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Abstract: In current AFM-based nanomanipulation systems, the commercial position closed-
loop controller for piezoelectric nanopositioning stages are implemented with success in a
wide range of industrial applications. Even if these controllers operate with satisfactory
nominal tracking performance, considerable attention has been focused on appropriate control
strategies to compensate hysteresis, nonlinearities, drift and creep for high bandwidths and
large scanning regimes. As these closed-loop controllers are very cost-effective, a special interest
in robust plug-in compensators seems to be a solution. We proposed in this paper a robust
plug-in compensator using the H∞ loop-shaping techniques which can be plugged into the
existing controller without affecting the already satisfactory nominal tracking performance
of the existing closed-loop system. Dynamic modeling, identification and robust control of a
3 d.o.f. piezoelectric nanorobotic positioner are presented in this paper in order to improve
the nanorobot performance under plant parameter variations and in the presence of external
disturbances. Simulation and experimental results are given to validate the proposed plug-in
robust compensator in the case of a nanorobotic manipulation task.

1. INTRODUCTION

In biotechnology field, the telenanomanipulation control
of microobjects (biological cells, viruses, MEMS) with
human handling is difficult due to dynamics and uncer-
tainties which are strongly impacted by the user’s ges-
ture. In applications where high performance and accuracy
are not critical, constitutive nonlinearities of piezoelectric
nanopositioning stages and hysteresis can be compensated
by standard Proportional-Integral (PI) or Proportional-
Integral-Derivative (PID) controllers. However, this can
potentially lead to bandwidth limitation and inefficiencies.
Even if these controllers have proved their performance,
challenging problems of nanoscale control remain due to
nonlinear dynamics, actuator’s modeling uncertainties, in-
stabilities and lack of robustness against external pertur-
bations and sensor noise (Ge (1996)). As these industrial
closed-loop controllers are cost-effective and dedicated, a
special interest in robust plug-in compensators seems to
be a solution. The key idea of this paper is to robus-
tify existing controllers by plug − in attachable robust
compensators for piezoelectric nanopositioning systems.
Principle of the new methods is to settle on real plants as
their nominal models with local compensators. Since the
additional local compensators are designed independent of
previously designed controllers, they are applicable for any
existing control systems including nonlinear and/or non-
closed form control scheme.

A brief analysis of robust control techniques shows that
a considerable number of feedback design schemes based
on linear robust control techniques have been already
proposed for nanopositioning systems. Development of
inversion-based feedforward control with robust feedback
control have proved their efficacy in output tracking in
Atomic Force Microscope (Zou (2004a)), (Zou (2004b)).

The performance of the inverse feedforward control, how-
ever, is strongly limited by modeling errors/uncertainties
and disturbances (Devasia (2002)). Closed-loop linear H∞

control technique seems to be an efficient alternative
technique. These schemes have provided improvements
in bandwidth and robustness to non linearities and hys-
teresis. In (Tsai (2003)), the authors proposed a Smith
predictor-based H∞ controller for a piezoactuator with
an emphasis in reducing the hysteresis. In (Salapaka
(2002)), a H∞ controller design for one-dimensional nano-
positioning system performing high closed-loop band-
widths and robustness against nonlinearities has been syn-
thesized with success. Finally, a robust Glover-McFarlane
H∞ scheme (Sebastian (2003)) to simultaneously achieve
performance and robustness where neither specific track-
ing requirement nor a characterization of uncertainty are
available a priori.

Considering these robust control schemes, we proposed a
framework for increasing the robustness of existing indus-
trial control schemes with a quantifiable compromise on
performances. We proposed in this paper a robust plug-in
compensator using the H∞ loop-shaping techniques which
can be plugged into the existing controller without affect-
ing the already satisfactory nominal tracking performance
of the existing closed-loop system. A similar approach has
been introduced by Salapaka in (Sebastian (2005)) where
the Glover-McFarlane controller robustified a proportional
double integral controller used for nano-positioning in the
scanning-probe industry. In the present study, the H∞

loop-shaping technique is applied for robustification of
complex industrial controllers achieving robustness with
marginal reduction in performance. Dynamic modeling,
identification and robust control of a 3 degree of freedom
piezoelectric nanorobotic positioner are presented in this
paper in order to improve the nanorobot performance
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under plant parameter variations and in the presence of
external disturbances.

