
ARTIST:

A Distributed Remote Control Lab

Michele Basso ∗ Marco Romagnoli ∗ Giacomo Innocenti ∗

∗ Dipartimento di Sistemi e Informatica, Università di Firenze
via S. Marta 3, I-50139 Firenze (Italy)

basso@dsi.unifi.it

Abstract: The aim of the paper is to present ARTIST, the remote control laboratory at
University of Florence. Students can remotely interact with a number of physical processes
exploiting predefined controllers or uploading their own. The main features of the lab are: a
modular approach for the realization of different control tasks for the same process, which can
be executed on different lab PCs and communicate over a network; a web-service application
which exploits a database to facilitate the registration of users, processes and experiments of
the laboratory. ARTIST website can be found at http://artist.dsi.unifi.it.

1. INTRODUCTION

In recent years, the fast development of web-based tech-
nologies has led to the new concept of remote or virtual
labs, i.e. laboratory resources that can be accessed at
any time from any place through an internet connection,
providing the user of an effective way to perform exper-
iments remotely, while observing the results on his/her
computer, locally. Compared to standard lab facilities, a
remote lab provides many new capabilities, although the
implementation can be rather challenging as well as the
lab administration.

In control education, some of the available remote labo-
ratories use Java programming language to perform sim-
ulation or to interact with real plants, focusing mainly on
the remote laboratory management [Röhrig and Jochheim,
1999, Hua and Ganz, 2003, Rasche et al., 2004] or pro-
viding a framework to deal with multiple accesses and
to assure consistence. Other interesting examples of this
approach can be found in [Casini et al., 2004, Schmid,
1998, Henry, 2007, Hahn and Spong, 2000]. Most of these
labs make use of simple interfaces that can be run in a web
browser allowing the user to choose the experiment to run,
define the reference signal and — in real time during the
experiment — modify some controller parameters, observe
the output signal in a window and download/archive data
for post-processing and analysis.

In this paper we present ARTIST (A Real Time Interactive
Simulink-based Telelab), the remote control laboratory at
Dipartimento di Sistemi e Informatica of the University of
Florence. Its core architecture is mainly based on open
source software such as RTAI Linux and faces require-
ments arising from two distinct point of views: students
and lab administrators. The underline framework is based
on the RTAI-XML project [Basso et al., 2005], a server
component which provides a bridge between a true real
time operating system, required to run the most demand-
ing control experiments, and the world of web-services,
allowing an easier interaction with a web-based remote
control laboratory.

The paper is organized as follows. In Section 2 we intro-
duce ARTIST. In Section 3 we illustrate the main features
of the lab from both students and administrators point of
views. A detailed description of the underline architecture
will be given in Section 4. Finally, in Section 5 some
concluding remarks will be given.

2. ARTIST OVERVIEW

In the last decade, the increase in power and speed of
personal computers has made it convenient to directly im-
plement (even complex) control algorithms on a standard
PC hardware, equipped with standard DAQ boards and
a real time multitasking operating system (RTOS), thus
eliminating the need of purchasing dedicated hardware.
On the other side it is also crucial to provide an easy
and intuitive way for programming complex tasks on a
modern RTOS. It is important to bring together design of
control algorithms and source code generation, exploiting
well-known tools for automatic software code generation,
such as, for instance, Real Time Workshop (RTW) [Bucher
and Balemi, 2006, Yao et al., 2000], fully integrated with
the Matlab/Simulink environment [Dixon et al., 2001,
The MathWorks, 2007], or Scilab/Scicos and its related
automatic code generator Codegen (see [INRIA, 2007]),
the latter being available as free software. The remote
control lab ARTIST makes use of the above CACSD tools
providing several features that are not commonly available
in other remote labs. More specifically, students are able
to design their control algorithms as Simulink (or Scicos)
schemes, upload them on the remote lab through a web
interface and run in a distributed real-time network of
lab PCs. Moreover, all the files related to any specific
experiment for a process remain available for each student
for subsequent use.

