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Abstract: Anaerobic digestion is a highly nonlinear time-varying process used for biological
wastewater treatment which is subject to large disturbances of both influent concentrations and
flow rates. These perturbations can lead to the crash of the digester and thus, the dynamics of the
main state variables - including biomass - must be closely monitored to use this information in
the design and implementation of advanced control schemes. However, such processes still suffer
from a lack of reliable and cheap sensors. As a consequence, efficient monitoring, control and
decision support systems are needed in order to insure the correct process operation. Particularly,
there is an increasing interest on the proposal of Fault Detection and Isolation (FDI) and Fault
Detection and Analysis (FDA) integrated systems. In this paper, we propose the use of interval
observers in order to detect and isolate sensor faults as well as input changes in biological
systems that are not observable. This approach is experimentally implemented on a 1m3 pilot
scale anaerobic digestion continuous process. Copyright c© 2008 IFAC

1. INTRODUCTION

Anaerobic Digestion (AD) is a very complex biological
process for wastewater treatment in which the Chemical
Organic Demand (COD) from an influent is degraded
into a gas mixture made of Carbon Dioxide (CO2) and
methane (CH4) called biogas. The AD process is able to
operate under severe conditions: high strength effluents
and short hydraulic retention times. Furthermore, it has
been experimentally demonstrated that this process is well
adapted for urban and food wastewater treatment system.

One of the great challenges nowadays in AD is to lead
the process towards a safe operation while improving its
overall yield. However, it is well known that the presence of
unknown disturbances may cause irreversible destabiliza-
tion conditions leading to the crash of the AD process.
In order to avoid this situation, several advanced con-
trol and supervision schemes have been developed in the
last decade [Steyer et al., 2002, 2006]. Nevertheless, most
of these schemes have found limited success since they
depend on the availability of on-line information of key
process variables that may be plagued by noise and time
delays or simply are the result of a state estimation scheme
from other measurements [Rapaport and Harmand, 2002].
Moreover, such schemes are designed on the basis that the
AD process is fault-free, a situation that is rarely met in
industry. In fact, actual AD processes are subject to a large
number of faults, e.g., i) faults of sensors and actuators
(e.g. disconnections, false contact), ii) unexpected changes
on the process inputs (normally considered as perturba-

tions), etc. Thus, in order to guarantee proper AD process
operation new but highly efficient Fault Detection and
Diagnosis (FDD) strategies are needed.

Some studies on the supervision and the diagnosis of AD
processes have been reported: see for instance [Steyer
et al., 1997], [Genovesi et al., 2000] or [Lardon et al.,
2004] and related references. Particularly, most of reported
model-based diagnosis techniques have involved a strict
characterization of noises and disturbances of the plants
of interest, which is not a simple task. In any wastewater
treatment process, the variations of the composition of
the effluents to be treated are indeed badly known or
uncertain. Thus, it is usually not possible to guarantee
any stability or performance properties if actual input
disturbances differ significantly from those of their nominal
or initial characterization. Furthermore, in the presence of
input uncertainties, most of classical estimation schemes
cannot be implemented.

In order to compensate this observability handicap, in-
terval observers (IO) have been recently proposed [Gouze
et al., 2000, Alcaraz-González and González-Alvarez,
2007]. Interval observers are used to reconstruct guaran-
teed dynamical bounds on the unmeasured variables, (in
the presence of process input uncertainties), instead of
reconstructing their exact value. In fact, the design of an
IO is based on the structure of any classical observer (an
observer that can be designed if the inputs are known) and
the additional condition that the error dynamics system is
cooperative. This property ensures that, given a dynamical

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15571 10.3182/20080706-5-KR-1001.3812



system, two sets of initial conditions ordered term-by-term
and some lower and upper bounds on the inputs in which
the actual inputs may actually vary, then the solutions of
this dynamical systems are also ordered. Particularly, the
use of the well known asymptotic observer in the IO design
is particularly suitable since it allows the user to deal
at the same time with the nonlinearities of the systems,
the unknown input disturbances and, in a more general
sense, with any disturbance or uncertainty that can be
considered as an unknown process input [Alcaraz-González
and González-Alvarez, 2007].

