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1. INTRODUCTION

The natural stock management is a problem which re-
ceived great attention during the last decades. The de-
velopment of management policies in the exploitation of
renewable resource stocks needs to have a good estimate
of the available resource. Nowadays, mathematical models
together with computer simulations are useful to describe
the evolution of complex systems. One of the important
problems in control theory is to reconcile the available
data with the used mathematical model. This problem is
known as the observability problem and it is related to the
construction of ”observers” (called some times software
sensors) for dynamical systems. In this paper, we show
how to apply this theory in order to address the stock
estimation problem for an exploited fish population.

It is often not possible to measure all the state variables.
So it is necessary to have an algorithm to estimate the
unmeasured state variables.

In this paper we construct an observer for a nonlinear sys-
tem which model the dynamical evolution of a harvested
fish population Touzeau [1997].

This system is of the form{
ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t), u(t)), (1)

? This work was done while the first and the third author were
visiting the LMAM (University of Metz and INRIA Lorraine). They
were supported in part by the AUF.

where x ∈ Rn, u ∈ Rm, y ∈ Rp, The maps f and h are
assumed to be smooth.

Our aim is to construct an estimation x̂(t) of the state x(t)
by supposing that the input u(t) and the output y(t) are
well known.

1.1 Problem Statement

We consider the following mathematical model describing
the dynamical evolution of a fish population submitted
to fishing. The population is structured by age class (see
for instance Touzeau et al. [1998], Touzeau [1997], Ouahbi
et al. [2003]):

Ẋ0(t) = −α0X0(t) +
2∑
i=1

filiXi(t)

−
2∑
i=1

piXi(t)X0(t)− p0X
2
0 (t)

Ẋ1(t) = αX0(t)− (α1 + q1E)X1(t)

Ẋ2(t) = αX1(t)− (α2 + q2E)X2(t).

(2)

where :

Xi: the number of fish in the stage i.

α : linear aging coefficient (in time−1)

mi : natural mortality rate (in time−1)
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αi = mi + α (in time−1)

p0: juvenile competition parameter (in time−1.number−1)

fi: fecundity rate of class (no dimension)

li: reproduction efficiency of class i (in time−1)

pi: predation rate of class i on class 0 (time−1.num−1)

qi: capturability coefficient of class i (in unit effort−1)

E: instantaneous fishing effort. (in unit effort×time−1)

The fishing effort applied on a stock of a fish population
can be seen as the whole means of production used by the
fisherman. Fishing effort can be considered as the sum ,
over all units of the product of the fishing power on each
unit, and its fishing time, or a number of unit operations
Gulland [1983] (page 38-39).

To the system (2) we associate the output
Y (t) = q2EX2(t)

Y (t) represents the total catch that we assume can be
measured. This means that we suppose that only the last
class is submitted to fishing, so q1 = 0. Then, we obtain
the following system

Ẋ0(t) = −α0X0(t) +
2∑
i=1

filiXi(t)

−
2∑
i=1

piXi(t)X0(t)− p0X
2
0 (t)

Ẋ1(t) = αX0(t)− α1X1(t)

Ẋ2(t) = αX1(t)− (α2 + q2E)X2(t)

Y (t) = q2EX2(t).

(3)

Our aim is to construct an observer (estimator) for sys-
tem (3). This observer is an auxiliary dynamical system
that can be written

dX̂(t)
dt

= g(X̂(t), E(t), Y (t)), (4)

and whose state X̂(t) gives a “good” asymptotic estima-
tion of the stateX(t) of system (3); that is, the solutions
of (3-4) satisfy lim

t→+∞
‖X̂(t) − X(t)‖ = 0, for all initial

conditions X(0) and X̂(0). The observer we built will be
in fact an exponential observer; the estimation error will
converges to zero with exponential speed, i.e.,

‖X̂(t)−X(t)‖ ≤ exp(−λt)‖X̂(0)−X(0)‖.