In Fig.1 a simplified schematic of the architecture is
reported. The physical processes interact with a real-time
distributed domain (RTDOMAIN), where a number of
control tasks (TARGETs) can be executed on different
machines communicating over a LAN. Every control task
running in the domain can be separated in software

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13646 10.3182/20080706-5-KR-1001.3788

INTERNET

TARGET

T2

LINK

TARGET

T3
PROCESS

P2

TARGET

T1P1
PROCESS

CLIENT

C2

CLIENT

C1RTAIXML

R1

RTAIXML

R2

RTMANAGER

RTM

WEB SERVICE

TECHNOLOGY

DB

RTDOMAIN

Fig. 1. Architecture remote control laboratory scheme (functional diagram).

Fig. 2. Controller composed by two modules and its links.

modules. Every module is automatically generated by
CACSD tools available from the RTAILab project [Bucher
and Balemi, 2006], that allows to create real time C
code from a block diagram model. Clients can manage an
experiment (i.e. a process controlled by its target) from
outside the real-time domain through jRTAILab[Basso
et al., 2005] – a generic multi platform Java application
which is embedded in a web page and communicates with
the domain via a web service provided by the RTAI-XML
server component.

The laboratory framework supports the development of
real time distributed control systems where different tasks
of the same controller can be executed on different machine
connected among a real time network. Extending the
module concept (see Section 4.3), it is possible to create
real time distributed tasks. A module is a part of the
controller task that runs on a single machine. Designing
a controller through modules it is possible to deploy every
module on different machines exploiting every peculiarity
of the available hardware. For example, if a powerful
hardware is available in the laboratory but it is not
equipped with any acquisition board, one can divide a
controller in a processing module to be executed on such
a machine and an acquisition module deployed on another
machine. Is is also possible to divide a controller in
modules by sampling time, grouping low sampling time
tasks to be executed on “slow” machines and fast sampling
time modules deployed on more powerful hardware. Each
module is connected to the other components through
links (see Section 3.3) to exchange data and influence
the execution of the other modules blocking them until
some conditions are fulfilled. This approach gives the
opportunity to create a module set to be employed in many
controller tasks as shown in Section 4.3.

3. HOW DOES IT WORK?

Before going into the details of ARTIST lab it is necessary
to define:

• A process is the physical plant to be controlled.
• A module is a single controller task and all the related

information including the real time executable.
• An experiment is a set of modules related to the same

process.
• A link is a connection between two modules (see

Section 3.3 for details).

3.1 Students

In order to perform their experiments students must carry
out the following steps:

(1) connect to http://artist.dsi.unifi.it and access the lab
with the provided username and password;

(2) choose a lab process and one of to two classes of
experiments:
• start an experiment using a predefined controller;
• edit an experiment by designing a new controller.

By choosing the second option the next points will
show how to create the controller and test it within
the remote lab.

(3) the selected process is presented together with the
necessary documents and information (pdf and/or
web links) to obtain a mathematical model of the
plant. Students must create the controller based on
the information provided. At the present time, the
remote lab accepts Simulink schemes, whereas Scicos
models will be shortly available.

(4) within the remote lab, each module can be run
on a different machine. Students create their own
modules inside an experiment exploiting the web tools
provided by the lab. Each module is composed by
• a Simulink model, representing a controller task;
• an optional data file, that contains the necessary

variables to be loaded before the model is com-
piled;

• links to other modules in the same experiment
for inter-task communication.

(5) once uploaded, the controller scheme is automati-
cally analyzed in order to search for inport/outport
Simulink blocks that represent the links to the other
modules.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13647

Fig. 3. Web tool to create links between modules.

(6) student need to define through a specific interface how
the modules are linked together before starting the
compilation of the executables.

(7) when all the executables involved in the experiment
are available it is possible to:
(a) click on the “connect” button: the lab checks the

status of the experiment;
(b) click on “setup experiment”: the lab starts each

real time executable on the selected machine
and setup the rtaixml server to accept external
connections (see Section 4 for more details);

(c) start jRtaiLab to interact with the experiment
viewing signals and changing controller parame-
ters on-line.

