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Abstract: A new ’model-free’ iterative controller tuning method is presented for multiple-input multiple
output control systems based estimation algorithms in the frequency domain. The method relies
on efficient computation of the negative gradient of the controller cost function in the frequency
domain. Only one experiment is used per iteration and the method is therefore suitable for realtime
implementation by periodic adjustments of the controller. Both feedback and/or feed-forward controllers
can be tuned. Primary target application areas can be self-tuning feedforward/feedback controllers in
industry where the reference signals are periodic.
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1. INTRODUCTION

The ’model-free’ method of Iterative feedback tuning (IFT)
has been the subject of intensive research effort during the
past decade (Hjalmarsson and Gevers M, 1998; Hjalmars-
son, 1999; Hjalmarsson, 2002). A most important advantage of
IFT is that it is a model-free method, but it requires additional
signal injection path and extra manual experiments in each tun-
ing iteration. In (Luo and Veres, 2007b), a new iterative tuning
method, i.e. the frequency domain iterative tuning (FD-IT) was
developed for active noise and vibration control (ANVC) prob-
lems with periodic disturbances, which requires no additional
signal injection path or extra manual experiments in each tuning
iteration.

This paper extends FD-IT method to more general Multi-Input
Multi-Output tracking control problems that rely on handling
of frequency response of dynamics and the signals’ spectra.
The approach is applicable to a variety of controller structures,
including FIR and frequency selective filter (FSF) based con-
trollers. Apart from initial experiments, it only requires one ex-
periment per iteration while the iterative feedback/feedforward
tuning in earlier publications had to perform multiple exper-
iments for feedback and feedforward controllers. This is an
essential step forward that makes our method truly applicable
as a multi-variable adaptive controller.

Although the new approach is suitable to solve general control
problems theoretically, it is particularly suitable for control
problems with finite frequency spectrum signals in practice,
such as ANVC (Luo and Veres, 2007b; Luo and Veres, 2007a),
and some tracking control problems in industry.

The remainder of this paper is organized as follows. In Section
2 the problem of gradient-based tuning control for tracking is
briefly reviewed in the time domain. In Section 3 the idea of
frequency domain iterative tuning (FD-IT) is introduced and
some implementation topics are discussed. Section 4 compares
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FD-IT to the time domain iterative feedback tuning (TD-IFT)
method. In Section 5 a series of MIMO simulation examples
are presented, two different implementations are compared and
the robustness of the algorithm is also discussed. Availability
of the algorithms for engineers and intelligent physical agents
is pointed out in Section 6. The conclusions sum up the results
and points to future research directions.

2. GRADIENT BASED TUNING FOR CONTROL

In this section the control problem is outlined and the basic
notations, definitions and performance functions are provided.
The following symbols will be frequently used in the paper.

∇ Gradient vector of functions
7→ Map to

:= Define or denote

{·}T Transpose

{·}∗ Conjugate and transpose
φ{·} Discrete spectrum of a signal

φ{·}|Ω Discrete spectrum of a signal

over frequency subset ω
Φ{·} Discrete frequency response function

of a dynamics

Φ{·}|Ω Discrete frequency response over

frequency subset ω
DFT Discrete Fourier transform

diag(xxx) Diagonal matrix with diagonal vector xxx

FRF Frequency Response Function

LTI Linear Time Invariant System

Fig. 1 provides a schematic description of the control system
considered. Generally, the system input rrr0 is assumed periodic.
The measured output is represented by zzz ∈ Rnz . The desired
output signal rrr ∈Rnr is produced by dynamics R as rrr = R(rrr0). P
is the unknown plant dynamics with inputs rrr and control action
uuu, and produce zzz. It can be described as

zzz = P(rrr,uuu) (1)
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Fig. 1. Block diagram of a linear feedforward feedback system.