Using an IO’s set, Steyer et al. [2000] have designed an
approach capable to detect and isolate faults in sensors
as well as in the hypotheses used for the designing of
observers and controllers. Such an approach is based on
the construction of certain residuals which are calculated
as the difference between the estimated and the measured
variables, and they permit, in a simple but highly efficient
way, the detection of faults and their origin in the AD
process. In this paper, the system proposed by Steyer et al.
[2000] is experimentally tested. The paper is organized
as follows. First, the model of the process of interest, is
presented. Then, the fault detection and the diagnosis
approach is described. The IO’s used for the residual
generation are introduced and their use is highlighted with
respect to the diagnosis objectives. Then, the approach
is applied and experimentally implemented in a 1m3

pilot scale up-flow fixed bed anaerobic digester used for
the treatment of red wine distillery wastewater in the
Narbonne, France, area. Finally, experimental results are
shown and discussed before some conclusions are drawn.

2. THE NONLINEAR MODEL

The biological scheme of the AD involves several multi-
substrate multi-organism reactions that are performed
both in series and in parallel (see for example [Henze
and Harremoes, 1983]). The following is an AD process
carried out in a continuous fixed bed reactor for the treat-
ment of industrial wine distillery wastewater is considered
[Bernard et al., 2001]:

Ẋ1 = (μ1 − αD)X1

Ẋ2 = (μ2 − αD)X2

Ż = (Zin − Z)

Ṡ1 = D(Sin
1 − S1) − k1μ1X1 (1)

Ṡ2 = D(Sin
2 − S2) + k2μ1X1 − k3μ2X2

ĊTI = D(Cin
TI − CTI) + k7(k8PCO2 + Z − CTI − S2)

+k4μ1X1 + k5μ2X2

where X1, X2, S1, S2, Z and CTI are, respectively,
the concentrations of acidogenic bacteria, methanogenic
bacteria, COD, volatile fatty acids (VFA), strong ions and
total inorganic carbon. PCO2 is the CO2 partial pressure.
α, 0 ≤ α ≤ 1 is assumed constant and denotes the biomass
fraction which is retained by the reactor bed, i.e. α = 0,
for the ideal fixed-bed reactor and α = 1 for the ideal
continuous stirred tank reactor. D is the dilution rate. The
specific growth rate μ1 and μ1 are given by

μ1 = μmax1S1/(KS1 + S1)

μ2 = μmax2S2/[KS2 + S2 + (S2/KI2)
2]

which are the main causes of the strongly non-linear
kinetic behavior of the model. The parameters definition
and their values are listed in Table 1. In all cases, the upper
index i indicates influent concentrations.

Two versions are possible for (1). The difference between
these two versions is the expression for the dynamics of
CTI . In the first version, this expression is a PCO2 function,
exactly as in (1) whereas in the second one, it is a function
of the gaseous CO2 flow rate, QCO2 . Thus, it is possible
to establish the next relation:

k7(k8PCO2 + Z − CTI − S2) = QCO2/k9V ,

where k9 = RT/PT and V is the total volume in the
reactor.

Now, let us consider the following definition for the state
variables:
x1 = X1 x2 = X2 x3 = Z x4 = CTI x5 = S1 x6 = S2

Then, following this notation, the two versions of system
(1) mentioned above are represented in matricial form by
(2a) and (2b).

Table 1. Model parameters

Par Meaning Value

k1 Yield coefficient for COD
degradation

42.14 g COD/g X1

k2 Yield coefficient for fatty acid
production

116.5mmolVFA/g X1

k3 Yield coefficient for fatty acid
consumption

268 mmolVFA/g X2

k4 Yield coefficient for CO2 pro-
duction due to X1

50.6 mmolCO2/g X1

k5 Yield coefficient for CO2 pro-
duction due to X2

343.6 mmolCO2/g X2

k6 Yield coefficient for CH4 pro-
duction

315 mmolCH4/g X2

k7 liquid/gas transfer rate 200 day−1

k8 Henry’s constant 26.7 mmolCO2/lt-atm

α Proportion of dilution rate
for bacteria

0.5 (dimensionless)

