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Abstract: This work is focused on developing control algorithms for hygrothermal process
represented by mixed logical and dynamical models. An example is the closed newborn
incubator. Such kind of system promotes a controlled micro-climate, with small heat transfer
between the premature and the environment, leading to comfortable and healthful environment.
This device can be represented by a piece-wise linear model having discrete values for the input
signal range. A hybrid predictive control scheme is proposed for such a process. The algorithm
can also be applied to different dynamic systems having the same characteristics and it is easy to
be implemented in real-time environments. System identification results based on orthonormal
basis functions for finding the set of linear transfer functions are discussed. Closed-loop control
experiments, by using an actual laboratory pilot plant (full scale), are performed and presented
to validate the proposed method.

Keywords: predictive control, hybrid control, non-linear systems, orthonormal basis functions,
neonatal incubators.

1. INTRODUCTION

Many process control problems are related with control-
ling, at the same time, temperature and relative humidity.
An example of this is the HVAC (Heating, Ventilation and
Air Conditioning) control device for promoting thermal
comfort in buildings. Another example is the neonate
incubator.

The neonate care requires an adequate micro-climate to
minimize the heat loss. From many years, incubators
have been used to create a comfortable and healthful
hygrothermal environment for neonates. The aim of such
devices is to keep respiratory and epidermal water losses at
an appropriate level and to increase the body heat storage.

In closed-type incubators, the neonate environment tem-
perature can be completely controlled. This property de-
creases the neonate temperature variance due to large dif-
ferences between air and skin temperatures. An appropri-
ate thermal environment decreases the rate of preterm in-
fant morbidity and mortality. Furthermore, another media
of heat exchange between the neonate and its environment
is the water loss through the skin and by respiration. When
the incubator air temperature is constant, an increase
in the air relative humidity (RH) value reduces the skin
cooling and increases the body heat storage. Therefore,
some incubators have active or passive systems to control
the internal RH. Control schemes built to deal with this
issue have been described by Bouattoura et al. [1998],
Amorim [1994], Guler and Burunkaya [2002] and Oliveira
et al. [2006]. In fact, by controlling the relative humidity
and air temperature values, one is actually also controlling
the internal partial vapor pressure. This signal has an
important role in the neonate water losses by skin and
respiration.

So, from a control system point of view, an incubator is a
system where temperature and RH signals (consequently,
the partial vapor pressure signals) are the main controlled
variables.

On the other hand, Hybrid systems are characterized
by models involving an interactive combination of logic,
dynamic and constraints [Labinaz et al., 1997, Bemporad
and Morari, 1999]. This field has been the object of a
rapid growth motivated by the need for developing control
algorithms for several industrial applications which present
hybrid properties.

In the present work, an actual pilot plant built to simulate
the micro-clime found in neonate incubators is discussed.
This plant contains actuators to change the internal tem-
perature and humidity and sensors for monitoring the rel-
evant signals. Two properties of this hygrothermal process
can be associated with hybrid systems, in particular with
the MLD - Mixed Logical Dynamical System [Bempo-
rad and Morari, 1999]. They are: the input signal values
belonging to a discrete set, and the system dynamic is
characterized by piece-wise linear models.

In order to deal with the process operational characteris-
tics, this paper proposes the use Model Based Predictive
Control (MBPC) strategy [Camacho and Bordons, 1999],
and describes a predictive scheme based on hybrid control
concepts. Such scheme was first proposed by Oliveira et al.
[2005]. Here, this work reviewed and, additionally, it is
included real-time closed-loop control results.

An application of Laguerre basis [Heuberger et al., 2005]
in the system identification procedure for the incubator
is described , having the aim of predicting the system
behavior and helping the control algorithm synthesis. Such
modeling approach assumes a state-space realization and
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Fig. 1. Diagram with the main parts of the pilot plant

an advantage of in the piece-wise linear model case, is that
the use of Laguerre basis with a constant pole smoothes
the model transitions, since the state vector is the same
for all models in set.

In the next section, details of the incubator prototype
are presented, including the control problem statement. In
Section 3, some important points related with orthonormal
basis modeling are reviewed and, in Section 4, the control
law for the incubator is described. Following, in Section 5,
the system identification, using actual data, is performed
and real-time examples illustrate the control algorithm
performance. Finally, the conclusions are addressed.

