k))xk−

k−d
∑

i=k+1−d̄

x′

iQ(α(i))xi (22)

Observe that the third term in (21),

Ξk ≡

k−1
∑

i=k+1−d(k+1)

x′

iQ(α(i))xi,

can be rewritten as

Ξk =
k−1
∑

i=k+1−d

x′

iQ(α(i))xi +

k−d
∑

i=k+1−d(k+1)

x′

iQ(α(i))xi

≤
k−1
∑

i=k+1−dk

x′

iQ(α(i))xi +

k−d
∑

i=k+1−d̄

x′

iQ(α(i))xi

(23)

Using (23) in (21), one gets

∆V2(k) ≤ x′

kQ(α(k))xk − x′

k−dk
Q(α(k − dk))xk−dk

+

k−d
∑

i=k+1−d̄

x′

iQ(α(i))xi (24)

So, taking into account (20), (22) and (24) the following
upper bound for (19) can be obtained

∆V (k) ≤ x′

k+1P (α(k + 1))xk+1

+ x′

k[βQ(α(k)) − P (α(k))]xk

− x′

k−dk
Q(α(k − dk))xk−dk

< 0 (25)

Considering (14)-(15) and (4), matrices P (α(k)), Q(α(k)),
P (α(k + 1)), Q(α(k − dk)) are replaced by Pi, Qi, Pj , Qℓ,
respectively, with i, j, ℓ ∈ I. Replacing xk+1 in (25) by the
right hand side of (1) with uk = 0, one gets (16). The
equivalence between (16) and (17) can be established as
follows. First, note that (16) can be rewritten as

Γ(i, j, ℓ) = Π′

ijP
−1
j Πij −

[

Pi − βQi 0
0 Qℓ

]

< 0 (26)

with Πij = [PjAi PjAdi], which by Schur complement
is equivalent to (17). Therefore, the equivalence between
Γ(i, j, ℓ) < 0 and Ψ(i, j, ℓ) < 0 has been stablished. So,
if (17) is verified, then (18) is true for Fi = F ′

i = −Pj ,
Gi = Hi = 0. On the other hand, if (18) is verified, then
Γ(i, j, ℓ) = T ′

iΩ(i, j, ℓ)Ti with

Ti =

[

Ai Adi

I2n

]

completing the proof.

Observe that, Theorem 6 can deal with system defined
by A(αk) and Ad(α(k)) as well as with its dual given
by A(α(k))′ and Ad(α(k))′, respectively. Also, note that
Theorem 6 is a delay-independent condition encompassing
the case where the delay is constant, i.e. β = 1 for
d = d̄. However, the conditions presented here seems
similar to those presented in Montagner et al. [2005],
but in this last, besides the constant delay, only matrix
P (α(k)) depends on the switching function σk. Therefore,
the conditions presented in Montagner et al. [2005] lead to
more conservative results, in general.

Another relevant issue of Theorem 6 is that its LMI
conditions encompass the results of a quadratic stability
based approach, i.e., with constant and σk-independent
matrices in the Lyapunov-Krasovskii candidate functional.
Indeed, quadratic stability conditions can be recovered
from the particular choice Pi = P and Qi = Q. Although
this may seem to be a straightforward simplification,
the resulting LMIs obtained from (17) and (18) lead to
very different design conditions. Thus, only these two
conditions are presented in the next corollary.

Corollary 7. The switched time-varying delay system (1)-
(5) with u(α(k)) = 0 is quadratically stable for any
arbitrary switching function σk, if there exist symmetric
matrices 0 < P ∈ R

n×n, 0 < Q ∈ R
n×n, and a scalar

β = d̄ − d + 1, with d and d̄ known, such that one of the
following equivalent conditions is verified

a)
[

−P PAi PAdi

⋆ βQ − P 0
⋆ ⋆ −Q

]

< 0, i ∈ I (27)
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b) There exist matrices Fi ∈ R
n×n, Gi ∈ R

n×n and
Hi ∈ R

n×n, i = 1, . . . , κ such that




P + F ′

i + Fi G′

i − FiAi

⋆ βQ − P − A′

iG
′

i − GiAi

⋆ ⋆

H ′

i − FiAdi

−A′

iH
′

i − GiAdi

−(Q + HiAdi + A′

diH
′

i)



 < 0, i ∈ I (28)

Besides this, (10)-(13) with P (α(k)) = P and Q(α(k)) =
Q is a Lyapunov-Krasovskii functional for considered au-
tonomous system.