μmax1 Maximum acidogenic
biomass growth rate

1.2 day−1

μmax2 Maximum methanogenic
biomass growth rate

0.74 day−1

KS1 Saturation parameter associ-
ated with S1

4.949 g COD/l

KS2 Saturation parameter associ-
ated with S2

9.28 mmol VFA/l

KI2 Inhibition constant associ-
ated with S2

16 (mmolV FA/l)1/2

PT Total pressure in the reactor 1.0434 atm

V Total volume in the reactor 0.948 m3

T Temperature in the reactor 38oC

3. FAULT DETECTION AND DIAGNOSIS

For the evaluation of the FDD system proposed in this
work, six on-line measurements are available: S1, S2, CTI ,
Z, QCO2 and PCO2 . Our objective is to detect and iso-
late any possible sensor fault that may occur in a real
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ẋ2

ẋ3
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ẋ6

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
k4 k5

−k1 0
k2 −k3

⎤
⎥⎥⎥⎥⎥⎦

[
μ1x1

μ2x2

]
+

⎡
⎢⎢⎢⎢⎢⎣

−αD 0 0 0 0 0
0 −αD 0 0 0 0
0 0 −D 0 0 0
0 0 0 −D 0 0
0 0 0 0 −D 0
0 0 0 0 0 −D

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

Dxin
1

Dxin
2

Dxin
3

Dxin
4 − QCO2/k9V

Dxin
5

Dxin
6

⎤
⎥⎥⎥⎥⎥⎥⎦

(2b)

process on these variables as well as the detection of per-
turbations upon any of the four considered process input
concentrations: Sin

1 , Sin
2 , Cin

ti , Zin which are considered as
unmeasured. Such as perturbations may be detected as a
violation of the following inequality:

uin−
i ≤ uin

i ≤ uin+
i (3)

where uin
i is any of the concentration variables in the

influent and the subscripts ” + ” and ”− ” indicate upper
and lower bounds, respectively. In this last situation, the
objective is to detect that the real process input violates its
pre-specified lower or upper bounds. These hypotheses are
not only required for the construction of the IO but they
are also used in the design of robust control laws for this
process [Alcaraz-González and González-Alvarez, 2007],
which stands out once again the usefulness of detecting any
unmeasured perturbation upon these variables. The next
subsection shows the interval observer which was used for
building some residuals on the measured variables.

3.1 Interval observers

Consider the following general nonlinear time varying
lumped model:

ẋ(t) = Cf(x(t), t) + A(t)x(t) + b(t) (4)

where x(t) ∈ R
n is the state vector, f(x(t), t) ∈ R

r denotes
the vector of nonlinearities and C ∈ Rnxr represents a
matrix of constant coefficients. The time varying matrix
A(t) ∈ R

nxn is the state matrix while b(t) ∈ R
n gathers

inputs and/or other possibly time varying functions. The
state space may be split in such a way that (4) can be
rewritten as:

ẋ1 = C1f(x(t), t) + A11(t)x1(t) + A12(t)x2(t) + b1(t)
ẋ2 = C2f(x(t), t) + A21(t)x1(t) + A22(t)x2(t) + b2(t)

(5)
where the x2(t) vector gathers the m measured state
variables and x1(t) represents the variables that have to
be estimated. Matrices A11(t) ∈ R

sxs, A12(t) ∈ Rsxm,
A21(t) ∈ R

mxs, A22(t) ∈ R
mxm, C1 ∈ R

sxr , C2 ∈ R
mxr,

b1 ∈ R
s and b2 ∈ R

m are the corresponding partitions of
A(t), C and b(t), respectively.