2. OBSERVABILITY AND OBSERVER DESIGN

2.1 Definitions (see for instance, Bernard et al. [1998],
Iggidr [2004], or Sontag [1998], chap. 6)

Observability: We use the notation x(x0, u(.), t) to de-
note the solution of the differential equation (1) corre-
sponding to the admissible control u(.) and with initial
condition x0, and The corresponding output is denoted
y(x0, u(.), t) = h (x(x0, u(.), t), u(t)). The system (1) is

said to be observable if for any pair of different initial
states (x0, x1) x0 6= x1, there exists an admissible control
u(.) such that the outputs corresponding to those initial
conditions are not identically equals; that is, there exists
a time t ≥ 0 such that :

y(x0, u(.), t) 6= y(x1, u(.), t)
Observability for any input: The system (1) is said to
be uniformly input observable if for any input u(.) and
for any (x0, x1), x0 6= x1, there exists a time t ≥ 0 such
that :

y(x0, u(.), t) 6= y(x1, u(.), t)

2.2 Observability of system (3)

For the observer design, we will use the High Gain observer
(Gauthier et al. [1992], Gauthier et al. [1994]) and the
Kalman like observer (Deza et al. [1992]) to design an
observer for system (3).

Let Y (t) = h(X(t)) = q2EX2(t) and the function Φ :
R3 → R3, defined by :

Φ(X) =

 h(X)
Lfh(X)
L2
fh(X)

 = Z

(
Z1

Z2

Z3

)
and

f(X) =



−α0X0(t) +
2∑
i=1

filiXi(t)−
2∑
i=1

piXi(t)X0(t)

−p0X
2
0 (t)

αX0(t)− α1X1(t)
αX1(t)− (α2 + q2E)X2(t)


.

where L denote the Lie derivative operator with respect
to the vector field f , and h is the output function.

Φ is a diffeomorphism of the state space R3 to its image
Φ(R3). In fact :

dΦ
dx

=


0 0 q2E

0 αq2E −q2E(α2 + q2E)

α2q2E −α1q2E q2E(α2 + q2E)2

−q2E(α2 + q2E)

 ,

[
dΦ
dx

]−1

=



α1q2E + α1α2

α2q2E

q2E + α1 + α2

α2q2E

1
α2q2E

q2E + α2

αq2E

1
αq2E

0

1
q2E

0 0


and we have

Det

(
dΦ
dx

)
= α3q3

2E
3.

So Φ is a diffeomorphism provided that E 6= 0 and then
the system (3) is uniformly observable (Gauthier et al.
[1992]). Then, in a new coordinate system (R3,Φ(R3)),
with Z = Φ(X) = (h(X), Lfh(X), L2

f (X))t, our system
can be written in the canonical form:
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{
Ż = AZ + ψ(Z)
Y = CZ

(5)

where : A =

(
0 1 0
0 0 1
0 0 0

)
, C = (1, 0, 0) and

ψ(Z) =

 0
0

L3
fh(Φ−1(Z))


We denote by ϕ and ϕ1 the maps defined by

ϕ1(Z) =L3
fh(Φ−1(Z))

=
(
− α0αq2E − α2q2Eα1 − α2q2E(α2 + q2E)

)
X0

+
(
αq2Ef1l1 + αα2

1q2E + αα1q2E(α2 + q2E)

+ αq2E(α2 + q2E)2
)
X1

+
(
αq2Ef2l2 − α1q2E(α2 + q2E)

)
X2

− αq2p0EX0
2 − αq2p1EX0X1 − αq2p2EX0X2.

= ϕ(X)

It has been proved in Touzeau [1997] that there is a
positively invariant compact set for system (3). This set
is of the form D = [a0, b0] × [a1, b1] × [a2, b2], where The
numbers ai can be chosen as small as we need and the
numbers bi are function of the parameters fi, li and pi.
More precisely:
bi = (1 + νi)πiµ

with 0 = ν0 < ν1 < ν2 < 1, πi =
αi∏i

j=1(αj + qjE)
,

and µ = min
filipi 6=0

{fili
pi
}

(6)

The function ϕ is smooth on the compact set D. Hence,
it is globally Lipschitz on D. Therefore it can be extended
by ϕ̃, a Lipschitz function on R3 which satisfies ϕ̃(X) =
ϕ(X), for all X ∈ D. In the same way we define ψ̃ the
Lipschitz prolongation of the vector function ψ.

ψ̃(Z) =

(
0
0

ϕ̃1(Z)

)
; where ϕ̃1 is the prolongation of ϕ1 to

R3, i.e., ϕ̃1(Z) = ϕ1(Z) = L3
fh(Φ−1(Z)) for all Z ∈ D.

