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Abstract: Naismith obtained a set of empirical rules for the time required to move through
a terrain. In this paper we solve the problem of minimization the transit time between two
points on a given terrain. We give an interpretation of Naismith’s rule which leads to a very
elegant geometric construction of the optimal solution. Indeed, there is some ambiguity in
the interpretation of Naismith’s rule. We first solve the problem for a conical mountain, then
generalize for a terrain with arbitrary topography. We conclude with a discussion of the relative
merit of our variant with respect to the known solution. In particular, we show that the difference
of these interpretations amounts to less than 10% in the worst case, thus justifying the use
of this simple solution. This problem is a paradigm for navigation of autonomous vehicles in
heterogenous terrain. It may prove useful for path planning for robotic rovers as used for instance
on the surface of Mars.
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1. INTRODUCTION

Naismith’s rule allows walkers to compute the time for
their journeys. The time is given by allowing a walking
speed of 4 km/hr, but adding an extra minute for each
10m of ascent.

In 1996, N. MacKinnon posed the following problem in the
American Mathematical Monthly [5].

A conical mountain has base radius 1650m
and vertical height 520m. Points A and B
are diametrically opposite at the base of the
mountain. How should a path be constructed
between A and B on the surface of the moun-
tain which minimizes the time taken to walk
from A to B?

A solution appeared in [6]. In this paper we propose
an alternate solution, to a different interpretation of the
same problem, and show that this solution has a simpler
implementation of the optimal control. This problem has
adaptations to different terrain models. Whereas here we
shall consider only a uniform terrain but consider different
effects for up and down sloped terrain, similar effects de-
pending on the type of terrain (e.g., sand, mud or pebbles)
and or different types of vegetation are solved in a similar
way. One application of interest is in path planning for
Mars rover surface operations [3]

We point out that Naismith’s rule is a rule of thumb that
helps in the planning of a walking or hiking expedition by
calculating how long it will take to walk the route, includ-

⋆ This work was supported in part by a RIM Grant (Georgia
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ing ascents. The rule was devised by William Naismith,
a Scottish mountaineer, in 1882 [10]. The fact that great
books such as [8] do not mention the rule, adds to its
mystique and misinterpretations.

2. SETTING THE IDEAS: TRAVERSING A CONE
SHAPED MOUNTAIN

2.1 Parameter reduction

This is a typical optimal control problem, solvable with
the Pontryagin minimum principle [1]. Allowing for differ-
ences of conditioning between individuals, I shall slightly
generalize the problem: Let v be the horizontal speed and
µ the additional time required for ascent per unit vertical
distance. Thus for an ascent of dz over an elementary
distance (projected onto the horizontal plane), ds, a time
dt = ds/v + µdz is required, while the corresponding
descent will only take dt = ds/v time units. The problem
is one of minimizing elapsed time in hiking along a path
Γ,

TΓ =

∫

ascent

(

ds

v

)

+

∫

descent

(

ds

v
+ µdz

)

. (1)

Introducing the indicator function 1I(·) with 1I(u) = 1 if
u > 0 and 1I(u) = 0 for u ≤ 0, the elapsed time can be
written as

TΓ =

∫

Γ

(

ds

v
+ µ1I(dz)dz

)

(2)

2.2 Geometry and parameter reduction

We now specialize the generalized set-up for the geometry
at hand: Let the conical mountain have base radius R
and height h. For this conical mountain, it is nice to use
cylindrical coordinates (z, θ, ρ), with the top at ρ = 0.
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In these coordinates the conical surface is given by the
equation (Figure 1):

O
R

ρ
θ

z(ρ, θ)

Fig. 1. Conical mountain

z(ρ, θ) =
(

1 − ρ

R

)

h (3)

for ρ < R and 0 else. For z = z(ρ, θ), the elementary
distance (projected onto the horizontal plane) along the
path is

ds2 = dρ2 + ρ2dθ2 =

[

(

dρ

dθ

)2

+ ρ2

]

dθ2. (4)

Let
dρ

ρ dθ
= tanψ (5)

where ψ is the heading with respect to the circular path,
centered at O, i.e., the complement of the angle between
the trajectory and the radius vector (Figure 2).
Denote for simplicity

ρdθ

ρ

Odρ

ψ

Fig. 2. Heading geometry

u =
ρ

R
tanψ =

dρ

R dθ
(6)

the ‘control’.