Let us recall the following result:

Lemma 1. Let ζ̇ = f(ζ, t) + g(t).This system is said to be
a cooperative system if ∂fi(ζ, t)/∂ζj ≥ 0,∀i �= j. It implies
that if g(t) ≥ 0∀t ≥ 0, then ζ(t) ≥ 0, ∀t ≥ 0. The proof
of this lemma can be found in [Smith, 1995]. In (4), some

bounds are available for the initial conditions and b(t) is
assumed to be unmeasured, but within known lower and
upper bounds. In such a situation, notice that (4) may be
no longer observable. Consequently, it is not possible to
design a classical observer like the asymptotic observer.
Nevertheless, we can use its basic stable structure and
its property of being independent of the nonlinearities,
to design a robust set-valued observer in order to build
guaranteed intervals for the unmeasured variables instead
of estimating them precisely, provided that the Lemma 1
holds. Thus, the following dynamic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For the upper bound :
ẇ+(t) = Ẇ+(t)w+(t) + X(t)x2(t) + Mv+(t)
w(0)+ = Nx(0)+

x̂+
1 (t) = N−1

1 (w+(t) − N2x2(t))

For the lower bound :
ẇ−(t) = Ẇ−(t)w−(t) + X(t)x2(t) + Mv−(t)
w(0)− = Nx(0)−

x̂−
1 (t) = N−1

1 (w−(t) − N2x2(t))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

with M = [N1

...N2

...Ñ2],Ñ2 = [|N2,ij |],
v+(t) = [b+

1 (t) 1/2(b+
2 )(t) +b−

2 (t) 1/2(b+
2 (t)−b−

2 (t))]T ,

v−(t) = [b−
1 (t) 1/2(b+

2 )(t)+b−
2 (t) −1/2(b+

2 (t)−b−
2 (t))]T

where ,W(t) = (N1A11(t) + N2A21(t))N−1
1 , X(t) =

N1A12(t) + N2A22(t) − W(t)N2, N1 ∈ Rsxs, is an
arbitrary invertible matrix, N2 = −N1C1C⊥

2 with N2 ∈
Rsxr, C⊥

2 is the generalized pseudo-inverse of C2 and

N = [N1

...N2] ; is a stable robust interval observer for
(4) independent of the nonlinearities f(x(t), t) [Alcaraz-
González and González-Alvarez, 2007].

In our application it is possible to build five interval ob-
servers. Due to the lack of space, their explicit form is not
shown here, but all of them follow the same design struc-
ture showed in (6). However, their main design features
are summarized in Table 2:

3.2 The residuals

In this work, three kinds of residuals were considered
and generated. a) the difference between the measurement
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Table 2. Interval observers

Observer Measurements Estimated Model
bounds for version

Ob1 — Z 1

Ob2 S1 and S2 CTI 1

Ob3 S2 and CTI S1 2

Ob4 S2 and CTI X2 1

Ob5 S2 and CTI X2 2

and its estimate (upper and/or lower), b) the difference
between the measurement and its model prediction and
c) the difference between two estimates generated by two
different observers.

For the state variables S1, CTI and Z, it is possible to
design an observer that yields upper and lower estimated
bounds. Then, the respective residuals are constructed as
the difference between the measurements and the esti-
mated bounds. Figure 1 shows the input CTI and their
guessed bounds. Figures 2 to 4 represent the comparison
between the measured variable and its estimated for S1,
CTI and Z respectively.

In the case of the state variable S2, any interval observer
with the structure of (6) mets the Lemma 1. Then, it is not
possible to have an interval observer for this variable. We
thus consider faults in the S2 sensor when the difference
between the measured state and the model prediction is
higher than a certain threshold (e.g. 5 mmol/l). Figure 5
shows the comparison between measurements for S2 and
its model prediction. For PCO2 and QCO2 , we assume
that the sensors do not have important failures in the
considered time interval. However, in order to test the
robustness of the proposed approach when facing possible
measurement errors, we have considered these two mea-
sured variables into a threshold given by a ±5% confidence
interval.