So now we are going to work with the following system (7)
defined in the whole space R3. Notice that its restriction
to the domain D is the system (5).{

Ż = AZ + ψ̃(Z)
Y = CZ

(7)

where : A =

(
0 1 0
0 0 1
0 0 0

)
, C = (1, 0, 0) and

ψ̃(Z) =

(
0
0

ϕ̃1(Z)

)
Remarque: For the simulations we extend the vector field
f that defines the system (3) by continuity in order to

make it globally lipschitz on R3 in the following way: We
denote f̃ the prolongation of f to R3 and the function π
the projection on the domain D and we construct f̃ = f◦π.
The extended function f̃ has the same lipschitz coefficient
as f . The projection π is defined as follows π(X) = X̄,
where X ∈ R3 and X̄ ∈ D such that Dist(X,D) = ‖X −
X̄‖, i.e. X̄ satisfies ‖X − X̄‖ = min

Y ∈D
‖Y −X‖.

2.3 High Gain observer design (Fixed gain)

Proposition 1. (Gauthier et al. [1992]) Consider the fol-
lowing system :

Ż =AZ + ψ(Z) + S−1(θ)(y − CZ). (8)

where A is the anti-shift operator and S(θ) is the solution
of

0 = −θS(θ)−AtS(θ)− S(θ)At + CtC.

Here, S(θ) =


θ−1 −θ−2 θ−3

−θ−2 2 θ−3 −3 θ−4

θ−3 −3 θ−4 6 θ−5

 .

For θ large enough, system (8) is an exponential observer
for the system (7).

Precisely θ ≥ 2ncK
√
S, where K is the lipschitz coefficient

of the function ψ, n is the dimension of the space, and
S = supi,j |S(1)i,j | See Gauthier et al. [1992] for the proof.

Going back to the our original system (3) via the trans-
formation Φ−1, we have

˙̂
X = f̃(X̂) + [

dΦ
dx

]−1

X=X̂
S(θ)−1Ct(y − h(X̂))

such that the restriction to D is the following system

˙̂
X0 = −α0X̂0 +

2∑
i=1

filiX̂i −
2∑
i=1

piX̂iX̂0 − p0X̂
2
0 +

3θα1(q2E + α2) + 3θ2(q2E + α1 + α2) + θ3

α2
(X2 − X̂2)

˙̂
X1 = αX̂0 − α1X̂1 +

3θ(q2E + α2) + 3θ2

α
(X2 − X̂2)

˙̂
X2 = αX̂1 − (α2 + q2E)X̂2 + 3θ(X2 − X̂2)

which is the observer for the fishery model (3). This
observer is particularly simple since it is only a copy of
(2), together with a corrective term depending on θ.

2.4 Kalman-like observer design (Variable gain)

Proposition 2. (Deza et al. [1992]) Assume that

H1 : Φ is a diffeomorphism from
o

D to Φ(
o

D). (
o

D is the
interior of D).

H2 : ϕ can be extended from D to R3 by a C∞ function,
globally Lipschitz on R3.

Then for θ large enough, the following differential system
(9) is an exponential observer for system(7).
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
˙̂
X = f̃(X̂)− 1

r

[
dΦ
dX

]−1

X=X̂

×S−1Ct(h(X̂)− Y )

Ṡ = −SQθS −A∗t(X̂)S − SA∗(X̂) +
1
r
CtC.

(9)

with r > 0, Qθ is defined from Q a symmetric pos-
itive definite matrix, by taking Qθ = ∆θQ∆θ (∆θ =
diag(θ, θ2, θ3)).

The matrix A∗ can be analytically computed from the
diffeomorphism Φ.

A∗(X̂) = A+

[
dψ

dZ

]
Z=Φ(X̂)

See Deza et al. [1992] for the proofs.

For our system, we have:

ϕ̃(X) = ϕ(Φ(X)), so
dϕ

dX
=

(
dϕ̃

dX

)(
dΦ
dX

)−1

we compute now A∗ as follow:

A∗(X) = A+

(
dϕ̃

dX

)(
dΦ
dX

)−1

.

With
dϕ̃

dX
=

(
0 0 0
0 0 0
β31 β32 β33

)
and

β31 = −α0αq2E − α2α1q2E − α2q2E(α2 + q2E) −
2αq2p0EX0 − αq2p1EX1 − αq2p2EX2

β32 = αq2Ef1l1 +αq2E(α1 + q1E)2 +αα1q2E(α2 + q2E)+
αq2E(α2 + q2E)2 − αq2p1EX0

β33 = αq2Ef2l2 − α1q2E(α2 + q2E)− αq2p2EX0.

