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Abstract: The aim of this paper is to apply some tools of observability theory to an age-
structured model of a harvested fish population in order to estimate the stock state. We construct
an observer that uses the data of caught fish and gives a dynamical estimation of the number

of fish by stage.
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1. INTRODUCTION

The natural stock management is a problem which re-
ceived great attention during the last decades. The de-
velopment of management policies in the exploitation of
renewable resource stocks needs to have a good estimate
of the available resource. Nowadays, mathematical models
together with computer simulations are useful to describe
the evolution of complex systems. One of the important
problems in control theory is to reconcile the available
data with the used mathematical model. This problem is
known as the observability problem and it is related to the
construction of ”observers” (called some times software
sensors) for dynamical systems. In this paper, we show
how to apply this theory in order to address the stock
estimation problem for an exploited fish population.

It is often not possible to measure all the state variables.
So it is necessary to have an algorithm to estimate the
unmeasured state variables.

In this paper we construct an observer for a nonlinear sys-
tem which model the dynamical evolution of a harvested
fish population Touzeau [1997].

This system is of the form

{ i(t) = f(a(t)

u(t)),
y(t) = b (t) ) (1)
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where z € R”, u € R™, y € R?, The maps f and h are
assumed to be smooth.

Our aim is to construct an estimation Z(t) of the state ()
by supposing that the input u(¢) and the output y(t) are
well known.

1.1 Problem Statement

We consider the following mathematical model describing
the dynamical evolution of a fish population submitted
to fishing. The population is structured by age class (see
for instance Touzeau et al. [1998], Touzeau [1997], Ouahbi
et al. [2003]):

2
Xo(t) = —aoXQ(t) + Z filiXi(t)
) i=1
- ZpiXi(t)XO(t) — poX{(t) 2)
Xi(t) = aXo(t)— (o1 +@E)Xi(t)
Xo(t) = aXi(t) — (az 4 @E)Xa(t).

where :
X;: the number of fish in the stage i.
« : linear aging coefficient (in time™1)

m,; : natural mortality rate (in time™1)
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1

o =m; +a (in time™

1 1

po: juvenile competition parameter (in time™ ".number™

fi: fecundity rate of class (no dimension

l;: reproduction efficiency of class 4

-1

pi: predation rate of class ¢ on class 0 (time™'.num

q;: capturability coefficient of class i (in unit effort™

)
)
)
(in time™")
)
Y
D)

E: instantaneous fishing effort.  (in unit effortxtime™

The fishing effort applied on a stock of a fish population
can be seen as the whole means of production used by the
fisherman. Fishing effort can be considered as the sum ,
over all units of the product of the fishing power on each
unit, and its fishing time, or a number of unit operations
Gulland [1983] (page 38-39).

To the system (2) we associate the output

Y(t) = 2 EX>(t)
Y (t) represents the total catch that we assume can be
measured. This means that we suppose that only the last

class is submitted to fishing, so ¢ = 0. Then, we obtain
the following system

Xo(t) = —aoXo(t)—I—ifiliXi(t)
- sz —poX§(t)
(3)
X1(t) = aXo(t) — a1 Xy (t)
Xo(t) = aXi(t) — (a2 + E)Xa(t)
Y(t) = qEX(t).

Our aim is to construct an observer (estimator) for sys-
tem (3). This observer is an auxiliary dynamical system
that can be written

d)fot) — g(X(1), E(t), Y (1)), (4)

and whose state X (t) gives a “good” asymptotic estima-
tion of the stateX (t) of system (3); that is, the solutions

of (3-4) satisfy tEI-Eloo X () — X(t)]

conditions X (0) and X (0). The observer we built will be
in fact an exponential observer; the estimation error will
converges to zero with exponential speed, i.e.,

IX (1) = X (0] < exp(=At)[| X (0) = X(0)]]-

2. OBSERVABILITY AND OBSERVER DESIGN

= 0, for all initial

2.1 Definitions (see for instance, Bernard et al. [1998],
Iggidr [2004], or Sontag [1998], chap. 6)

Observability: We use the notation z(xg,u(.),t) to de-
note the solution of the differential equation (1) corre-
sponding to the admissible control u(.) and with initial
condition zg, and The corresponding output is denoted

y(xo,u(.),t) = h(x(zg,u(.),t),u(t)). The system (1) is
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said to be observable if for any pair of different initial
states (xg,x1) o # 21, there exists an admissible control
u(.) such that the outputs corresponding to those initial
conditions are not identically equals; that is, there exists
a time t > 0 such that :

y(l’o, U(), t) # y(xlv U(), t)
Observability for any input: The system (1) is said to
be uniformly input observable if for any input u(.) and
for any (xg,x1), xo # 21, there exists a time ¢ > 0 such

that :
y(an u()7 t) 7& y<xla u()) t)
2.2 Observability of system (3)

For the observer design, we will use the High Gain observer
(Gauthier et al. [1992], Gauthier et al. [1994]) and the
Kalman like observer (Deza et al. [1992]) to design an
observer for system (3).