From the observers defined before, it is possible to generate
a total of 7 residuals for this application. The observers
Ob1, Ob2 and Ob3 were used to generated 6 residuals,
while the observers Ob4 and Ob5 were used to generate
a last residual (r4/5(X̂+

2 )) which compares the upper and
lower bounds of the same variable X2. For further details
about the creation of the residuals and the evaluation
process of them see [Steyer et al., 2000, Alcaraz-González
and González-Alvarez, 2007]

Ob1 :
{

r+(1) = Ẑ+(t) − Z(t)
r−(1) = Z(t) − Ẑ−(t)

}
fault if

⎧⎨
⎩

r+(1) < 0
or

r−(1) < 0

⎫⎬
⎭

Ob2 :
{

r+(2) = Ĉ+
TI(t) − CTI(t)

r−(2) = CTI(t) − Ĉ−
TI(t)

}
fault if

⎧⎨
⎩

r+(2) < 0
or

r−(2) < 0

⎫⎬
⎭

Ob3 :
{

r+(3) = Ŝ+
1 (t) − S1(t)

r−(3) = S1(t) − Ŝ−
1 (t)

}
fault if

⎧⎨
⎩

r+(3) < 0
or

r−(3) < 0

⎫⎬
⎭

Ob4&5 : r(4/5)(X̂+
2 ) = |X̂+

2 (4) − X̂+
2 (5)|, fault if

r(4/5)(X̂+
2 ) > ε

3.3 On the signatures

Residuals r+(1) to r−(1), when they are negative, high-
light essentially the fact that the measurement of the

Table 3. Signatures table

residuals

activation Z − PCO2 Z − CTI Z − S2 S+
1in S−

1in
r+(1) 1/0 1/0 1/0 0 0

r−(1) 0/1 0/1 0/1 0 0

r+(2) 1/0 1/0 1/0 1 0

r−(2) 0/1 0/1 0/1 0 1

r+(3) 0 1/0 1/0 1 0

r−(3) 0 0/1 0/1 0 1

r4/5 1 1 1 0 0

residuals
activation S1 S2 Z CTI PCO2 QCO2

r+(1) 0 0 1/0 0 0 0

r−(1) 0 0 0/1 0 0 0

r+(2) 1/0 1/0 0 1/0 1/0 0

r−(2) 0/1 0/1 0 0/1 0/1 0

r+(3) 1/0 1/0 0 1/0 0 1/0

r−(3) 0/1 0/1 0 0/1 0 0/1

r4/5 0 1 1 1 1 1

S+
2in S−

2in Z+
in Z−

in C+
TIin C−

TIin
r+(1) 0 0 1 0 0 0

r−(1) 0 0 0 1 0 0

r+(2) 1 0 1 0 1 0

r−(2) 0 1 0 1 0 1

r+(3) 1 0 0 0 1 0

r−(3) 0 1 0 0 0 1

r4/5 0 0 0 0 0 0

respective substrate concentration in the reactor exists
out of their lower and upper estimated bounds. Thus, in
order to determine the presence of a fault, it is simply
enough to check the sign of the residual. On the other
hand, the residual r4/5 is compared with a threshold fixed
by the user. Notice also that for these residuals only
one of each pair may be activated (upper or lower) if
a fault occurs. This is the explanation of notations 1/0
and 0/1 in Table(3). Then, if it is kept in mind that a
fault on a variable would activate only a certain number
of residuals, then the combination of active and inactive
residuals would be, in principle unique for each kind or
fault. The residuals obtained above are able to create the
corresponding signature for the fault detection in each
variable. In other words, to each variable it corresponds
a kind of fingerprint or signature, which is a function of
the residuals and is a suitable tool to detect the fault that
may occur on such a variable.

In this work, we use an extension of the table used in
[Steyer et al., 2000]. We consider the cases where simulta-
neous faults for the pairs Z and PCO2 , Z and CTI and Z
and S2 occur (see Table 3). Notice that the signatures for
the pairs Z − CTI and Z − S2 are identical and that the
simultaneous detection for these combinations is possible
only when the faults are effectively present and there is
not any other fault in none of the rest of the variables at
the same time interval. Under these considerations Table
(3) includes the combination of signatures for the faults of
Z − PCO2 , Z − CTI and Z − S2.