2. PROCESS DESCRIPTION

In order to research issues related with hygrothermal
process and to test the results discussed in this paper,
a neonatal incubator prototype was constructed and the
main points related with such equipment are mentioned
in this section. The pilot plant has the following parts: an
acrylic transparent box, a domestic heater, a fan and a
humidifier. The heater and the humidifier are modified to
allow external control in such a way that four power levels
are available, that is: 0, 1, 2 and 3 (or off, low, medium
and maximum). The humidifier is based on ultrasound,
so water vapor is produced without heating generation
and then mass transfer is obtained with low influence
in the energy transfer. The fan is turned on. Ventilation
ducts connect all the above-mentioned parts and allow
air circulation inside the incubator. Fresh air supply is
provided by the humidifier to guarantee some air renewal.
Moreover, the pressure inside the incubator is slightly
higher than the environment one. Due to these procedures,
the thermal condition is, as far as possible, constant inside
the incubator.

The process diagram is depicted in (Fig. 1). In this figure,
the acrylic box is represented by A, the heating and
humidifying devices by B, the fan is also in the position
B, the ducts that form a closed circuit are represented
by C and the sensors are in the position D. Some orifices
are placed in the incubator’s side to promote air changes,
simulating open spaces for catheters, ducts, wires, etc.

Fig. 2. The neonatal incubator prototype

Two sensors for internal and external temperature and
RH measurements are available. The internal temperature
measurement is based on T-type thermocouple. The sen-
sors and the electronic device for the actuators, leading
to changes in the process dynamics and delays, are the
main modification in relation to the apparatus presented
by Oliveira et al. [2005, 2006]. Figure 2 contains an incu-
bator photograph. One can notice the acrylic box A, i.e.,
the hygrothermal zone, the internal temperature and RH
sensors D2, the external temperature and RH sensors D1,
the heater B1, the humidifier B2 and the ventilation ducts
C.

The environment for supervision and digital control is
implemented by using the virtual instrumentation soft-
ware LabViewTM, version 7.2, and National Instruments
hardware PCI-6024/CB-68LP. The sampling frequency for
temperature and RH signals is 2 Hz.

2.1 The control problem statement

In this section, the incubator control problem is stated.
The Brazilian technical norm [NBR, 1997] for neonate
incubators indicates that the internal temperature set-
point should be inside the interval [32,37] oC and the
internal RH set-point should be inside the interval [40,60]
%. The temperature signal’s first overshoot should be less
than 2oC.

Therefore, by using this guideline, the problem is, starting
from the environmental conditions, to lead the incubator
hygrothermal conditions close to 36.5oC and 60%. The
partial vapor pressure value is correlated with temperature
and RH values.

The available control signals for the heater and humidifier
are integer numbers within the interval [0, 3].

3. ORTHONORMAL BASIS FUNCTIONS FOR
SYSTEM MODELING

A SISO linear causal and dynamic system can be described
by its impulse response h(k). If such system has finite
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memory, i.e., h(k) is absolutely integrable, it can be rep-
resented by a series of orthonormal functions, as follows:

h(k) =
∞
∑

i=1

ciφi(k) (1)

where { φi(k) }∞i=1 is a base constructed with orthonormal
functions and ci is the i-th series coefficient. Assume that
Φi(z) is the Z transform of φi(k) and li(k) is the output
of Φi(z) when the input signal is u(k). By using these
definitions, the model output y(k), when the series is
truncated at n terms, is given by:

y(k) =
n

∑

i=1

cili(k) = c
T
o lo(k) (2)

where the vectors lo(k) and co are composed by the li(k)
signals and ci coefficients. This model is linear in the
parameters, so a least square algorithm can be used to
estimate the ci coefficients.