3.2 Robust Stabilization

Convex conditions are derived from Theorem 6 to design
robust state feedback gains K(α(k)) and Kd(α(k)) for (6)
providing a solution to Problem 5.

Theorem 8. If there exist symmetric matrices 0 < Pi ∈
R

n×n, 0 < Qi ∈ R
n×n, matrices Fi ∈ R

n×n, Wi ∈ R
n×ℓ

and Wdi ∈ R
n×ℓ, i = 1, . . . , κ, and a scalar β = d̄ − d + 1,

with d and d̄ known, such that

Θ(i, j, ℓ) ≡





Pj + F ′

i + Fi −WiB
′

i − FiA
′

i

⋆ βQi − Pi

⋆ ⋆

−WdiB
′

i − FiA
′

di

0
−Qℓ



 < 0,

(i, j, ℓ) ∈ I × I × I (29)

then the switched system with time-varying delay (1) is
robustly stabilizable by the control law (6) with

Ki = W ′

i (F
′

i )
−1 and Kdi = W ′

di(F
′

i )
−1 (30)

Besides this, (10)-(13) with P (α(k)) = P and Q(α(k)) =
Q is a Lyapunov-Krasovskii functional for resulting
switched closed-loop system (7).

Proof. The proof can be obtained by replacing A(α(k))

and Ad(α(k)) by Ã′

i and Ã′

di given in (8) and (9), respec-
tively, imposing Gi = Hi = 0 and making the changing of
variables Wi = FiK

′

i and Wdi = FiK
′

di.

Note that, in case where the delay value is not known,
i.e., when xk−dk

is not available for feedback, then con-
dition (29) can be used with Wdi = 0, i = 1, . . . , κ. A
quadratic stability condition can be derived from (29) by
imposing Pi = P = P ′. Thus, whenever the time-varying
system (1) is quadratically stabilizable, it is also robustly
stabilizable through condition of Theorem 8. The following
two corollaries are presented without proofs. They state
different quadratic conditions for the design of state feed-
back gains K(α(k)) and Kd(α(k)).

Corollary 9. If there exist symmetric matrices 0 < P ∈
R

n×n, 0 < Q ∈ R
n×n, matrices Fi ∈ R

n×n, Wi ∈ R
n×ℓ

and Wdi ∈ R
n×ℓ, i = 1, . . . , κ, and a scalar β = d̄ − d + 1,

with d and d̄ known, such that




P + F ′

i + Fi −WiB
′

i − FiA
′

i −WdiB
′

i − FiA
′

di

⋆ βQ − P 0
⋆ ⋆ −Q



 < 0,

i ∈ I (31)

then the switched system with time-varying delay (1)
is quadratically stabilizable by the control law (6) with
(30). Besides this, (10)-(13) with P (α(k)) = P and
Q(α(k)) = Q is a Lyapunov-Krasovskii functional for
resulting switched closed-loop system (7).

Corollary 10. If there exist symmetric matrices 0 < P ∈
R

n×n, 0 < Q ∈ R
n×n, i = 1, . . . , κ, matrices W ∈ R

n×ℓ

and Wd ∈ R
n×ℓ and a scalar β = d̄ − d + 1, with d and d̄

known, such that




−P WB′

i + PA′

i WdB
′

i + PA′

di

⋆ βQ − P 0
⋆ ⋆ −Q



 < 0, i ∈ I (32)

then the switched system with time-varying delay (1) is
quadratically stabilizable by the control law (6) with

K(α(k)) = K = W ′(F ′)−1 (33)

and
Kd(α(k)) = Kd = W ′

d(F
′)−1 (34)

Besides this, (10)-(13) with P (α(k)) = P and Q(α(k)) =
Q is a Lyapunov-Krasovskii functional for resulting
switched closed-loop system (7).

