
Optimal Power System Stabilizer Tuning in
Multi-machine System via an Improved

Differential Evolution

G. Y. Yang ∗ Y. Mishra ∗ Z. Y. Dong ∗ K. P. Wong ∗∗

∗ School of Information Technology & Electrical Engineering, The
University of Queensland, Brisbane 4072, Australia. (email:{guang,

mishra, zdong}@itee.uq.edu.au)
∗∗ Department of Electrical Engineering, The Hong Kong Polytechnic
University, Kow Loon, Hong Kong. (email: eekpwong@polyu.edu.hk)

Abstract: Power system stabilizer (PSS) is one of the most important controllers in modern
power systems for damping low frequency oscillations. Many efforts have been dedicated to
design the tuning methodologies and allocation techniques to obtain optimal damping behaviors
of the system. Traditionally, it is tuned mostly for local damping performance, however, in order
to obtain a globally optimal performance, the tuning of PSS needs to be done considering more
variables. Furthermore, with the enhancement of system interconnection and the increase of
system complexity, new tools are required to achieve global tuning and coordination of PSS to
achieve optimal solution in a global meaning.
Differential evolution (DE) is a recognized as a simple and powerful global optimum technique,
which can gain fast convergence speed as well as high computational efficiency. However, as
many other evolutionary algorithms (EA), the premature of population restricts optimization
capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of
39-Bus New-England system. New operators are introduced to reduce the probability of getting
premature. To investigate the impact of system conditions on PSS tuning, multiple operating
points will be studied. Simulation result is compared with standard DE and particle swarm
optimization (PSO).
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1. INTRODUCTION

Low frequency power system oscillations have been one of
the major concerns in modern system operation. Plentiful
work has been dedicated in power engineering to achieve
stable and reliable operation of synchronous generators.
One of the important techniques is to provide an efficient
excitation system for a synchronous unit. Power system
stabilizer (PSS) is developed based on this mind to utilize
the control signal in the excitation system [1]. It can
provide more damping to the system so that the dynamic
response of the system is improved.

The implementation of PSS in power grids to damp
electro-mechanical modes needs to select appropriate loca-
tions and tune parameter settings properly. So far, many
methodologies have been proposed for the allocation of
PSS in power system. In [2, 3], the placement of PSS are
decided from participation factors regarding to left and
right eigenvectors. The concept of root locus is presented
in [4] for tuning parameters, however the coordination
among parameters are ignored. The optimal control theory
is used in [5] via the iterative riccati equation, however,
only a part of eigenvalues are considered for the movement
to the left side of the complex plane by the pole assign-
ment. Order reduction and pole assignment methodologies
are also investigated in [6, 7, 8]. The drawback of the for-

mer technique is it might result in approximate solutions,
whereas the later one could lead the parameters outside
their reasonable range.

Also, optimization techniques are introduced in this field
to eliminate the drawbacks above. In [9], the eigenvalue
variation is minimized and the parameters are bounded
by equality and inequality constraints. It is solved by
sensitivity analysis and linear programming. However,
since the objective function is evaluated by sensitivity
method, a suboptimal solution might be obtained. To
overcome this problem, nonlinear programming method
without using sensitivity techniques is proposed in [10].
Further improvements are achieved by using artificial
intelligent (AI) techniques to tune the PSS parameters [11,
12].

DE is a relatively new member of EA and first proposed
by Storn and Price at Berkeley over 1994-1996 [13, 14].
It is an algorithm of population based, steered random
search as well as iterative development. Fig. 1 gives a
general flowchart of typical EA. DE has the capability of
solving optimization problems by minimization process.
It employs a nonuniform crossover to guide through the
optimization process. The mutation operation with DE
is directed by arithmetical combinations which exploit
the diversity among randomly chosen vectors, other than
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perturbing the digits in individuals with small possibility
as genetic algorithms (GAs) [15]. These characteristics
make DE a precise, fast and robust algorithm. However,
like other EA methods, DE is also suffering from the
premature behavior, which restricts the DE application.

In this paper, a modified DE is developed to solve PSS
tuning in New England 39-bus system. In the proposed
DE, new operators are introduced to reduce the proba-
bility of getting premature. Simulation result is compared
with standard DE and particle swarm optimization (PSO).
Furthermore, the impact of system operating conditions
on PSS parameters are also investigated. The following
content is organized as follows. Section 2 gives a brief
review on DE and linearized system model. In Section 3,
the modified DE is detailed and the optimization problem
is formulated. Simulation is implemented in Section 4 and
5, followed by conclusion.