Although different orthonormal basis can be used in such
a context, (see Heuberger et al. [2005], for instance), the
present work is focused on the Laguerre basis since it
represents a good tradeoff between the model quality and
the a priori information required to build the basis. The
model constructed with Laguerre basis (Laguerre Model)
can be expressed as follows:

lo(k + 1) = Ao lo(k) + bo u(k − τ) (3)

The matrix Ao and the vector bo have constant coefficients
which depend on a a priori selected pole p, characterizing
the Laguerre basis chosen to build the model. The size of
such matrices is a function of the truncated series order n.
τ is an approximate knowledge of the process time delay.
It is assumed here that the model (A,b,c) is an state space
representation of (Ao,bo,co) that incorporates, in the state
vector l(k), the time delay τ samples.

The parametric identification properties of orthonormal
based models, represented by (2) and (3), have been
discussed by several authors in the literature (see, for
instance, Heuberger et al. [2005] and references included).
These work highlight some properties and advantages of
such system modeling approach. Some of them, related
with the present paper, are described below. A practical
advantage is the low a priori information required in the
identification procedure, only an approximation of the
time delay and the dominant time constant is need. In
the piece-wise linear model or multiple models case, the
use of Laguerre basis with a constant pole smoothes the
model transitions, since the state vector is the same for all
models in set of valid models (the changes are present in
the ci coefficients).

4. AN HYBRID APPROACH FOR MODEL
PREDICTIVE CONTROL

Model predictive controllers (MPC) are defined by the
following main steps: first, a model is used to compute
the predicted process output. Next, a cost function related
with the system closed loop performance is defined, and
then, this cost function is minimized in relation to a
set of future control signals. Finally, the first of these

optimal control signals is applied to the process, i.e.,
the receding horizon strategy. Several MPC algorithms
have been proposed based on this scheme and the main
difference between them is the strategy used to implement
each step described above.

Before presenting the proposed control law, lets us briefly
recall the cost function usually found in MBPC:

Jk =

Ny
∑

j=1

(ŷ(k + j|k) − w(k + j))2 +

Nu−1
∑

j=0

λ∆u2(k + j|k)(4)

where Ny and Nu define the prediction and control hori-
zon, respectively; λ is a weighting factor in the control
signal; w(k) is the set-point signal, u(k + j|k) is the op-
timal control signal at time k + j computed at time k;
∆u(k) = u(k) − u(k − 1) and ŷ(k + j|k) is the process
output prediction at time k + j, computed at time k, by
using the process model. The control law is obtained by
minimizing the cost function (4) in relation to ∆u(·), as
shown in following:

min
∆u(k),...,∆u(k+Nu−1)

Jk

s.to
∆u(k + j|k) = 0 ∀ j = Nu, . . . , Ny

(5)

Therefore, MBPC algorithms are primary defined by se-
lecting a model to compute the predicted process output.
Often, MBPC algorithms are implemented by assuming
that the process can be modeled by a single linear model.
However, there are many examples where such assump-
tion does not apply. Here, it is assumed that the process
dynamics have the following characteristics:

(i) the input signal value are defined by a discrete set, i.e.,

u(k) ∈ {uc}
M−1
c=0 = { u0, u1, u2, . . . , uM−1 } (6)

(ii) the model dynamic depends on the input signal value.

G(z) =















if u(k) = u0 then G(z) = G0(z)
if u(k) = u1 then G(z) = G1(z)
...
if u(k) = uM−1 then G(z) = GM−1(z)

(7)

These two characteristics are consistent with the definition
of MLD (Mixed Logic and Dynamic) Hybrid Models. Fol-
lowing, an MBPC algorithm for such problem is proposed.
It can be viewed as a hybrid predictive control algorithm.
Although the proposed control solution is focused on the
incubator described in the Section 2, it can be applied to
any dynamic system having same characteristics.

The piece-wise linear model are constructed by using or-
thonormal basis functions models, having the same poles.
Therefore, only one state transition equation is used:

l(k + 1) = A l(k) + b u(k − τ) (8)

and

y(k) =



















if u(k) = u0 then y(k) = c
T
0 l(k)

if u(k) = u1 then y(k) = c
T
1 l(k)

...
if u(k) = uM−1 then y(k) = c

T
M−1l(k)

(9)
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The model associated with the operation point u0 = 0, i.e,
c0, may vary at each sampling time and it is considered
equal to the one used in the previous sampling time.