An important remark is that Corollary 9 encompasses
Corollary 10, since if (32) is verified, condition (31) is
also verified with Fi = −P , Wi = −W and Wdi = −Wd,
i = 1, . . . , κ. Therefore, Corollary 9 is an important issue in
the context of quadratic stability approach, since it allows
to design parameter dependent state feedback gains. This
is a more general condition than those with constant state
feedback gains as in Corollary 10 and in [Montagner et al.,
2005, Corollary 2].

Also observe that, decentralized control can be casted in
conditions presented in Theorem 8 and Corollary 9 by
imposing block-diagonal structure to matrices

Fi = FDi = block-diag{F 1
i , . . . , F

η
i },

Wi = WDi = block-diag{W 1
i , . . . ,W

η
i },

Wdi = WdDi = block-diag{W 1
di, . . . ,W

η
di},

i = 1, . . . , κ, where η denote the number of subsystems
defined. In this case, it is possible to get robust block-
diagonal state feedback gains KDi = W ′

Di(F
′

Di)
−1 and

KdDi = W ′

dDi(F
′

Di)
−1, i = 1, . . . , κ. In this case, the

matrices of the Lyapunov-Krasovskii functional, P (αk),
Q(αk), do not have any restrictions in their structures,
which results in less conservative design conditions if no
extra variable is employed. Observe that conditions of
Corollary 10 could be used to deal with decentralized
control, but in this case, the block-diagonal structure must
be imposed to Z, Zd and directly over matrices P and Q
yielding, in general, more conservative results.

It is worth to mention that the combinations (i, j, ℓ) ∈ I×
I×I considered in theorems 6 and 8 can be simplified if the
considered system does not take all possible combinations
of transitions. However, for sake of space, this is not
presented here.

Note that, the conditions proposed in Montagner et al.
[2005] can be obtained as special cases of those presented
here. For this, it is enough to choose d = d̄ = d and
to impose Qi = S, i = 1, . . . , κ. Note that, in this
case, the functional V3 given in (13) is not defined and,
thus, V (α(k), k) = V1(α(k), k) + V2(α(k), k) which is
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the same employed in Montagner et al. [2005]. Therefore
the proposed conditions represent an improvement in the
available tools for dealing with switched discrete-time
systems with time-varying delay.

A final note on the design conditions is that LMIs in (29)
and (31) can be used to design constant gains K(α(k)) =
K and Kd(α(k)) = Kd by imposing Fi = F , Wi = W and
Wdi = Wd, i = 1, . . . , κ.

3.3 Numerical complexity

The numerical complexity of the conditions presented in
this paper can be determined by the number of scalar
variables, K, and the number of rows, R, involved in
the optimization problems. In case of using LMI Control
Toolbox Gahinet et al. [1995], the numerical complexity
is O(K3R) and using the solver SeDuMi Sturm [1999]
the numerical complexity is O(K2R2.5 +R3.5). Note that,
nowadays efficient algorithms can solve the conditions
presented here in polynomial time. The number of scalar
variables and the number of LMI rows of the feasibility
tests proposed in this paper are presented in Table 1.