Finally we have:

A∗(X) =

(
0 1 0
0 0 1
γ31 γ32 γ33

)
,

with: γ31 = β31(
α1q2E + α1α2

α2q2E
) + β31(

α2 + q2E

αq2E
) +

β33

q2E

γ32 = β31(
α1 + α2 + q2E

α2q2E
) +

β32

αq2E

γ33 =
β31

α2q2E
.

3. SIMULATION RESULTS

We present in this section some simulation results showing
the performance of the constructed observers for system
(3). We use the following fishery parameters (Ouahbi et al.
[2003], Touzeau [1997]):

α0 = 1.3; α1 = 0.9; α2 = 0.85; p0 = 0.2; p1 = 0.1; p2 = 0.1;
q1 = 0; q2 = 0.15; f1 = 0.5; f2 = 0.5; l1 = 5; l2 = 10;
E = 1; α = 0.8.

With these parameters, we compute the coordinates of
the higher corner B of the parallelepiped D by using

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-500

0

500

1000

1500

2000

2500

3000

3500

4000

Time

States

Fig. 1. X0 (solid line) and its estimate X̂0 (dashed line)
when ϕ is extended

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

50

100

150

200

250

300

Time

States

Fig. 2. X1 (solid line) and its estimate X̂1 (dashed line)
when ϕ is extended

the formulas (6). This gives B= (25; 22, 444; 18, 1333) i.e.
0 < Xi ≤ bi.
The equilibrium point is X∗ = (12, 4382; 11, 0562; 8, 8449).

For the High gain observer, we take θ = 30, X(0) =
[21; 20; 15] and X̂(0) = [35; 12; 8].

For the kalman-like observer, we take θ = 5, X(0) =
[25; 20; 15] and X̂(0) = [30; 14; 10]. The positive definite
symmetric matrix Q has been chosen Q = I, and r = 0.2,
the matrix S is initialized as S0 = 10−10I, with I =
diag(1, 1, 1).

Using the same parameter values as above, when we do
not use the Lipschitz prolongation of the function ϕ to the
whole R3, the estimation X̂(t) computed by the observer
tends to infinity for finite time. This actually happens in
the beginning of the integration process as it can be seen
in Figures 4, 5, and 6.

Kalman-like observer simulations : We observe the
same phenomena. In particular the function f must be
extended in a globally Lipschitz function on R3 otherwise
the Kalman observer does not work with the chosen
parameters values: this fact is illustrated by Figures 10,
11, and 12; but when we use the prolongation of f to built
the observer then the convergence of the estimates toward
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Fig. 3. X2 (solid line) and its estimate X̂2 (dashed line)
when ϕ is extended
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Fig. 4. X0 (solid line) and its estimate X̂0 (dashed line)
when ϕ is not extended
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Fig. 5. X1 (solid line) and its estimate X̂1 (dashed line)
when ϕ is not extended

the real states is quite good and fast as it can be seen in
Figures 7, 8, and 9.

4. CONCLUSION

Nonlinear control techniques are useful to validate bio-
logical models which are generally build on empiric ob-
servations. Indeed the construction of observers allows to
have an estimate of unmeasured states. In this work, we
construct an observer for a harvested fish model by using
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Fig. 6. X2 (solid line) and its estimate X̂2 (dashed line)
when ϕ is not extended
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Fig. 7. X0 (solid line) and its estimate X̂0 (dashed line)
when ϕ is extended
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Fig. 8. X1 (solid line) and its estimate X̂1 (dashed line)
when ϕ is extended

high gain and Kalman-like methods. We also show that it
is necessary to extend the vector field f (that defines the
dynamical evolution of the system) outside the invariant
domain D by a globally Lipschitz function on R3. If the
prolongation of f is not done then the observer does not
converge.
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Fig. 9. X2 (solid line) and its estimate X̂2 (dashed line)
when ϕ is extended
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Fig. 10. X0 (solid line) and its estimate X̂0 (dashed line)
when ϕ is not extended
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Fig. 11. X1 (solid line) and its estimate X̂1 (dashed line)
when ϕ is not extended
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