As described earlier, a j-step ahead output prediction
equation is necessary in predictive control algorithms. By
using the model (8) and (9) and assuming that only one
control signal variation is used, which is equivalent to use
a control horizon Nu equal to one in standard MBPC
algorithms, one obtains a set of M different values for the
output prediction, as follows:

ŷ(k + j|k, c) = y(k) + c
T
c Sj−1A∆l(k)+

c
T
c Sj−1b ∆uk,c ∀ c = 0, . . . ,M − 1

(10)

where: Sj =

j
∑

i=0

Ai; l(k) = 0 for k ≤ 0; and ∆uk,c is the

incremental control signal, computed at the time instant
k, It also belongs to a finite set, given by:

{∆uk,c}
M−1
c=0 = { u0 − u(k − 1), u1 − u(k − 1), . . . ,

uM−1 − u(k − 1) }
(11)

Therefore, each feasible ∆uk,c is associated with one
prediction equation, since there is a set finite set of feasible
models. A set of feasible predictions values can be defined
as follows, depending on the control signal applied at time
instant k:

{ ŷc(k + j|k) : c = 0, 1, . . . ,M − 1 } (12)

Based on this set, the following cost function is proposed:

Jk,c =

Ny
∑

j=1

(ŷc(k + j|k) − w(k + j))2 + λ∆u2
k,c (13)

and the control law is equivalent to find the control signal
u(k) = uc, c = 0, . . . ,M1, that minimizes the cost function
(13), that is:

min
c∈[0,1,...,M−1]

Jk,c (14)

Therefore, the optimal control value at the time instant
k, that is, u(k), is made equal to the uc related with the
solution of problem (14), and is computed at each sampling
time. Constraints in the control signal and control signal
variation are handled by the feasible set of control values.
As far as output constraints are concerned, the following
inequations can be added to the control law (14):

ymin ≤ ŷc(k + j|k) ≤ ymax

∀ j = 1, . . . , Ny and c = 0, 1, . . . ,M − 1
(15)

In this equation, ymin and ymax define the output signal
feasible bounds.

5. EXPERIMENTAL RESULTS

In this section, experimental closed-loop control results
related with the use of the proposed hybrid predictive
scheme in the incubator presented in Section 2 are pre-
sented. The section is divided in two parts. The first
part describes the piece-wise model identification by using
Laguerre basis structure. The second part contains the
real-time control results.

Fig. 3. Temperature signals for three input signals.

5.1 System Identification

Now, an identification procedure is described and a set of
linear temperature and RH models (see 7) is computed.
The identification is based on open-loop step response
signals for capturing the system behavior at each operating
point. The data acquisition is performed with sampling
time equal to 0.5 seconds. The values of the figures vertical
axis of this section represent a variation in relation to the
external temperature or RH values.

During the open loop temperature step response tests, an
on-off closed loop control is active for maintaining the RH
value close to 60%.

Although good results can be obtained by using a single
linear model, the incubator discussed here is a non-linear
process. Depending on the control signal intensity, it
presents different open-loop behavior. Therefore, three
step signals, having amplitude of 1, 2 and 3, are applied
in the heater power. Fig. 3 contains the process behavior
for each case (step at 60 seconds or sample 120). It can
be notice that the process dynamic, mainly the gain,
changes depending on the input signal. Moreover, the
oscillations observed in the actual step response are due to
the influence, on the temperature, of the on-off RH control-
loop.

During the open loop temperature step response tests,
an on-off closed loop control is active for maintaining the
RH value close to 60%. By means of these step response
experiments, temperature model time delay (see (2) and
(3) ) can be obtained and it is approximately equal to 4.5
seconds.

The choice of a Laguerre basis pole is based on the system
dominant time constant, and pole value used here is 0.99.
This choice for the Laguerre pole indicates that the signals
are over-sampled. However, due the large quantization in
the input signal, such procedure has the aim of reducing
the output signals oscillations.

The model parameters identified by using the three step
type inputs are (see (9), with M = 3):

{c1,i}
6
i=1 = { 0.7266, 0.0574, 0.1290, ...

− 0.0263, 0.0829, − 0.0260}
(16)
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Fig. 4. Actual temperature and model step responses
(amplitude 1).
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Fig. 5. RH signals for three input signals.

{c2,i}
6
i=1 = { 0.4612, − 0.0334, 0.1019, ...