These steps represent the standard way to perform an
experiment from scratch. The web interface has been
created to be as simple as possible and let students
perform their experiment on real time machine without
the difficulties that normally arise when dealing with real
time systems.

3.2 Administrator

The main aim of the laboratory administrator is to manage
and maintain the remote laboratory. Main tasks are:

• setup the experiments.
• check the safety and the correct use of the remote lab.

As far as the former task is concerned the remote lab
provides a set of tools to publish experiments on the web.
Two categories are available:

(1) “View category”, this category create a full public
experiment. Students do not need to create any
controller, but can start the experiment exploiting the
default controller and change on-line the parameters
of the controller. This category is useful for students
at the beginning of a course in control systems (i.e.,
controllers can be as simple as a PID).

(2) “Control category”, this experiment category pro-
vides the opportunity to test any kind of controller
(student specific) on the physical processes. The lab
administrator creates (via an administrator web in-
terface) a stack of modules based on a level priority.
Each element of the stack is a module which can be
public or private. In the first case students have access
to the model and data files of the module, otherwise
the module is invisible and only its links toward the
student controller are available.

internet

T1−R1

T2−T3

R2

C1

C2

P1

P2

RTM

Fig. 4. real time domain: Hardware diagram.

In order to understand the basic idea behind the proposed
“Control category”, let us consider a common scenario
for a generic remote lab where it is not considered as a
best practice to give direct access to the lab hardware
(usually for safety reasons). Therefore, a possible solution
is to provide for each process: (i) a low level software
component that masks the hardware layer; (ii) a super-
visor that monitors the experiments and prevents unsafe
conditions. In ARTIST it is quite simple to realize this
control architecture. The lab administrator needs to create
two private modules, one for the low level hardware layer
(DAQ module) and another for the supervisor (Supervisor
module). Then, the two modules are linked and grouped
in an experiment of the Control category, with the re-
quired signals available through inports/outports toward
the student controller. At this time a new experiment is
available to the students, they can interact and control
the underlying physical process as if they were directly
connected to the process, but actually they are sending the
control data and reading the measured sensors from the
Supervisor module that masks the underlying structure
preventing damages to the process.

3.3 Modules links

Module links represent the way modules can communicate
among each other. In a Simulink model, a link is repre-
sented by an inport block (down-link) or an outport block
(up-link) whereas inside the real time domain these are
translated into RTAI mailboxes (read or write). If a stu-
dent requires to split his/her controller into two modules
he/she needs to create two Simulink files as shown in Fig.2.
In this example the idea is to execute Controller A on PC
A and Controller B on PC B, Controller A needs to send
data to Controller B (blue inport and outport blocks) while
it receives data from Controller B through red inport and
outports blocks. Within the lab engine, to correctly create
the real-time executables it is necessary to preliminarly
“link” such blocks through the tool provided by the web
interface as shown in Fig.3. The green input and output
blocks in ControllerB are used to send and receive data
from the process and they have to be linked with blocks
provided by the experiment.

4. AN INTEGRATED AND DISTRIBUTED REAL
TIME FRAMEWORK

In this section we will go deeper into the details of the
hardware and software architecture of the remote lab.
ARTIST is based on an extended version of RTAI-XML,
an integrated framework whose conceptual and functional
diagram is shown in Fig.1, whereas Fig.4 maps its basic
actors on hardware. Each physical process P{n} is inter-
faced with a Hard Real Time (HRT) control task T {n}

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13648

(the target), situated inside the Real Time Domain. In
general, a target can be generated using Rapid Control
Prototyping (RCP) based on RTAI-Lab code generator, or
implemented directly using the Application Programming
Interfaces (API) [DIAPM, 2007] of the underlying real
time operating system (Section 4.1). These components
represent the core of the control system and they are
autonomous during the execution phase, although they
require additional software for remote monitoring and
managing purposes. This job is accomplished by soft real
time actors R{n} (rtaixml servers), automatically inserted
in the domain by the framework, collecting information
from the targets and dispatching such information over
the network through a web services approach. This solu-
tion completely divides data processing from information
representation.