Fig. 1. A general flowchart of EAs.

2. FUNDAMENTALS OF DE AND LINEARIZED
SYSTEM FORMULATION

Before detailing the optimization model, some fundamen-
tals of DE and system model is provided below.

2.1 Brief Introduction to DE

Fig. 2. A typical flowchart of DE.

Similar to other EA, DE depends likewise on initialized
population, mutation, crossover and selection to search
solution space through iterative progress till the algorithm
terminations are met.

Main Operators of DE The realization of DE is basically
depending on three operators, mutation, crossover and
selection. The introduction of them is followed accordingly.

Mutation This operator is the main operator of DE,
which provides the diversification of the algorithm and di-
rects the optimisation process. A typical mutation method
is listed below:

x′
G+1
i = xG

i + f1 ·
(
xG

r1 − xG
r2

)
Here, the xG

i is the i − th vector to be mutated, r1
and r2 are randomly chosen indices of vectors from the
population, where r1 6= r2 6= i. G and G + 1 mean the
G − th and (G + 1) − th generation. x′

G+1
i is the vector

after mutation.

Crossover Unlike GAs, crossover in DE is only a comple-
mentary procedure to enhance the diversity of the algo-
rithm. The normally used crossover is a discrete method.
This discrete approach is employing a constant probability
CR to determine if the digit of the newly generated vector
is to be recombined. Here, a predefined digit can be speci-
fied that means that digit will be recombined compulsorily.

Selection The selection operator in DE is relatively sim-
ple. The fitness values of the newly generated population
will be computed and compared to the fitness values before
mutation and recombination procedures. The vector with
better fitness value at a specified position in the popu-
lation will be preserved whereas the vector with worse
fitness value is replaced. The new population generated
after selection will be used in the next generation. Fig. 2
illustrates the typical procedure of a DE.

To enhance the optimization capability of DE, the mod-
ification of operators is required to increase the diversity
and randomness of the algorithm and hence the searching
space can be more explored.

2.2 Brief Review of Linearized System Model

In power system analysis, linearized system model analysis
can provide valuable insight into the operating behavior.
Low frequency oscillations in a system can be assumed
linear when it is caused by small disturbances. Under small
signal condition, the variations of dynamic variables of
the system can be approximated linear as well. Multi-
machine system dynamic behavior in frequency span is
usually represented by a set of non-linear differential and
algebraic (DAE) equations:

ẋ = f(x, z, u)
0 = g(x, z, u) (1)
y = h(x, z, u)

where f and g are the maps of differential and algebraic
equations. h is the function of output equations. The
vectors x ∈ Rn, z ∈ Rm, u ∈ Rp and y ∈ Rq represent
the state variables, algebraic variables, system inputs and
outputs respectively. Equations (1) can be linearized as
follows:

∆ẋ =
∂f

∂x
∆x +

∂f

∂z
∆z +

∂f

∂u
∆u

0 =
∂g

∂x
∆x +

∂g

∂z
∆z +

∂g

∂u
∆u∆ (2)

y =
∂h

∂x
∆x +

∂h

∂z
∆z +

∂h

∂u
∆u
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Referring to [16], eliminating the algebraic variable ∆z,
the system matrices can be obtained:

∆ẋ = A∆x + B∆u

∆y = C∆x + D∆u (3)
where the expressions of A,B,C, D are listed below:

A =
∂f

∂x
− ∂f

∂z

(
∂f

∂z

)−1
∂g

∂x

B =
∂f

∂u
− ∂f

∂z

(
∂g

∂z

)−1
∂g

∂u

C =
∂h

∂x
− ∂h

∂z

(
∂g

∂z

)−1
∂g

∂x
(4)

D =
∂h

∂u
− ∂h

∂z

(
∂g

∂z

)−1
∂g

∂u

In this paper, only matrix A is addressed to analyze the
system oscillation modes. In forming system A matrix,
the model of generators is represented by the 4th order
model [17], as (5) shows.

.

δ = ωo(ω − 1)
.
ω = (Pm − Pe −D(ω − 1))/M

.

E
′

q = (Efd − E
′

q − (Xd −X
′

d)Id)/T
′

do (5)
.

E
′

d = ((Xq −X
′

q)Iq − E
′

d)/T
′

qo

Excitation system for generators is represented by the
modified IEEE type I exciter [18]. The formulae are given
in the following equations:

.

Vex1 = (Vg − Vex1)/TR
.