From (3), we get zθ = 0 and zρ = − h
R

. Hence

dz = − h

R
dρ = − h

R

dρ

dθ
dθ = −hu dθ. (7)

Note that u < 0 and u > 0 correspond respectively with
ascent and descent. Consequently, using (4),(6) and (7) in
(2), the elapsed time along a path Γ is equal to

TΓ =
1

v

∫

Γ

(

√

R2u2 + ρ2 − µvh1I(−u)u
)

dθ (8)

Introducing the single dimensionless parameter

µ0 =
µvh

R
, (9)

and normalizing by letting ρ = Rr, the problem reduces
to the minimization of the dimensionless quantity

τΓ =

∫

Γ

(

√

u2 + r2 − µ01I(−u)u
)

dθ (10)

along a path Γ with dynamical constraint

dr

dθ
= u (11)

and specified initial and final coordinates.
Note that he minimum time is retrieved from τ by

TΓ = τΓ
R

v
. (12)

2.3 Characterization of the optimal path

The Hamiltonian for the above problem (10)-(11) is ob-
tained by adjoining the constraint (11) with the Lagrange
multiplier (or co-state) function λ(θ) to the integrand in
(10)

H =
√

u2 + r2 + [λ− µ01I(−u)]u. (13)

The Pontryagin minimum principle postulates that the
optimal solution is obtained by locally (i.e. for each fixed
r and λ) minimizing this Hamiltonian with respect to
the control u. As function of u, the Hamiltonian has the
asymptotes H+(u) = (λ + 1)u for u → ∞ and H−(u) =
(λ−µ0−1)u for u→ −∞. Clearly, a minimum of H exists
if and only if

{

λ− µ0 − 1 < 0
λ+ 1 > 0,

(14)

or,
−1 < λ < µ+ 1 (15)

Note also that the derivative of the Hamiltonian with
respect to u is

Hu =
u√

u2 + r2
+ λ for u > 0 (16)

Hu =
u√

u2 + r2
+ λ− µ0 for u < 0. (17)

(18)

Consider now the following three cases:
Case 1: λ ≤ 0. Then also λ− µ0 < 0. For u < 0, Hu < 0,
while Hu = 0 for

u√
u2 + r2

= −λ > 0. (19)

Hence a unique minimum of H exists in u ≥ 0 if also
λ ≥ −1 and is attained for

u∗ = − λr√
1 − λ2

≥ 0, (20)

(the superscript ∗ denotes optimality) at which

H∗ = r
√

1 − λ2. (21)

Case 2: λ > µ0 > 0. Since now λ − µ0 > 0, for u > 0, it
follows that Hu > 0, and a unique minimum of H exists
in u ≤ 0 if also λ− µ0 < 1. It is determined by

u√
u2 + r2

= −λ+ µ0 < 0. (22)

This gives

u∗ =
(λ− µ0)r

√

1 − (λ− µ0)2
≤ 0, (23)

at which
H∗ = r

√

1 − (λ− µ0)2. (24)
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Case 3: 0 < λ < µ0 > 0. For u > 0, we get Hu > 0, and
for u < 0, Hu < 0. Hence the unique minimizer of H is
u∗ = 0. With this:

H∗ = r. (25)

Dynamically speaking, what happens in these three cases?
The co-state satisfies (using the dot-notation for the deriv-
ative with respect to θ):

λ̇=−Hr

=− r√
u2 + r2

=− 1
√

1 + u2

r2

. (26)

In case 1, (i.e. λ(θ0) ≤ 0) this yields

λ̇ = −
√

1 − λ2. (27)

using (20). The above differential equation in λ can be
readily integrated

dθ = −d arcsinλ(θ), (28)

to yield

λ(θ) = λ(θ0) cos(θ − θ0) −
√

1 − λ(θ0)2 sin(θ − θ0). (29)

Hence λ(θ) is periodic with period 2π. Eventually, λ(θ)
crosses the zero level. This occurs for θ1 = θ0 +

arctan λ(θ0)√
1−λ(θ0)2

= θ0 + arcsinλ(θ0) < θ0 + π
2 . At that

time the above dynamic equation is no longer valid.