Let Y(t) = h(X(t)) = ¢q2EX2(t) and the function @ :
R? — R?, defined by :
h(X) A
d(X)=| Lyp(X) | =2 <Zg) and
Lfch(X) Z3
—apXo(t) + Z filiXa(t) — ZpiXi(t)XO(t)
oo | mxio -
aXo(t) — a1 Xy (t)
aXi(t) — (a2 + @ E)X2(%)

where L denote the Lie derivative operator with respect
to the vector field f, and A is the output function.

® is a diffeomorphism of the state space R? to its image
®(R?). In fact :

0 0 @FE
@ _ 0 Oé(]QE —QQE(OQ + Q2E)
dz ’
@ E —o1qo @E(as + @E)?
—q2E (a2 + @2 F)
a1@eE +ar1an @FE+ o+ 1
a?qpFE a?pE a?qpFE
1
@ _ @ F + as 1 0
dx o aqpE agp b
1
— 0 0
30

and we have

d® .
Det (dw) =@ B3,

So ® is a diffeomorphism provided that £ # 0 and then
the system (3) is uniformly observable (Gauthier et al.
[1992]). Then, in a new coordinate system (R?, ®(R?)),
with Z = &(X) = (h(X), Lfh(X), L}(X))*, our system

can be written in the canonical form:
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AZ A
£y 0

—N
<N
I

01 0
where: A=(0 0 1]),C=(1,0,0) and
0 0 O
0
v(Z) = 0

L3h(®~(2))

We denote by ¢ and ¢; the maps defined by

o1(2) = Lih(@71(2))
= ( —agaqrE — o*quEay — o?qoE(an + ng))XO
+ (OZQ2Ef1l1 + aoi@E + ao1g2E(as + 2 F)
+ agE(oz + Q2E)2)X1

+ (CYQ2Ele2 —a1q2E(as + Q2E))X2
— aqpoEXo? — agepi EXo X1 — agapa EXoXo.

=p(X)
It has been proved in Touzeau [1997] that there is a
positively invariant compact set for system (3). This set
is of the form D = [ag,bo] X [a1,b1] X [ag,bs], where The
numbers a; can be chosen as small as we need and the
numbers b; are function of the parameters f;, I; and p;.
More precisely:

al

with0=1vy <y <m<lm=—F"—""—,
Hj:1(04j +q;E) (6)

il
min {
filipi#0 " Dy

}

and u =

The function ¢ is smooth on the compact set D. Hence,
it is globally Lipschitz on D. Therefore it can be extended
by @, a Lipschitz function on R? which satisfies $(X) =
©(X), for all X € D. In the same way we define ) the
Lipschitz prolongation of the vector function .

0
W(Z) = ( 0 ); where ¢, is the prolongation of ¢ to
¢1(2)

R?, ic., ¢1(Z) = p1(Z) = L3(®(Z)) for all Z € D.

So now we are going to work with the following system (7)
defined in the whole space R3. Notice that its restriction
to the domain D is the system (5).
Z AZ +4(2) )
Y cz

0
where : A= (0
0

~ 0
o (1)
¢1(2)

Remarque: For the simulations we extend the vector field
f that defines the system (3) by continuity in order to

OO =

0
1), C = (1,0,0) and
0
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make it globally lipschitz on R? in the following way: We
denote f the prolongation of f to R?® and the function m
the projection on the domain D and we construct f = for.
The extended function f has the same lipschitz coefficient
as f. The projection m is defined as follows 7(X) = X,
where X € R and X € D such that Dist(X, D) = || X —
X||, i.e. X satisfies || X — X|| = }r/nel% Y — X|.

2.8 High Gain observer design (Fized gain)

Proposition 1. (Gauthier et al. [1992]) Consider the fol-
lowing system :

Z=AZ+(Z)+ S 0)(y - CZ). (8)

where A is the anti-shift operator and S(6) is the solution
of
0=—0S(0) — A'S(9) — S(9)A" + C'C.

o=t -2 73
Here, S(0) = | —072 2073 —307*
02 —307* 660°°

For 0 large enough, system (8) is an exponential observer
for the system (7).

Precisely 6 > 2ncK+/S, where K is the lipschitz coefficient
of the function %, n is the dimension of the space, and
S = sup; ;1S(1); ;] See Gauthier et al. [1992] for the proof.

Going back to the our original system (3) via the trans-
formation &1, we have

ad.