The error eee ∈ Rne between the system output zzz and desired
output rrr can be written as

eee = zzz− rrr (2)

The control signals from the feedforward controller F and
feedback controller H are denoted by uuu f ∈ Rnu and uuuh ∈
Rnu , respectively. The tunable control system C comprises
the parameterized feedforward controller F and the feedback
controller H:

C(www,rrr,eee) : F : uuu f = F(wwwF ,rrr)
H : uuuh = H(wwwH ,eee)

uuu = uuu f + uuuh

(3)

which can be tuned by adjusting their parameter vectors in
www := {wwwF ,wwwH} ∈ Rnw .

The feedforward reference signal rrr ∈ Rnr is obtained through
an unknown but time-invariant dynamics R from rrr0. In servo
control problems, rrr0 is often assumed stationary and known.

Considering a generalized plant G including P and path of rrr,
the above two types of control problems can be described by
one system as:

eee = G(rrr,uuu) (4)

which is framed with the dotted line in Fig. 1.

Assuming a stable LTI system with periodic input rrr0, the steady
output eee of G is also periodic. If the system has steady output eee
with period N then the control performance criterion is defined
as the average quadratic performance of a length N output
sequence:

J(www) :=
1

N

N−1

∑
t=0

eeeT(t)Qeee(t) (5)

where Q is a priori known weighting matrix.

The objective of iterative tuning control is to adjust the con-
troller parameters wwwF and wwwH to minimize performance (5).

In general, the problem of minimizing J(wwwF ,wwwH) is not nec-
essarily convex. The tuning method only finds a suboptimal
solution at a local minimum. This suboptimal solution of the
problem is given by solving wwwo = {wwwo

F ,wwwo
H} to satisfy

∇J(wwwo
F ,wwwo

H) = 000 (6)

3. ITERATIVE TUNING IN THE FREQUENCY DOMAIN

In this section a general framework of frequency domain it-
erative feedback-feedforward tuning is introduced and some
implementation issues are also discussed.

3.1 Gradient estimate in the frequency domain

Considering the MIMO system described by Fig.1assume an
N-length output data set E := {eee(0); . . . ;eee(N − 1)},eee(t) :=
{e1(t), . . . ,eny(t)} ∈ Rne , that can be rewritten with the output
channels as E = {eee1, . . . ,eeene},eeei = {ei(0); . . . ;ei(N − 1)}, i =
1, . . . ,ne.

Using notations ωm := 2π
N

m,m = 0, . . . ,N −1 the m-th discrete

frequency for N-length data, φφφ i
e := {φ i

e(ω0); . . . ; φ i
e(ωN−1)} ∈

CN defines the discrete spectrum of N-length yyyi, which can be

estimated by φφφ i
e

.
= DFT(eeei). Furthermore, the discrete spectrum

of E is described as φφφ e := {φφφ1
e ; . . . ;φφφne

e }∈C(ne×N)×1. There are
similar notations used such as φφφ r, φφφ u f and φφφuh.

In the frequency domain, the plant G is described as a function
{φφφd ,φφφu} 7→ φφφ e:

φφφ e = ΦG(φφφ r,φφφu) = ΦG(φφφ r,φφφ
1
u, . . . ,φ

nu
u ) (7)

and the controller C is described as a function {www,φφφ r,φφφ e} 7→
φφφu:

ΦC(www,φφφ r,φφφ e) : ΦF : φφφu f = ΦF(wwwF ,φφφ r)
ΦH : φφφ uh = ΦH(wwwH ,φφφ e)

φφφu = φφφ u f + φφφuh

(8)

Note that in LTI systems the frequency response functions
(FRF) ΦG, ΦH and ΦF are derivative functions with respect to
the inputs inputs’ spectrum. Therefore, some notations can be

defined as follows: ΦG :=
∂φφφ e

∂φφφ u
∈ C(ne×N)×(nu×N), ΦF :=

∂φφφ u f

∂φφφ r
∈

C(nu×N)×(nr×N), Φ
(w,u)
F :=

∂φφφ u f

∂wwwF
∈ C

(nu×N)×(nw f ), ΦH :=
∂φφφuh

∂φφφ e
∈

C(nu×N)×(ne×N) and Φ
(w,u)
H : =

∂φφφ uh

∂wwwH
∈ C(nu×N)×(nwh).