Likewise, if λ(θ0) > µ0, then (23) in (26) yields

dθ = −d arcsin(λ(θ) − µ0) (30)

and integrating:

λ(θ) = µ0 + (λ(θ0) − µ0) cos(θ − θ0)+

−
√

1 − (λ(θ0) − µ0)2 sin(θ − θ0). (31)

Thus also in this case is λ(θ) periodic with period 2π.
Eventually, λ(θ) crosses the level µ0, (for some θ′1 = θ0 +

arctan λ(θ0)−µ0√
1−(λ(θ0)−µ0)2

= θ0 +arcsin(λ(θ0)−µ0) < θ0 + π
2 ).

Finally the third case 0 < λ(θ0) < µ0, which yields u∗ = 0,
leads to

λ̇ = −1, (32)

so that eventually λ(θ) crosses the zero level (at θ′′1 = θ0 +
λ(θ0)).

We conclude thus that if λ(θ0) > µ0, u
∗ remains nega-

tive (i.e., the path is ascending) until some θ1 = θ0 +
arcsin(λ(θ0) − µ0) < θ0 + π

2 . At this point λ(θ1) = µ0,
so that u∗ = 0, i.e., the path follows a level circle, a
contouring arc, while λ must decrease further, eventually
reaching 0 (when θ = θ2). At that point λ(θ2) = 0 and
u∗ > 0, making the path descending. The path remains
descending for at most an angular increase of θ3 − θ2 =
arcsinλ(θ2) = π. Hence, at most one ascent and descent
can occur along the optimal path.

Furthermore, the ascending and descending paths are such
that their projection onto the horizontal plane is a straight

line. This is easily seen as follows: Since he Hamiltonian is
not an explicit function of θ, H must be a constant of the
motion. In terms of this constant H we get from (20) and
(21) upon elimination of λ

u = r

√

r2

H2
− 1. (33)

Similarly, (23) and (24) yield

u = −r
√

r2

H2
− 1. (34)

With the state equation (11), this leads to the equation for
the descending and ascending parts in polar coordinates

ṙ = ±r
√

r2

H2
− 1 (35)

with + for the descending and − for ascending parts
respectively. Integrating, yields

θ − θ0 = ∓
[

arcsin
H
r

− arcsin
H
r0

]

, (36)

from which after some inversions we get respectively

r =
r0

cos(θ − θ0) ∓
√

r2

0

H2 − 1 sin(θ − θ0)

. (37)

These are the equations of two straight lines through the
point (r0, θ0) in polar coordinates.

At this point we reach the conclusion that the optimal path
consists of an ascent with fixed bearing (the projection on
the horizontal plane is a straight line), a contour at fixed
level, or equivalently fixed radius, and a descent, again
with fixed bearing.

2.4 Optimization as a parameter optimization problem

Based on the conclusion reached at the end of the previous
section, consider a potentially optimal path APQB in
Figure 3. Let the contour part of the path have radius
r. The performance index (10), evaluated along this path
is AP + PQ + QB + µ0(1 − r).

O

r

A B

R

Q

P

α

ψ0

Fig. 3. Potential optimal path

Since r is fixed, it is immediately clear that an optimal
path will be symmetrical about the line at θ = π

2 . Hence
it suffices to optimize the path APR. We get from the
geometry,

AP =
√

r2 − 2r cos(α) + 1 (38)

PR =
(π

2
− α

)

r (39)
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Thus minimizing AP + PR or

min
α

[

√

r2 − 2r cos(α) + 1 +
(π

2
− α

)

r
]

(40)

gives the solution
cosα = r. (41)

This implies that AP =
√

1 − r2 and that the line AP is
tangent to the circle with radius r, or equivalently APO
is a right triangle, and α = ψ0, the initial heading with
respect to a circular path (Figure 4).