The rtaixml server manages single user↔target interaction
providing an interface to connect/disconnect the target
from the user and to change, if required, the target
parameters. Using XML to communicate over HTTP, one
external client C{n} can operate on the target using
a web services approach, obtaining information about
the selected target and changing its status using remote
procedure calls.

The whole real time domain is managed by a soft real time
process RTM (RT Manager) that receives the connection
requests from the external client C{n} and provides the
right information to interact with the target through the
rtaixml server R{n}. RTM provides functions useful to
manage and check the RT domain.

The following subsections will show some technical details
of the proposed architecture.

TARGET

T2

RTAIXML

R2
CLIENT

C2
MBX

net_rpc

XMLRPC

HTTP

MBX

net_rpc

MBX

net_rpc

PROCESS

P2

TARGET

T3

RTMANAGER

RTM

XMLRPC

XMLRPC

Fig. 5. Advanced client-server architecture with protocol
specification.

4.1 The real time guarantee

A major requirement in implementing digital control sys-
tems is assuring determinism in the execution time. This
aspect, often neglected in the design step, needs to focus
also on timing constraints by choosing a suitable hard-
ware/software platform. Since our main goal is to provide a
reliable remote laboratory based on a real time framework,
we adopted a solution based on a standard PC running
a fully featured operating system with real time capabil-
ities. A Real Time Operating System (RTOS) provides
programming interfaces allowing to meet process deadlines
generally (Soft Real Time – SRT) or deterministically
(HRT).

In particular, our lab platform is based on the open
source operating system Linux running a kernel patched
using RTAI extension. RTAI has a UniProcessor (UP)
specific scheduler and two for MultiProcessors (MP), in

which case it is possible to choose between a Symmetric
MultiProcessor (SMP) and a MultiUniProcessor (MUP)
scheduler.

Server

RTAI−XML Client App

 (Host)

XML/HTTP/TCP
port XML

TCP
port Socket

Fig. 6. Details of the client-server interaction.

4.2 The RTAI-XML workflow

In order to understand what happens on the backstage
of the remote lab when a student works on it, it is
necessary to detail the extended RTAI-XML architecture
implemented in the remote laboratory.

The first step toward control system implementation is the
simulation of the controlled plant. This requires design-
ing an appropriate Simulink model using blocks from the
standard built-in libraries, including the detailed model
of the plant. Using this scheme the designer can simulate
different control strategies and algorithms, selecting the
solution that fits better the required specifications. In
order to convert the scheme into a real time target, the au-
tomatic C-code generation based on Real-Time Workshop
(for Simulink) is exploited. The student must isolate the
controller from the model of the plant inserting the inport
Simulink blocks instead of the sensor measurements and
the outport blocks instead of the controller outputs. When
the model is analyzed by the remote lab engine, inport
and ouport blocks are searched within the scheme and the
necessary module links are created as shown in Fig.3. Once
the link operation is terminated and the student asks for
the generation of the real time executable, the following
actions are performed:

(1) the model and data files are downloaded by RTM

from the DataBase (DB) if the DB version is newer
than the local one;

(2) the model is checked and adjusted to fit the require-
ments of the RTAI-Lab code generation project;

(3) some model scheme modifications are also carried out,
such as:
• inport and outport blocks are substituted with

RTAI mailboxes. In particular the module links
provide the necessary information to substitute
each inport or outport block with the corre-
sponding RTAI mailbox (read or write MBX).
Therefore, exploiting RTAI mailboxes it is possi-
ble to transform Simulink models communicating
through inport and outport blocks with other real
time executables exchanging data through real
time mailboxes;

• Simulink scopes are substituted with RTAI scope
in order to remotely monitor the scheme signals.

(4) the data file is loaded and the model is compiled by
RTW that exploits RTAI-Lab to generate a real time
executable for Linux RTAI;

(5) the real time executable is stored in the database
ready to be run as soon as the student requests to
start the experiment.