− 0.0043, 0.04510, 0.0052}
(17)

{c3,i}
6
i=1 = { 0.3243, 0.0560, 0.0359, ...

0.0381, − 0.0019, 0.0041}
(18)

ca,i indicates the model parameter obtained with a step
of amplitude a. The k-step ahead prediction (parallel-
parallel structure) of a Laguerre model with p = 0.99 and
n = 6 approximates the actual step response as shown in
(Fig. 4). It can be notice that the curves (actual and model
response) are very close to each other.

Following, the same procedure for RH are presented. Dur-
ing the open loop RH step response tests, an on-off closed
loop control is active for maintaining the temperature
value close to 36.5oC.

As discussed before, three local Laguerre models can be
obtained by applying steps of magnitude 1, 2 and 3. Fig. 5
presents the process behavior for each case (step at 70
seconds or sample 140). Similar to the temperature case,
here the process dynamic also changes depending on the
input signal.

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30

Samples

H
u

m
id

it
y
 R

e
s
p

o
n

s
e Actual step response 

Model step response 

Fig. 6. Actual and model unit step responses

The choice of a Laguerre basis pole is also based on the
system dominant time constant, and a pole value equal
to 0.99 is obtained. The coefficients of the three identified
models are:

{c1,i}
6
i=1 = { 1.0141, 0.8960, − 0.2271, ...

0.3213, − 0.2112, 0.0682}
(19)

{c2,i}
6
i=1 = { 1.0695, 0.5355, − 0.1214, ...

0.0169, 0.0365, 0.0198}
(20)

{c3,i}
6
i=1 = { 1.1755, 0.0525, 0.1454, ...

0.1414, − 0.0438, 0.0326}
(21)

The k-step ahead prediction by using the Laguerre model
with p = 0.99 and n = 6 approximates the actual step
response as shown in (Fig. 6). It can be notice that the
curves (actual and model response) are very close to each
other.

5.2 Real-time Control Results

The temperature and RH predictive controllers are con-
structed using the models identified in Section 5. The
temperature and RH controller parameters are: Ny = 30,
and λ = 0.

The performance of the predictive control strategies is
given by (Fig. 7) and (Fig. 8). By means of these figures,
it can be notice that the controllers are able to keep
the internal hygrothermal conditions close to the desired
value. The settling time for the temperature signal is small,
mainly due to the fact that the external temperature was,
at the time of the experiment, not too far from the desired
one. Moreover, the predictive law presents no important
overshoot. As far as the RH signal is concerned, the idea
is to compensate, through humidification, the drop in the
RH due to the internal heating. The settling time in the
RH signal is close to the one observed for the temperature.
Moreover, by improving the temperature and RH control,
one can act on the partial vapor pressure (see Fig. 9),
improving the thermal conditions for the neonate.

The controller disturbance rejection is analyzed by open-
ing, during 10 seconds, the incubator at the time instant
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Fig. 7. Temperature control performance.
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Fig. 8. RH control performance.
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Fig. 9. Partial vapor pressure behavior.

840 seconds. By (Figs. 7), (8) and (9) one can observe that
the steady state is obtained after few seconds.

These results show that the closed loop control behavior
is quite good, validating the proposed hybrid predictive
control algorithm scheme.

6. CONCLUSIONS

This work was focused on hygrothermal conditions con-
trol, represented by temperature, RH and partial vapor
pressure signals, of neonatal incubators. In this context, a
full scale pilot plant was used.

From the control point of view, such incubator presents
some characteristics: the control signal belongs to a dis-
crete set and the dynamic is described by a piece-wise
linear model. These properties can include the incubator
into the class of hybrid systems. Therefore, a predictive
control law for such class of system was proposed. The
control law is based on defining a set of feasible prediction
equation and on finding the control signal that minimizes
the prediction error. Such control law is also appropriated
for hybrid systems having similar properties. The piece-
wise linear model was constructed by using Laguerre func-
tions.

By the using real-time experiments, it was shown that both
techniques revealed to be appropriate for such context.
The use of Laguerre functions provided accurate models
based on small process information. The hybrid predictive
control law provided a good closed-loop control perfor-
mance.
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