ψ0

A O

R

P

r

α = ψ0

Fig. 4. Circular path

At this point we narrowed down all potentially optimal
paths to a one-parameter set, parameterized by r. A final
optimization over r is required to yield the minimum time
path. With r = cosα, the performance index (10) is

τ = 2(AP + PR) + µ0(1 − r)

= 2
√

1 − r2 + [π − 2 arccos r]r + µ0(1 − r). (42)

This is minimal for

r∗ = sin
µ0

2
. (43)

The value of this local minimum is

τ∗(µ0) = µ0 + 2 cos
µ0

2
. (44)

Comparing to the circum navigation time (contouring the
mountain at level 0), τCN = π, we see that (44) fails to
give the global optimum solution if µ0 > π. Thus the global
solution is:

r∗(µ0) =

{

sin
µ0

2
if µ0 < π

1 else
(45)

τ∗(µ0) =

{

µ0 + cos(
µ0

2
) if µ0 < π

π else
(46)

ψ∗(µ0) =

{ π

2
−
µ0

2
if µ0 < π

0 else
(47)

(48)

These functions are plotted in Figures 5, 6 and 7.

The solution for the specified numerical values is:

µ0 =
µvh

R
=

1
10 · 4000

60 · 520

1650
=

208

99
= 2.10101010 . . .

τ∗(µ0) = 3.095,

and thus by (12)

T ∗ = τ∗
R

v
= 76.608 min

The angle of departure with respect to the level line is

ψ∗

0 =
π

2
− µ0

2
= .52029 rad = 29.81◦.

The mountain needs to be ascended to a height of

z =
[

1 − sin(
µ0

2
)
]

h = 68.809 m.

Remark: Obviously there are two symmetrical solutions,
one passing the mountain top on the right, one passing
on the left. While mathematically equivalent, in case a
Tibetan Buddhist mani stone is situated near the summit,
according to Buddhist protocol, the mani wall should be
passed on the left.

3. GENERAL SOLUTION

In my previous solution, based on opimal control theory,
it was found that the optimal trajectory consisted of a
straight line, ascending to a height h, then contouring at
that level, followed by a descent, again in straight line (i.e.,
as projected onto the horizontal). The optimum height h
depends on the relative times required to cover a horizontal
distance and to ascend. (See my earlier solution). Here I
give a simple geometric argument to show optimality in
the case of a (locally) convex mountain (or a concave pit).
The given problem is a special case of this.

Consider thus a mountain and two points A and B such
that in a convex domain D, containing these points the
level sets, restricted to D, are convex. (Figure 5). Assume

B

A

P

Q

h1

P1

Fig. 5. Convex level sets

first that A and B are at the same level, h0. Then the op-
timal solution is contained in the shaded domain bounded
by AB and the level line through A (and B). Indeed,
any path descending to a lower level must cover a larger
horizontal distance than the path at fixed level, hence
increase the integral

∫

ds
v

. It must also require a nonzero
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time for ascending from its lowest level to B. Also any path
to the right of the straight line path AB, requires time for
an initial ascent, and covers also more horizontal distance.

Now let us assume that the optimal path ascends to level
h1. Let P be point where the level is visited the first time,
and Q the point where it is visted for the last time. The
shortest time path from A to P is the straight line. The

required time is AP
v

+ µ(h1 − h0). Likewise, the shortest
path from Q to B is along the straight line QB, requiring

a time QB
v

.
Next, the optimal path P to Q is along the level line at h1,
since a path going to the right would contradict that h1

is the highest level (by convexity), while a path to the left
would again cover a larger horizontal distance and require
a final ascent back to Q, thus requiring more time also.