Considering the LTI case in Fig. 1, the plant G can be written
with increment format as

∆φφφ e = ΦG(∆φφφu f + ∆φφφuh) (9)

With regard to the small increment of parameter www, i.e., wwwF →
wwwF + ∆wwwF and wwwH → wwwH + ∆wwwH , it is straightforward to write

∆φφφ e = ΦG(Φ
(w,u)
F ∆wwwF + Φ

(w,u)
H ∆wwwH + ΦH∆φφφ e) (10)

Using notations ∆φφφw
u f := Φ

(w,u)
F ∆wwwF , ∆φφφw

uh := Φ
(w,u)
H ∆wwwH and

∆φφφ y
uh := ΦH ∆φφφ e, the incremental relationship (10) can be

graphically described as shown in Fig 2.

Fig. 2. Block diagram of small increment in frequency domain

According to (10), the input/output increment mapping through
the plant dynamics G is ∆φφφu 7→ ∆φφφ e.
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Note that the physical increment in the feedback path comprises
two parts: φφφw

uh caused by the change of controller parameter
∆wwwH , and φφφ y

uh caused by the change of output ∆φφφ e. Denoting

∆φφφw
u := ∆φφφw

u f +∆φφφw
uh, if (I−ΦGΦH)−1 exists, the input/output

mapping ∆φφφ w
u 7→ ∆φφφ e can be rewritten from (10) as

∆φφφ e = (I −ΦGΦH)−1ΦG(∆φφφw
u f + ∆φφφw

uh) (11)

Considering LTI closed loop dynamics T := {G,H}, the FRF
of T is defined as

ΦT := (I −ΦGΦH)−1ΦG ∈ C
(ne×N)×(nu×N)

, (12)

From (11), the derivative of φφφ e with respect to controller
parameters wwwH and wwwF can be written as

∂φφφ e

∂wwwH

= ΦT Φ
(w,u)
H (13)

and
∂φφφ e

∂wwwF

= ΦT Φ
(w,u)
F (14)

According to Parseval’s theorem (Oppenheim and Willsky,
1996), it is straightforward to write (5) in the frequency domain
format as

J =
1

N2

ne

∑
i=1

N−1

∑
j=0

φ i∗
e (ω j)qiφ

i
e(ω j) =

1

N2
φφφ∗

eQF φφφ e (15)

where QF ∈ R(ne×N)×(ne×N) is the performance weighting ma-
trix Q in the frequency domain.

The derivative of performance J with respect to controller
parameters can be written as

∂J(www)

∂wi

=
2

N2
φφφ∗

eQF ΦT Φ
(wi,u)
C (16)

where Φ
(wi,u)
C :=

∂ΦC(www,φφφ e,φφφ r)
∂wwwi

.

To summarize, since the output yyy, the controller H and the
reference rrr, F are either detectable or a priori known by the

design engineer, φφφ e and Φ
(wi,u)
C are both available in (16). If ΦT

can be either a priori known or estimated through experiments,
∇J(www) can be computed using (16).

3.2 Tuning of MIMO systems in the frequency domain

In (16) the key to estimate
∂J(www)

∂wi
is to compute ΦT , which has

ne ×N rows and nu ×N columns.

In this subsection, the above conclusion about gradient estimate
in the frequency domain, i.e., (13),(14) and (16), is studied for
the case of LTI systems with periodic signals.

First note that some signals in engineering can often be con-
sidered to have finite discrete spectrum, especially in manufac-
turing problems, harmonic signal recovery and compensation.
For a periodic output eee with common period N, only a finite
set of frequencies, ΩΩΩ = {ω1, . . . ,ωnΩ

}, are included in φφφ e, the

other elements in φφφ e are 0. Therefore, in order to find
∂J(www)
∂wwwi

in (16), only the rows in ΦT with respect to ΩΩΩ is required to
be computed, which will be denoted by ΦT |Ω in the following
discussion. There will be similar notations used such as ΦG|Ω,
ΦH |Ω and ΦF |Ω.