Condition K R

Theorem 6.a) κn(n + 1) 2κn(κ2 + 1)
Theorem 6.b) κn(n + 1) 3κ3n
Theorem 6.c) κn(3n2 + n + 1) κn(3κ2 + 2)
Corollary 7.a) n(n + 1) 3κn
Corollary 7.b) (3κ + 1)n2 + n n(3κ + 2)

Theorem 8 κn(2n + 2p + 1) 3κ3n
Corollary 9 n(2n + 2κp + 1) 3κn
Corollary 10 n(n + 2p + 1) 3κn

Table 1. Number of scalar variables (K) and
LMI rows (R) for the proposed conditions

4. NUMERICAL EXAMPLE

In this section an example is given to illustrate the efficacy
of the proposed LMI conditions. The example deals with
the Problem 5 discussed in this paper.

Example 11. Consider the switched discrete-time sys-
tem with time varying delay described by (1) where
where A(σk) = An + (−1)σkρL′J , Ad(σk) = (0.225 +
(−1)σk0.025)An and

B(σk) = [0 1.5 0 1.5]′ + (−1)σk [0 0.5 0 0.5]′

with

An =







0.8 −0.25 0 1
1 0 0 0
0 0 0.2 0.03
0 0 1 0






(35)

L = [0, 0, 1, 0]′, J = [0.8, − 0.5, 0, 1], σk ∈ {1, 2},
ρ = 0.35. This defines a switched system with 2 submodes.
Note that, even for d = d̄ = 1, conditions from Theorem 6
fail to identify this system as a stable one. Supposing
d = 1, the objective here is to search the maximum value of
d̄ such that the considered system is stabilizable. Since the
delay is time-varying, conditions presented in Montagner
et al. [2005], Phat [2005] and Yu et al. [2007] cannot be
applied. Two alternatives are taken into account. Firstly,
consider that only xk is available for feedback, i.e., Kd = 0.

In this case, Corollary 10 can yields a feasible solutions for
d ≤ d̄ = 8. For d̄ = 8, it yields

K = [−0.0537 0.1111 −1.1188 −0.4768 ]

On the other hand, Corollary 9 and Theorem 8 achieve
feasible solutions for d̄ = 15 with the following gains

KC9,1 = [ 0.1218 0.0475 −1.6331 −0.4745 ]

KC9,2 = [−0.1488 0.1548 −0.8166 −0.4994 ]

KTh8,1 = [ 0.1215 0.0475 −1.6326 −0.4744 ]

KTh8,2 = [−0.1494 0.1551 −0.8168 −0.5002 ]

Now, consider that both xk and xk−dk
are available for

feedback. In this case, Corollary 10 can be used to obtain
constant feedback gains given by

K = [−0.0233 0.0772 −1.0140 −0.3503 ]

and

Kd = [−0.0341 0.0318 −0.2130 −0.1300 ]

for 1 ≤ dk ≤ 21. If Corollary 9 is used, then it can be
verified feasible solutions for 1 ≤ dk ≤ 333, using Kσk

and Kd,σk
. Theorem 8 can reaches a little better result,

achieving feasible solutions for 1 ≤ dk ≤ 335. In this case,
with d̄ = 335, conditions of Theorem 8 lead to

K1 = [−0.6129 0.3269 −1.2873 −1.1935 ] (36)

K2 = [−0.2199 0.1107 −0.6450 −0.4890 ] (37)

Kd1 = [−0.1291 0.0677 −0.3228 −0.2685 ] (38)

Kd2 = [−0.0518 0.0271 −0.1291 −0.1076 ] (39)

Thus, it is clear that the use of switched gains leads to
less conservative results than when constant gains are
employed in the feedback control law. Also, it has been
shown that conditions state in Theorem 8 can lead to
less conservative results. This is achieved thanks to the
switched Lyapunov-Krasovskii functional employed and to
the extra matrices Fi, i = 1, . . . , κ. This last condition is
simulated and the results are presented in what follows.
Random signals for σk ∈ {1, 2} and for 1 ≤ d(k) ≤ 335
have been generated as indicated in Figure 1. These signals
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Fig. 1. The switched rule, σ(k) and the varying delay, d(k).