Finally, it is easily seen that P and Q must respectively be
the points of tangency of the tangents to the level line at
h1, respectively passing through A and B. Indeed, for any
P1 closer to A than P, the horizontal distance traversed

to reach P is AP1 +
∫ P

P1

ds, which exceeds the distance for

the direct path: AP +
∫ P

P1

ds.

The optimal level h1 is determined by a parameter opti-
mization, and depends on the shape of the level line and
the parameters v and µ.

If A and B are at different levels, with hA < hB, then
a similar reasoning shows that the optimal path must be
contained in the domain bounded by AB, the level line at
hB, and AR, where AR is tangent to the level line at hB

(Figure 6). An optimal maximal height h1 > hB can be

B

A

R

P

Q h1

Fig. 6. h1 > hB

determined, for which the optimal path would be APQB,
with AP and QB tangent to the level line at height h1.

If hA > hB, then the optimal path must be inside the
domain ASB where BS is tangent to the level line at hA.
Again there is an optimal h1 > hA and the corresponding
optimal path is APQB, with AP and BQ tangent to the
level line at h1 (Figure 3).

B

A

P

Q
S

h1

Fig. 7. h1 > hA

For a concave pit, the arguments are similar.

4. DISCUSSION

For a sloped terrain, one may consider a ’walking speed’ of
4km/hr as measured on the slope (and not projected onto
the horizontal as was assumed in the above solution). This
leads to a different solution from the one given in [6]. This
effectively adds an additional time due to walking along
the longer incline for the uphill. For this interpretation
the performance index (1)is replaced by

TΓ =

∫

ascent

(√
ds2 + dz2

v

)

+

+

∫

descent

(√
ds2 + dz2

v
+ µdz

)

. (49)

As reported, the corresponding solution may be found by
unrolling the cone onto the plane. Instead, the interpreta-
tion we have given to problem lets one simply look at the
projection as given on a topographical map. We feel that
this information is simpler to use. Indeed, the necessary
time can easily be estimated in the general case from the
information provided on a topographic map. While the
cone can be unrolled, and the optimal inferred from it
graphically, this surely will no longer hold for the case of a
dome shaped mountain, which cannot be flattened. On the
other hand, the presented solution in Section 3, remains
simple to implement.

If one compares the solution to both problems (1) and
(49), for the cone shaped mountain then the solution in
[6] gives an optimal time of 76.71037 minutes, and this
path reaches an altitude of 62.72045 m. The solution given
in Section 2 gives an optimal time of 76.608 min and
the altitude reached is 68.809 m. How different are these
two interpretations of the optimization? Assuming that
‘walking’ changes to ‘rockclimbing’ once the slope is such
that the person standing straight on his feet touches the
slope in front with the outstretched hand, it follows that
for a typical person (me) the corresponding slope angle
is about α = 69.878 degree (See Figure 8). The climb
of a slope at that angle for a horizontal distance of 100
m requires in MacKinnon’s interpretation of Naismith’s
rule a time tM = 100

cos α
60

4000 + 100 tanα 1
10 = 31.65 minutes.
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α

Fig. 8. Limit: walking - climbing

With the model of Section 2, this time is t = 100 60
4000 +

100 tanα 1
10 = 28.79 minutes. In this extreme case the two

estimates differ by less than 10%.

Not much has actually been published about Naismith’s
rule, and therefore it is difficult to guess which interpre-
tation Naismith had in mind. Somewhat amusing exer-
cises in modeling are given in [2, 9]. The first seems to
incline towards MacKinnon’s interpretation, the second is
ambiguous. Some websites [11, 12] interpret the rules. The
second of these corroborates our interpretation, assuming
that a walker can maintain a speed of 5 km/hr on level
ground, but that 1 hour needs to be added for every 600
meter of ascent. Either way, if one optimizes the path for
climbing to the top of a conical mountain in minimum
time, the path is the same: straight up. Well seasoned
climbers know very well that this may not be the path that
minimizes metabolic effort [7]. An optimal slope exists for
the latter, so that one rather zigzags up towards the top
[4]. Let us close in citing one of the authors’s comments,
namely that Naismith was an optimist and it is proposed
to add 50 % to his estimates.
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