4. SIMULATION RESULTS AND DISCUSSION

Simulations were carried out off-line with the data ob-
tained from a 1m3 up-flow fixed-bed anaerobic digester
used for the treatment of red wine vinasses which is located
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in Narbonne, France. The DDF aproach was experimen-
tally implemented off-line. However, the theoretical frame-
work depicted above as well as the excellent results shown
here suggest that a true on-line implementation may be
easily carried out. Experiments were carried out over 37
days in which several faults occurred (see Table 4).

Table 4. Faults to consider

Fault No Time (d) Affected variable(s)

1 5.209 - 5.234 S1

2 5.966 - 5.985 S1

3 8.112 - 10.921 Z

4 12.826 - 12.856 Z and CTI

5 13.523 - 13.602 Z

6 14.020 - 15.000 S2

7 14.208 - 15.000 Z

8 18.385 - 18.550 Z and CTI

9 18.550 - 18.775 Z and CTI

10 18.775 - 18.818 Z and CTI

11 18.875 - 20.100 Z and CTI

12 20.114 - 20.164 Z

13 21.132 - 21.233 Z

14 26.847 - 26.867 Z and CTI

15 26.867 - 27.000 Z

16 27.000 - 27.312 CTI

17 27.829 - 27.924 Z and CTI

18 27.924 - 27.980 Z

19 33.000 - 34.500 S2

20 33.1200 - 33.180 Z

21 533.212 - 33.268 Z

22 33.953 - 33.994 Z

23 34.100 - 34.800 Z

24 35.000 - 39.000 CTIin

25 39.100 - 39.151 Z and CTI

26 39.151 - 39.209 Z and CTI

27 39.209 - 39.227 Z and CTI

28 39.227 - 39.928 Z and CTI

29 40.965 - 41.900 CTIin

30 41.085 - 41.276 Z and CTI

5 25 41.9
0

25

50

75

100

Time (d)

C
tii

n 
(m

m
ol

/l)

Fig. 1. Lower, upper and real Cin
TI (mmol/l)

Figure 6 depicts the most significant result in this paper
since it is here where the FDD system is synthesized.
From the lower line to the upper line, they are the FDD
representation for Z, PCO2 , QCO2 , Z −CTI (Z − S2) and
Z−PCO2 respectively. From this figure, we can deduce the
following: As it is seen, the FDD system was able to detect

5 25 41.9
0

10

20

25

Time (d)

S 1 (g
/l)

Fig. 2. Lower and upper bounds, estimated and real S1.

5 25 41.9
5

35

65

100

Time (d)

C
TI

 (m
m

ol
/l)

Fig. 3. Lower and upper bounds, estimated and real CTI

(mmol/).

and isolate correctly the faults 3, 5, 7 12, 13, 15, 18, 20, 21,
22, 23 which correspond to the variable Z (see Figure 1), as
well as the faults 4, 8, 9, 10, 11, 14, 17, 25, 26, 27, 28 and 30
which correspond to the pair Z −CTI . The faults 1, 2 and
24 were detected exactly although they were not isolated
in the correct line in the figure, since the faults are not high
enough for that CTI to cross the bounds computed for the
observer Ob2. Similar results were obtained for the faults
6, 16 and 19; they were detected correctly but not isolated
in the correct line in the figure. The most likely cause of
these results is the fact that the faults had practically no
effect on the corresponding residuals (r3) to be detected.
It is also clear that the fault 29 was not detected since
it is not an actual fault but a lack of information in the
validation. A number of false-alarms (FA) exists. These
FA are due to a slow convergence of the observers, which
produce that the residuals may be activated or not for the
timely detection. Notice however, that these FA disappear
once the residuals have converged.

5. CONCLUSIONS

The Interval-based FDD approach proposed in this paper
was able to detect most of the faults occurring in the actual
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Fig. 5. Estimate and measurements for S2 (mmol/l).

anaerobic digestion wastewater treatment process used
to experimentally validate the approach. In particular, it
showed optimal results for the fault detection and isolation
on the variable Z. The proposed approach was also able to
detect and isolate simultaneous faults for several variables.
Even in the presence of some false alarms, the proposed
approach was capable to detect up to 95% of the faults
and to isolate up to 75% of them.
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