X = J(X) + [ 3L S0) 7 C' ly = h(X)

such that the restriction to D is the following system

. 2 2

Xo=—aoXo+ Y filiXi =Y piX;Xo — po X+
i=1 i=1

3001 (@ + o) + 30%(quE + oy + an) + 03

2

o (X2 — X»)

30(g2E + o) + 362

«

X =aXy— a1 Xy + (Xy — Xo)

Xz = ozXl — (g + qu)XQ +30(Xs — XQ)

which is the observer for the fishery model (3). This
observer is particularly simple since it is only a copy of
(2), together with a corrective term depending on 6.

2.4 Kalman-like observer design (Variable gain)

Proposition 2. (Deza et al. [1992]) Assume that
Hy : @ is a diffeomorphism from D to @(B) (ZO) is the
interior of D).

H, : ¢ can be extended from D to R3 by a C* function,
globally Lipschitz on R3.

Then for @ large enough, the following differential system
(9) is an exponential observer for system(7).



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

xSTICHR(X) - Y)
X=X 9)

. N 5 1

S = —SQgS—A*t(X)S—SA*(X)—&-;CtC.
with » > 0, Qg is defined from ¢ a symmetric pos-
itive definite matrix, by taking Qp = ApQAs (Ag =
diag(0,0%,0%)).

The matrix A* can be analytically computed from the
diffeomorphism ®.
dip

A*(X) = A+

Z=d(X)
See Deza et al. [1992] for the proofs.

For our system, we have:

PIX) = p(B(X), 50 92 =<§§> (jf;)

we compute now A* as follow:

~ —1
A%(X) = A+<;l§) (g) .

~ 0 0 0
d
Withd;i,:<0 0 o>and
B31 P32 Ba3
B31 = —apagpE — daigE — o*@E(as + @F) —

2002po E X — aqapr1 EX1 — agepa EXo

B32 = agE fili + agaE(a1 + 1 E)? + aa1q2 E(as + 2 E) +
aqE(as + 2E)? — agepr EX,

B33 = aqE falos — angaE(ag + @2 F) — agepr EX.

Finally we have:

0 1 0
A*(X)<0 0 1),

Y31 Y32 33

. a1 B+ oqa az+ @B, | Bs3
thi ygy = G (LE2E T 0102 G2t @y | P38
with: y31 = 831 ( Pk )+ Baa( o E )+ wE
B a +az + @ F B2
Y32 = Bs1( 2 F + N
ey = B31
3= L E

3. SIMULATION RESULTS

We present in this section some simulation results showing
the performance of the constructed observers for system
(3). We use the following fishery parameters (Ouahbi et al.
[2003], Touzeau [1997)):

ap = ].37 a1 = 09, Qg = 085, Po = 02,])1 = 01, P2 = 01,
@1 = 0; g2 = 0.15; f1 = 0.5; fa = 0.5; Iy = 5; Iz = 10;
E=1,a=08.

With these parameters, we compute the coordinates of
the higher corner B of the parallelepiped D by using
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when ¢ is extended
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Fig. 2. X; (solid line) and its estimate X; (dashed line)
when ¢ is extended

the formulas (6). This gives B= (25;22,444; 18,1333) i.e.

The equilibrium point is X* = (12, 4382; 11, 0562; 8, 8449).

For the High gain observer, we take § = 30, X(0) =
[21;20; 15] and X (0) = [35;12; 8].

For the kalman-like observer, we take § = 5, X(0) =
[25;20;15] and X (0) = [30;14;10]. The positive definite
symmetric matrix ¢ has been chosen Q = I, and r = 0.2,
the matrix S is initialized as Sy = 107'°I, with I =
diag(1,1,1).

Using the same parameter values as above, when we do
not use the Lipschitz prolongation of the function ¢ to the
whole R?, the estimation X (t) computed by the observer
tends to infinity for finite time. This actually happens in
the beginning of the integration process as it can be seen
in Figures 4, 5, and 6.

Kalman-like observer simulations : We observe the
same phenomena. In particular the function f must be
extended in a globally Lipschitz function on R? otherwise
the Kalman observer does not work with the chosen
parameters values: this fact is illustrated by Figures 10,
11, and 12; but when we use the prolongation of f to built
the observer then the convergence of the estimates toward
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Fig. 3. X, (solid line) and its estimate X, (dashed line)
when ¢ is extended
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the real states is quite good and fast as it can be seen in
Figures 7, 8, and 9.

4. CONCLUSION

Nonlinear control techniques are useful to validate bio-
logical models which are generally build on empiric ob-
servations. Indeed the construction of observers allows to
have an estimate of unmeasured states. In this work, we
construct an observer for a harvested fish model by using
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A States
25

204

y
[
Time

T T
4.5

Fig. 7. X (solid line) and its estimate X, (dashed line)
when ¢ is extended

/

N States

»
Time

T T
4.5
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when ¢ is extended

high gain and Kalman-like methods. We also show that it
is necessary to extend the vector field f (that defines the
dynamical evolution of the system) outside the invariant
domain D by a globally Lipschitz function on R3. If the
prolongation of f is not done then the observer does not
converge.
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