have been used in the system considered in this example,
with gains given in (36)-(39). An initial condition x(k) =
[1, − 1, 1,−1], k ∈ [−335, 0], has been used. Thus, it
is expected that the delayed states degenerate the overall
system response, at least for the first d̄ = 335 samples.
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Note that, this initial condition is harder than the ones
usually found in the literature. The state behavior of the
switched closed-loop system with time-varying delay is
presented in Figure 2. Observe that the initial value of the
states are not presented due to the scale choice. Clearly,
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Fig. 2. The behaviors of the states x1(k) to x4(k), with
1 ≤ d(k) ≤ 335 (see Fig. 1).

by the response behavior presented in Figure 2, the states
are almost at the the equilibrium point after 300 samples.
The control signal is presented in Figure 3. In the top of
this figure, it is shown the control signal due to Kσk

x(k).
In the bottom of this figure it is shown the control signal
due to Kdσk

x(k − d(k)). Observe that the total control
signal applied to the system at each instant is given by
u(k) = u1(k) + u2(k) = Kσk

x(k) + Kdσk
x(k − d(k))
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Fig. 3. Control signal u(k) = u1(k) + u2(k), with u1(k) =
Kix(k) and u2(k) = Kdix(k − d(k)), i = σk ∈ {1, 2}.

5. CONCLUSIONS

Convex conditions have been presented for both stability
analysis and control design for switched discrete-time
systems with time-varying delay. It has been used a
Lyapunov-Krasovskii functional depending on an arbitrary
switching function. The LMI conditions proposed here
encompass quadratic stability based approach and other
results in the literature. A design problem is developed,
including time-simulation, to illustrate the efficacy of the
proposed LMI conditions.
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C.-S. Gómez Quintero, I. Queinnec, and M. Spérandio.
A reduced linear model of an activated sludge process.
In 9th IFAC International Symposium on Computer
Applications in Biotechnology, Nancy, France, March
2004. In CD-rom.

M. Johansson and A. Rantzer. Computation of piecewise
quadratic lyapunov functions for hybrid systems. IEEE
Trans. Automat. Contr., 43(4):555–559, April 1998.

D. Liberzon and A. S. Morse. Basic problems in stability
and design of switched systems. IEEE Control Syst.
Mag., 19(5):59–70, October 1999.

H. Lin, G. Zhai, and P. J. Antsaklis. Robust stability and
disturbance attenuation analysis of a class of networked
control systems. In Proc. 42nd IEEE Conf. Decision
Contr., pages 1182–1187, December 2003.

V. F. Montagner, V. J. S. Leite, and P. L. D. Peres. Design
of a switched control with pole location constraints for a
UPS system. In Proceedings of the IEEE International
Symposium on Industrial Electronics – ISIE 2004, pages
441–446, Ajaccio, France, May 2004.

V. F. Montagner, V. J. S. Leite, S. Tarbouriech, and
P. L. D. Peres. Stability and stabilizability of discrete-
time switched linear systems with state delay. In Proc.
2005 Amer. Control Conf., Portland, OR, June 2005.

V. N. Phat. Robust stability and stabilizability of un-
certain linear hybrid systems with state delays. IEEE
Trans. Circuits Syst. II, 52(2):94–98, February 2005.

D. Srinivasagupta, H. Schättler, and B. Joseph. Time-
stamped model predictive previous control: an algo-
rithm for previous control of processes with random de-
lays. Computers & Chemical Engineering, 28(8):1337–
1346, Jully 2004.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11–12:625–653, 1999. URL:
http://sedumi.mcmaster.ca/.

G. Xie and L. Wang. Quadratic stability and stabilization
of discrete-time switched systems with state delay. In
Proc. 43rd IEEE Conf. Decision Contr., pages 3235–
3240, Atlantis, Paradise Island, Bahamas, December
2004.

J. Yu, G. Xie, and L. Wang. Robust stabilization of
discrete-time switched uncertain systems subject to ac-
tuator saturation. In Proc. 2007 Amer. Control Conf.,
pages 2109–2112, New York, NY, USA, July 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3888