The execution phase starts when the student presses the
“Setup Experiment” button of the web interface. This

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13649

phase is operated by RT Manager, which is in charge of
running specific target upon client request. Indeed, RTM

performs the following actions:

• locates on the DB all the modules composing the
requested experiment;

• checks for resources availability (process and related
modules);

• starts each target T {n} on the right machine as
configured in the module properties;

• executes the rtaixml server R{n} dedicated to the
client-target communication;

• updates the DB information to keep track of the
execution.

In the context of a real time distributed framework, the
communication among actors (see Fig.5) is one of the
crucial features which deserves special attentions. Since
the introduction of web services there have been con-
flicting positions concerning advantages and disadvantages
of applying such a technology to real time applications
[Strothman, 2002]. The main advantage can be summa-
rized in the increase of interoperability among different
platforms, removing the restrictions due to the hardware
limits. The disadvantage is generally concerned with the
overhead present in data transmission due to XML and
HTTP which are sent over the network, increasing the
required bandwidth without increasing the delivered infor-
mation. For this reason, web services are often not suited
to communicate the amount of data an application might
require in a real time domain.

RTAI-XML tackles the latter problem exploiting two sep-
arate communication levels as depicted in Fig.6. At the
first level, when the client (C{n}) request involves gen-
eral information about the target (T {n}) state as, for
instance, retrieving the signal and/or parameter structure,
the server R{n} adopts a web services approach, com-
municating via XML/HTTP/TCP. Conversely, if a high
data rate is involved, rtaixml server switches to the next
communication level, sending raw data directly over TCP,
such that the overhead is reduced and the transmission is
optimized for the available bandwidth.

The solution adopted for communication between client
C{n} and rtaixml R{n} is inherently soft real time,
both at the network (i.e. TCP/IP and ethernet protocols)
and the software (data buffering and asynchronous calls)
levels. Therefore, a completely different communication
technology is used to exchange real time data among
targets. RTAI is a standard POSIX operating system
and offers the needed communication tools like mailboxes,
FIFOs and semaphores among processes running on the
same machine and extends such tools in a remote way
with the net rpc layer, built on top of RTnet hard real
time network driver [RTN, 2007].

On the external side, the basic features of a web service
approach are provided. Such an architecture is completely
independent from the hardware outside the real time
domain. At the same time it allows to communicate and
interact between generic external applications and the real
time domain.

4.3 Modular and distributed architecture

In a multi-tasking real time environment the operating
system provides standard Inter-Process Communication
(IPC) tools between tasks. Our framework exploits com-
munication channels offered by the standard POSIX in
terms of mailboxes where signals can be directly ac-
cessed for read/write operations. Data can therefore be
exchanged allowing the integration of real time tasks
generated by Matlab/Simulink with tasks generated by
Scilab/Scicos. Such an approach allows to easily divide
problems into distinct targets grouped into RT packages,
implementing complex algorithms more efficiently. Fig.7
shows different scenarios and provides useful hints on how
to model a controller structure within ARTIST:

• single target : the standard approach in a simple
control system is just to have one target interacting
both with the process and with the client through
rtaixml server (see Fig.7a);

• hardware–software: often it is natural to separate
hardware-related tasks (data acquisition and normal-
ization) from the control logic (see Fig.7b). This ap-
proach allows both for hardware independence (i.e.
boards change after failure) and software abstraction
(mainly in order to test different algorithms without
the need to modify the underlying structure).

• reader–writer : working with a networked and dis-
tributed framework, it could be interesting to have
one client enabled to completely manage the process
(with full permissions to modify system parameters
and target status), but maintaining the possibility
for lighter clients to only monitor specific real time
signals. This approach can be exploited by the reader–
writer package, as shown in Fig.7c.

• supervisor–control : this structure is mandatory for
achieving supervisory control, that is the controller
action is filtered by the supervisor module which
monitors the process state and switches the controller
output on/off accordingly (see Fig.7d).

The above examples stress the attention on the need for
a correct target (module) dependency management within
a package (experiment). This feature is implemented in
ARTIST via suitable module links (see Section 3.3) and
exploiting a module hierarchy: each module can be allo-
cated to a specific level which allows the definition of an
execution order among modules.