Hence (12) can be rewritten in the finite frequency format as

ΦT |Ω = (III−ΦG|ΩΦi
H |Ω)−1ΦG|Ω, (17)

and similarly (16) can be rewritten as

∇J(wwwi) =
2

N2
φφφ ∗

e |ΩΦi
T |ΩΦ

(w,u)
C |Ω. (18)

Remark 1. It should be noted that there was no limitation about
the linearity of the system and the spectrum of yyy, rrr and uuu.
Theoretically, the gradient based tuning described by (13), (14)
and (16) is applicable for most control problems.

However, in LTI systems, the matrix Φi
T is a diagonal matrix

that represents independent frequency responses in the fre-
quency domain. Eqn. (18) can be solved as nΩ sub-problems
for every single frequency ωi. The computation of gradient
estimate in the frequency domain is simple for LTI systems.

In case of periodic signals, the signals’ spectra have only nΩ

non-zero values to proceed. When the frequency number nΩ is
much less than the common period N, the gradient estimate in
the frequency domain can be greatly simplified relative to that
in the time domain, which has N data to proceed.

Secondly, an indirect estimate of ΦT is more convenient for
online tuning. According to (12), if ΦG can be estimated, ΦT

can be solved since H is known by the designer.

Note that if ΦG is assumed to be an LTI system, then the
FRF is independent in the different frequencies. To ease the
notation, for a single frequency FRF of ΦG, the ΦG(ω) is used
in the following discussion, and the extension to complete ΦG

is straightforward.

Note that ΦG(ω) ∈ Cne×nu has ne × nu unknown variables,
which can be solved through a full-rank ne × nu equation
matrix.

Considering plant G, it is straightforward to get an equation
system

∆φe(ω) = ΦG(ω)∆φu(ω), (19)

which gives ne equations.

Therefore, considering the case of the full rank equations, given
nu such equation groups as in (19), ΦG(ω) can be obtained by
solving an equation system with nu ×ne equations.

To summarize, under the assumption of a finite frequency set ωωω
for the disturbance and assuming an LTI system, we have the
following tuning strategy in the frequency domain:

At the i-th iteration,

(1) Estimate ΦG|Ω by solving the equation set from (19);
(2) Calculate Φi

T |Ω with (17);
(3) Obtain the derivative of J using (18);
(4) Update the controller parameter www with

wwwi+1 = wwwi − µ∇J(wwwi) (20)

where µ is a proper step size to update the controller.

Remark 2. As above stated, at least nu different equation
groups as (17) are required to determine ΦG(ω), which means
nu pairs of difference data {∆uuu,∆yyy} are required. In the im-
plementation, in order to get the estimate of ΦG|Ω, 1 + nu

experiments are required to yield nu pairs of {∆uuu,∆yyy}.

For LTI systems, ΦG|Ω is considered unchanged and can be
estimated offline. ΦT |Ω(ΦG|Ω,Φi

H |Ω) can be updated with the

change of H i. Therefore, as shown in Fig. 3, to make NT times
gradient based tuning, plus the nu additional experiments, NT +
nu time iterations are necessary to perform.
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Fig. 3. Experiment and tuning iteration in FD-IT

Compared to the multi-variable time-domain IFT method
(Hjalmarsson, 2002), the obvious advantage of FD-IT is that
FD-IT requires much less iterations to tune than IFT. As stated
in (Hjalmarsson, 1999; Hjalmarsson, 2002; Jansson and Hjal-
marsson, 2004), nu×ne gradient experiments for feedback con-
troller H and nu × nr gradient experiments for feed forward
controller F are necessary, which gives (1 + nu ×ne + nu ×nr)
experiments in order to compute all gradients for one tuning. In
order to perform NT iterations, FD-IT can finish within NT +nu

experiments, while IFT requires as many as NT ×(1+nu×ne +
nu ×nr) experiments.

4. DIRECT DERIVATION OF CLOSED LOOP DYNAMICS
FOR LTI SYSTEMS

In the above derivations the infinitesimal increment equations
such as (10) are used because nonlinearities can be locally lin-
earized with infinitesimal incremental equations. In the linear
time invariant (LTI) case, the conclusion of the proposed gradi-
ent estimate theory can be directly deduced through derivation
of the closed loop dynamics.