Vex2 = {KA[Vref + VPSS − Vex2

−KF

TF
(Efd − Vex3)]− Vex2}/TA (6)

.

Vex3 = (Efd − Vex3)/TF
.

Efd = (Vex3 − (KE + SE)Efd)/TE

PSS is used in the system to enhance the small signal
stability. The formulae are listed below:

.

V1 =
1

Tw
[−V1 −Kpss∆ω]

.

V2 =
1
T2

[−V2 + (1− T1

T2
)V1 + Kpss(1−

T1

T2
)∆ω] (7)

.
.

Vpss =
1
T4

[−Vpss + (1− T3

T4
)V2 +

T1

T2
(1− T3

T4
)V1

+Kpss
T1

T2
(1− T3

T4
)∆ω]

Based on the models above, the system A matrix will be
formed by analytical way and accurate Jacobian matrix
can be obtained. More details of these model can be found
in [17, 18, 19].

3. MODIFIED DE AND OPTIMIZATION PROBLEM
FORMULATION

In this section, the first part proposes a modified DE which
is to enhance the capability of typical one. Subsequently,
the optimization model of system damping enhancement
is detailed.

3.1 Modified DE

The proposed DE enhances the main operators of DE and
incorporate two other procedures, information exchange
and elitism.

Mutation and Crossover The initial population is gen-
erated randomly within each variable’s bounds. After ini-
tialization, the mutation procedure employs the following
equation:

x′
G+1
i = xG

opt + f1 ·
(
xG

r1 − xG
r2

)
+ f2 ·

(
xG

r3 − xG
r4

)
(8)

where xopt is the best solution achieved so far. f1, f2

are randomly selected from [0.5, 1.5]. r1, r2, r3, r4 are
randomly chosen from population and r1 6= r2 6= r3 6=
r4 6= i.

The crossover or recombination procedure employs dis-
crete method with a constant probability CR. A digit of
each vector is predefined to be recombined compulsorily.
After mutation and crossover, the newly generated vectors
build up a trial population.

Information Exchange The information exchange proce-
dure is introduced to DE algorithm to enhance the vectors
exploration. Each new vector obtained after mutation and
crossover procedures has a probability p to exchange the
information with a randomly selected vector from the
original population at each generation. Equation (9) gives
the detailed operation.

xi = [xi0, xi1, . . . , xim, . . . , xin, . . . , xi,D−1]
x′j =

[
x′j0, x

′
j1, . . . , x

′
jm, . . . , x′jn, . . . , x′i,D−1

]
⇓

x′′j =
[
x′j0, x

′
j1, . . . , xim, . . . , xin, . . . , x′j,D−1

] (9)

Here xi is a randomly picked vector from the original
population at that generation, whereas x′j is the j − th
vector of trial population, i 6= j. D is the total dimension
of the vector. Indices m and n are also randomly selected.
In this operation, the subvector

[
x′jm, . . . , x′jn

]
in x′j is

replaced by the subvector [xim, . . . , xin] in xi.

Selection and Elitism The selection operator employs
the same operation as typical DE. To keep the superior
solutions attending iterations, elitism scheme is incorpo-
rated. The best solution achieved so far will be preserved
in the population after selection. The detailed procedure
of modified DE is demonstrated in Fig. 3.

3.2 Optimization Problem Formulation

The optimization objective is to maximize the damping of
the whole system. The objective function is formulated as:

n∑
i=1

(1− ciξi) (10)

where the ξi is the damping of unique modes. ci is the
weightiness of each mode, which can be determined by the
critical extent of oscillation modes. In this paper, all the
unique modes are dealt equally. Since the uncertainties of
the objective function value, to keep all the dampings are
positive, two conditions are penalized:

1 If there are negative dampings, the weightiness of
that damping will be assigned a large constant.
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Fig. 3. The procedure of modified DE.

2 If there are zeroth dampings, the portion corre-
sponding to this mode in objective function will be
assigned a large constant.

The modified DE will be implemented to solve this opti-
mization problem. In implementation, the algorithm em-
ploys 100, 30 as generation and population size respec-
tively. The information exchange possibility is set 20%.

4. CASE STUDIES

Fig. 4. One line diagram of the New England 39-bus
System.

The new England 39-bus system is investigated to verify
the feasibility of the method. The one-line diagram of
the system is shown in Fig. 4. Among the 10 generators
the system contains, the 1th generator represents another
connected system and hence the inertia constant of it is
very high. The PSS model showing in equation (7) has
6 parameters, i.e. Kpss, Tw, T1, T2, T3, T4. In this paper,
the washout time constant Tw is taken as a constant and
hence there are totally 5 parameters for each PSS to be
tuned. The typical range of these 5 parameters is shown
in table 1 [17].