It is important to remark that an experiment can be
executed on a cluster of real time machines by means
of modules separation and communication links. This
feature allows to exploit the available hardware taking
into account hardware and/or architectural constraints.
For example, if a powerful PC is available in the domain
but it is not equipped with any acquisition board, one can
divide a controller in a processing module to be executed
on such a machine and an acquisition module deployed on
another machine.

5. CONCLUSIONS

Laboratory experiences in control systems education are
an important issue in students formation. ARTIST, the re-
mote lab at the University of Florence offers the possibility

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13650

TARGET

CONTROLLER
PROCESS RTAIXML

TARGET

DAQ − HW

TARGET

"SW"

RTAIXML

R2

MBX

PROCESS

(a) (b)

PROCESS
TARGET

CONTROLLER

TARGET

OBSERVER

RTAIXML

WRITER

RTAIXML

READER

MBX

RTAIXML

R2

MBX

PROCESS
TARGET

SUPERVISOR

TARGET

CONTROLLER

(c) (d)

Fig. 7. Scenarios: (a) standard approach, (b) hardware–software, (c) supervisor–control, (d) reader–writer.

to operate with real plants via an internet connection. Stu-
dents can design their control algorithms within a CACSD
software environment and connect to the real processes in
an easy way. The use of Simulink, in both standalone sim-
ulations and real experiments, permits students to speed
up their learning curve. Laboratory architecture assures
real time control performance and distributed location of
software/hardware.

REFERENCES

Rtnet, hard real-time networking for linux/rtai. [Online]
http://www.rts.uni-hannover.de/rtnet, 2007.

M. Basso, R. Bucher, M. Romagnoli, and M. Vassalli.
Real-time control with linux: A web services approach.
In IEEE Conference on Decision and Control and Eu-
ropean Control Conference, pages 2733–2738, 2005.

R. Bucher and S. Balemi. Rapid controller prototyping
with matlab/simulink and linux. Control Engineering
Practice, 14(2):185–192, 2006.

M. Casini, D. Pratichizzo, and A. Vicino. The automatic
control telelab: A web-based technology for distance
learning. IEEE Control Systems Magazine, 24(3):36–44,
2004.

DIAPM. RTAI, Real Time Application Interface. 2007.
W. E. Dixon, D. M. Dawson, B. T. Costic, and M. S.

de Queiroz. Towards the standardization of a matlab-
based control systems laboratory experience for under-
graduate students. In IEEE American Control Confer-
ence, pages 1162–1166, 2001.

H. H. Hahn and M. W. Spong. Remote laboratories for
control education. In IEEE Conference on Decision and
Control, pages 895–900, 2000.

J. Henry. Engineering lab online. University of Tennessee
at Chattanooga – [Online] http://chem.engr.utc.edu/,
2007.

J. Hua and A. Ganz. Web enabled remote laboratory
(r-lab) framework. In 33rd ASEE/IEEE Frontiers in
Education Conference, pages T2C–8–T2C–13, 2003.

INRIA. Scilab and scicos. [Online] http://www.scilab.org,
2007.

A. Rasche, B. Rabe, P. Tröger, and A. Polze. Dis-
tributed control lab. In 1st International Workshop
on E-learning and Virtual and Remote Laboratories
(VIRTUAL-LAB’2004), pages 150–160, 2004.

C. Röhrig and A. Jochheim. The virtual lab for controlling
real experiments via internet. In IEEE International
Symposium on Computer Aided Control System Design,
pages 279–284, 1999.

C. Schmid. The virtual lab vclab for education on the
web. In IEEE American Control Conference, pages
1314–1318, 1998.

J. Strothman. Will web services replace hmi? Intech -
Research triangle park NC, 49(9):34–37, 2002.

The MathWorks Inc. Matlab and simulink. [Online]
http://www.mathworks.com/, 2007.

Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Daw-
son. Real-time linux target: A matlab-based graphical
control environment. In IEEE International Symposium
on Computer-Aided Control System Design, pages 173–
178, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13651