A typical linear feedback and feedforward control system can
be expressed with closed loop dynamics T in the time domain
as

zzz =
GF(wwwF)

1−GH(wwwH)
uuu, (21)

where the plant G is an LTI system, LTI feedback controller
H(wwwH) and feedforward controller F(wwwF) have tunable param-
eters wwwH and wwwF , respectively.

It can be derived in the frequency domain (Dorsey, 2002) that

φφφ z = [I −ΦGΦH(wwwH)]−1ΦGΦF(wwwF)φφφu (22)

as illustrated in Fig. 1, φφφ e = φφφ z −φφφ r. While rrr is not correlated
to wwwH and wwwF , it is straightforward to get

∂φφφ e

∂wwwH

=
∂φφφ z

∂wwwH

,
∂φφφ e

∂wwwF

=
∂φφφ z

∂wwwF

(23)

According to (22), it is straightforward to obtain

∂φφφ z

∂wwwF

= [I −ΦGΦH ]−1ΦG

∂ΦF (wwwF)

∂wwwF

φφφu = ΦT
∂ΦF (wwwF)

∂wwwF

φφφu

(24)
which is the same as (14).

According to (22), the derivative matrix
∂φφφ z

∂wwwH
first gives

∂φφφ z

∂wwwH

= [I −ΦGΦH ]−2ΦG

∂ΦH(wwwH)

∂wwwH

ΦGΦF φφφ u (25)

In LTI systems the [I − ΦGΦH ]−1, ΦG and
∂ΦH(wwwH)

∂wwwH
are all

diagonal matrixes, and their positions are exchangeable in (25),
which gives

[I −ΦGΦH ]−2ΦG

∂ΦH(wwwH)

∂wwwH

ΦGΦF φφφ x

= {[I−ΦGΦH ]−1ΦG}{
∂ΦH(wwwH)

∂wwwH

}{[I−ΦGΦH ]−1ΦGΦF φφφ x}

= ΦT
∂ΦH(wwwH)

∂wwwH

φφφ z

(26)

Considering the three braced items in (26), using the notation
T of the closed loop dynamics and system output spectrum
in (22), it is straightforward to get that

∂φφφ e

∂wwwH

= ΦT
∂ΦH(wwwH)

∂wwwH

φφφ z (27)

which is the same as (13).

Therefore the new proposed gradient theory can be intuitively
explained from the LTI case derivatives by the deduction
through the derivation of system dynamics.

5. SIMULATION

This section illustrates the usefulness of FD-IT for tracking
control through simulation in MATLAB. Frequency-selective
filter (FSF) based FD-IT is used in this simulation, for the
details of the filtering algorithm we refer to (Luo and Veres,
2007b).

5.1 Elliptic track simulation

The block diagram of the SIMULINK-based MIMO system to
be controlled is given in Fig. 4. It is a 2-input and 2-output LTI
system. y1, y2, r1 and r2 denote the data acquired for output
and reference signals. The output yyy1 and yyy2 represent positions
of x-axis and y-axis in a 2-dimension space, respectively.

The sampling frequency is 4kHz. The signal rrr0 is a 50Hz
harmonic signal, leading to:

r0(t) = sin(50πt) (28)

Modules U f 1 and U f 2 denote the sensor noise in the feed-
forward paths. They are assumed as white noise with standard
deviation 0.001.

Fig. 4. Block diagram for simulation

In Fig. 4 the unknown plant P is given by
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0.15q−7−0.3q−8

1 + 0.2q−1−0.2q−2

0.02q−6−0.03q−7

1 + 0.02q−1 + 0.01q−2

−0.02q−6−0.01q−7

1 + 0.02q−1−0.01q−2

−0.2q−8−0.3q−9

1 + 0.1q−1−0.2q−2









, (29)

where there are white noise signals Uh1 and Uh2 added with
standard deviations 0.01 in y1 and y2 output paths.