Two case studies are developed. In case I, The effect of
PSS at each generator location is studied. The parameters

Table 1. The variant ranges of PSS parameters

Range Kpss T1 T2 T3 T4

Min 0.10 0.20 0.02 0.20 0.02
Max 50 1.50 0.15 1.50 0.15

of PSS are optimized to achieve the best overall damping
condition with the particular PSS location. Since the 1th
generator indicates a neighbor system, totally 9 candidate
locations of PSS are investigated one by one. This is to
check the different impacts of PSS at different locations.
In the base case (without PSS installed), there are 8
critical local modes (associated with generator 2-4, 6-10)
plus 1 interarea mode (associated with Generator 1, well-
damped). The proposed DE is applied to tune the PSS
parameters corresponding to each of the generators as
shown in Fig. 5. Table 2, 4 summarize the simulation
results.

Fig. 5. PSS tuning procedure with proposed DE.

In table 2, the optimal tuning of PSS parameters at each
specific generator is given. Table 4 indicates the shifting of
the modes after the installation of PSS at each generator
as well as the values of objective function. The mode
whose damping is bellow 0.05 is considered as critical [19,
20]. With PSS at specific generator, after parameters
optimization, the dampings of modes are changed. In
table 4, if the mode is significantly improved (damping
is over 0.3) or the frequency corresponding to that mode
is disappear, the damping value will not be provided in
the table. From the table it is clear that although PSS
is well-recognized for damping local modes, it might have
significant impact on interarea modes as well. Also it can
be seen that the PSS installed at generator 2 and 9 has
minor influence on the 10th mode. And from the damping
value, it can be concluded that the location of PSS at
10th generator is the most effective position, where the
dampings of 4 modes are significantly improved.

It can also be seen that the PSS at 2nd, 4th, and 9th
generators damps out the local modes associated with
those generators, however, the local mode corresponding
to 5th generator appears. It indicates that the installation
of PSS at certain locations might lead to unexpected
behavior in terms of electromechanical oscillations.

In case II, to verify the effectiveness of the proposed
algorithm, the parameters of 5 PSSs are tuned in the
system. Generator 3rd, 4th, 6th, 9th and 10th are selected
as the most influential locations of PSSs. The result of
the proposed method will be compared with the standard
DE [13] and PSO [21]. The generation and population size
of algorithms are unified 200 and 50 respectively. The best
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Table 2. Optimal tuning parameters for 1 PSS at each generator

Optimal parameters Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7 Gen 8 Gen 9 Gen 10

Kpss 2.81 0.74 1.04 0.29 0.22 0.94 0.13 0.51 0.81
T1 1.15 1.50 0.48 0.20 1.50 0.72 1.50 0.40 0.76
T2 0.15 1.50 0.15 0.02 0.15 0.15 0.15 0.15 0.15
T3 1.27 0.81 0.20 0.77 0.20 0.95 0.20 0.20 0.20
T4 0.02 0.02 0.02 0.15 0.05 0.02 0.02 0.02 0.02

Table 3. Shifting of the damping of each mode and the best value of objective function

Base case Relative G2 PSS G3 PSS G4 PSS G5 PSS G6 PSS G7 PSS G8 PSS G9 PSS G10 PSS
Freq. Damp Gen Damp Damp Damp Damp Damp Damp Damp Damp Damp

0.6014 0.0738 1st 0.0881 0.0988 0.1179 0.0715 0.1312 0.1213 0.0817 0.1047 ∗∗
1.0107 0.0464 2nd ∗∗ 0.0443 ∗∗ 0.0353 0.0395 0.0395 0.0395 ∗∗ 0.0412
1.1873 0.0370 3rd 0.0427 ∗∗ 0.0367 0.0367 0.0379 0.0294 0.0367 0.0367 0.0368
1.3488 0.0368 4th 0.0370 0.0374 ∗∗ 0.0357 0.0357 0.0392 0.0369 0.0373 0.0381

∗∗ ∗∗ 5th 0.0410 ∗∗ 0.0442 ∗∗ ∗∗ ∗∗ ∗∗ 0.0399 ∗∗
1.1132 0.0356 6th ∗∗ 0.0361 0.0352 0.0322 ∗∗ 0.0542 0.0355 0.0307 0.0388
1.3931 0.0420 7th 0.0420 0.0420 0.0417 0.0420 0.0632 ∗∗ 0.0420 0.0420 0.0421
1.3809 0.0463 8th 0.0463 0.0464 0.0463 0.0463 0.0462 0.0463 0.1660 0.0466 0.0648
0.9497 0.0433 9th 0.0444 0.0446 0.0489 0.0411 0.0479 0.0467 0.0450 ∗∗ 0.0469
1.1087 0.0420 10th 0.0038 0.0020 0.0001 0.0000 0.0000 0.0002 0.0000 0.0083 ∗∗

Obj. Func. 11.11 11.48 11.32 11.51 11.46 11.01 11.52 10.95 11.15

∗∗ : mode is either significantly damped or eliminated after PSS tuning

Table 4. Comparison of Different Algorithms

Base case Relative Standard DE PSO Modified DE
Freq. Damp Generator Damp Damp Damp

0.6014 0.0738 1st 0.2519 0.1761 0.2950
1.0107 0.0464 2nd 0.0455 0.0754 0.0716
1.1873 0.0370 3rd 0.1424 0.3127 -
1.3488 0.0368 4th 0.1448 0.0314 0.1159

- - 5th 0.0640 0.0754 0.1717
1.1132 0.0356 6th - 0.1102 0.3146
1.3931 0.0420 7th 0.0974 0.0694 0.0888
1.3809 0.0463 8th 0.0472 0.0471 0.0650
0.9497 0.0433 9th - - -
1.1087 0.0420 10th - 0.0099 0.2031

Obj. Func. 10.54 11.29 10.38

Table 5. Optimal tuning parameters of 5 PSS
at specified generators

Gen 3 Gen 4 Gen 6 Gen 9 Gen 10

Kpss 0.21 0.10 0.28 1.29 0.95
T1 1.33 1.34 1.44 1.43 0.68
T2 0.15 0.15 0.15 0.15 0.15
T3 0.20 0.20 0.20 1.41 0.20
T4 0.02 0.02 0.02 0.15 0.02

results of each algorithm in multiple trials are compared
in table 4. The optimal parameters of PSSs are listed in
table 5.

In table 4, the dampings optimized by standard DE
can well damp 8 modes except for mode 2nd and 8th,
whereas the result with proposed DE can provide sufficient
dampings to all the modes of the system. PSO gives the
worst performance with 3 modes not damped.

Fig. 6 demonstrates the variation of the best, best mean,
best maximum as well as minimum standard deviation of
objective function during the iteration procedure. From
the discussion above, it shows that the proposed DE

Fig. 6. The iteration procedure of the modified DE.

Table 6. Selected operating conditions

operating points Line Outage

base case no outage
1 21-22
2 28-29
3 2-3
4 5-6
5 10-11

can give fast convergence speed as well as good global
optimization capacity.

5. VERIFICATION WITH MULTIPLE OPERATING
POINTS

In this section, the proposed DE is applied to optimize the
PSS parameters in multiple operating conditions. Here, to
check the parameters variance of PSS in different operation
conditions, 6 operating points are selected, as shown in
table 6. The selection of outage lines is based on the
assumption that the lines which are closer to generators
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and have larger flows will impact more on system stability,
and hence affect PSS parameters. To ensure the optimum
of the parameters, the best result of 10 trials for each
condition is chosen.

Fig. 7 illustrates the mean and standard deviation of the
parameters of PSS in selected 6 operating conditions. Re-
garding to parameter KPSS , it can be seen that generator
2 has the highest standard deviation while the lowest
variation appears at the 3rd generator. Large variation of
T1 and T3 is found at 2nd, 3rd, 5th and 2nd, 4th, 5th,
7th generators respectively. The variance of T2 and T4 is
relatively low at all the generators. It can be concluded
that the parameters of PSS at generator 2 has the highest
sensitivity with respect to different operating conditions.

Fig. 7. Statistics of the PSS parameter variance of each
generator for 6 operating conditions.

6. CONCLUSION

PSS is one of the most important controllers in damping
small disturbances. In this paper, the influences of PSSs
at different generators are fully investigated. The result
shows that the impact of PSS is not only limited to
damp a particular local mode, but may also significantly
improve the dampings of other local and interarea modes.
A modified DE is proposed in this paper for tuning
PSS parameters to damp oscillatory modes and verified
with standard DE and PSO. In addition, the impact of
system conditions on PSS parameters are also studied. The
result will be help in determining the most critical PSS
parameters for system dampings when system condition is
shifted.
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