The reference signal rrr to be tracked is filtered by dynamics R
as









0.1q−21

1−0.2q−2
0

0
0.8q−4

1 + 0.4q−1









, (30)

which leads to the desired track as an elliptic track shown in
Fig. 5: An FSF-based controller structure is used. 1st-order
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Fig. 5. Desired track

Butterworth bandpass filters are online designed according
to the spectrum of yyy that is 50Hz, and the bandwidths of
the FSF are given by the disturbance frequency ±10 percent
which also eliminates the unwanted white noise in the tuning.
The 2-th order FIR controllers are used as tunable module in
feedback and feedforward paths, which are cascaded with those
Butterworth bandpass filters.

In order to describe the the tracking error, the cost function is
defined as in (5), where the common period is set to N = 320,
and the weighting matrix is Q = diag([1.01.0]). The step size
(adaptation gain) for feedforward controller tuning is µ f = 8.0
and step size for feedback controller tuning is µh = 0.8.

At the beginning all the initial feedback controller parameters
are set to zero, and the initial feed-forward path is set to 0.1.
The initial output track is shown in Fig. 6. The first performance
criterion without control is 0.9588. In order to perform an initial
estimate of G, only the sub-block from rrr1 to uuu f 1 in H is changed
to 0.2 in the 2nd iteration, and only the sub-block from rrr2 to uuu f 2

in H is changed to 0.2 in the 3rd iteration.

Fig. 7 shows the updating performance in the simulation: the
2nd and 3rd iterations are manual updates, which give J(2) =
0.9758 and J(2) = 0.9406. After 40 experiments the final
performance is J = 0.0012. The final track after tuning is shown
in Fig.8.

Compared with Fig. 6 and Fig. 8, it is obvious that the matching
performance of the final track greatly improved. It is worth-
while to note that in this simulation example FD-IT only dealt
with one gradient computation with respect to frequency 50Hz
while the time domain gradient estimation methods often have
to process at least 80 data.
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Fig. 6. Initial track
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Fig. 7. Performance updating
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Fig. 8. Final track after 40 experiments

As shown in Fig 4, there is no additional signal path to inject
some extra signals for gradient estimation as in the time domain
IFT, which simplifies the structure of the control system. As
shown in Fig 7, only the first three experiments are manually
set, and the subsequent tunings are based on their preceding
experiments without extra experiments to carry out, which
makes it implementable as a realtime adaptive controller.

6. AVAILABILITY OF ALGORITHMS

Using the basic concepts of ‘experiments’, ‘signals’, their
‘transforms’, etc. most algorithms of this paper are avail-
able in a natural language programming format in sEnglish
at sysbrain.org in the ‘articles/analytic dynamical control’ sec-
tion under ‘Frequency domain IFT’. There the algorithms are
presented in sentences such as ‘Estimate ΦG over frequency
set ΩΩΩ using φφφ e and φφφu. Compute ΦT from ΦG and ΦH using
feedback formula. Obtain the derivative of J with respect to
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parameters wwwC from φφφ e, ΦT and ΦC.’ etc. All sentences compile
into MATLAB code unambiguously for human implementa-
tion. The associated sEnglish paper can be read by engineers
as well as intelligent physical agents equipped with an sEnglish
interpreter that can then use these algorithms. sEnglish papers
can be equally read by humans as well as by agents whom can
hence develop a shared understanding.

7. CONCLUSIONS

An iterative feedback/feedforward tuning approach has been
presented that uses an innovative way of computing gradient
estimates of the controller cost function in the frequency do-
main. Compared to IFT in time domain, this method simplifies
both control structure and control operation.

The method is suitable for industrial applications with feedback
and feedforward controllers where periodic signals have to be
tracked. First a general framework of the IFT approach was
provided in the frequency domain and then some detailed tech-
niques were discussed for applications. Secondly, comparisons
were made and relationship with the time domain IFT was
discussed. The effectiveness, flexibility and robustness of FD-
IT was shown by simulation examples.

As the basic scheme was outlined and tested in simulation, the
robustness of the obtained controllers is still questionable. Fu-
ture work on robustification will be possible to perform directly
in the frequency domain. Extension of the general framework
to other control application such as disturbance rejection, vibra-
tion and noise control also require further research.
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