The paper is organized in the following way. In Section
2, a description of the nanorobotic device is given. This is
followed by the frequency-domain-based system identifica-
tion of the existing controller and nanorobotic positioner.
The control design and the experimental results are then
presented in Section 4. Experimental results are given in
Section 5 to validate the proposed plug-in robust compen-
sator in the case of a nanorobotic manipulation task.

2. PIEZOELECTRIC NANOROBOTIC POSITIONER
DESCRIPTION

The nanomanipulator structure is composed of three linear
translation stages (x,y,z) driven by DC motors for coarse
motion (range: 8 mm, accuracy: 15 nm) combined with a 3
d.o.f ultra-high-resolution piezomanipulator (x,y,z) for fine
positioning (range: 100 µm, accuracy: 1 nm). This hybrid
nanopositioning system combines the advantages of ultra-
low inertia, high-speed and long travel range (Fig.1(a)).
The micro-endeffector is constituted by a piezoresistive
AFM cantilever integrating a full-bridge strain gauge sen-
sors ((Fig.1(b)).
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Fig. 1. Structure of the hybrid 6 dof AFM-based nanoma-
nipulator and its sensorized force cantilever.

The 3 d.o.f ultra-high-resolution piezomanipulator (P-
611.3S NanoCube from Physics Instruments) is a versatile,
multi-axis piezo-nanopositioning system. Its 100x100x 00
µm positioning and scanning range comes in an extremely
compact package. Equipped with a zero-stiction, zero-
friction guiding system, this piezomanipulator provides
motion with ultra-high resolution and settling times of
only a few milliseconds. Single-axis nanopositioning stage
with anti-accurate-motion flexure design. The best flexure
designs provide guiding precision in the low nanometer
range. In open-loop operation, the platform’s position is
roughly proportional to the drive voltage. In the closed-
loop version, the Proportional-Integral (PI) controller al-
lows absolute position control. However, existing closed-
loop controller is designed to achieve specific tracking
and performance requirements (such as zero steady-state
tracking) in a narrow frequency closed-loop bandwidth.
During nanomanipulation tasks, the x-y-z nanopositioner
servo-controller lacks in robustness against:

a) Modeling uncertainties:

(1) Mechanical nonlinearities of mechanical-guiding sys-
tems for large travel ranges;

(2) Modeling uncertainties due to operating point, tem-
perature effects and time execution;

(3) Hysteresis and creep effects due to piezoelectric ce-
ramics.

b) External perturbations:

(1) Noise measurement perturbations;
(2) Force/torque perturbations during nanomanipula-

tion.

Considering these limitations, we proposed in the following
a robust plug-in compensator using the H∞ loop-shaping
technique which can be plugged into the existing PI-
controller without affecting the already satisfactory nom-
inal tracking performance.

3. IDENTIFICATION

The digital system to be identified is constituted of both
components: the piezoelectric nanopositioner and the PI-
controller embedded into the acquisition card. The ac-
quisition board is composed of digital inputs (DAC) and
outputs (ADC), the identification should be considered as
a discrete system. Among the various modes of identifica-
tion for numerical systems (Longchamp (2006)) (Rivoire
(1992)), we choose the least squares simple method. This
choice is justified by the simplicity of the method during
implementation, accuracy of the identified parameters and
off-line parameters adjustment. The least square method
is based on the determination of a vector of parameters
so as to minimize a error vector ǫ. It consists to minimize
the square of the euclidian norm of the error vector. The
function :

J : Rp → R (1)

to minimize is defined by:

J(ϑ) =‖ ε(k) ‖2=

εT (k)ε(k) = (y(k) − φ(k)ϑ)T (y(k) − φ(k)ϑ) (2)

The vector parameters minimizing the criterion J(ϑ),

denoted ϑ̂(k), is called the estimated vector parameters
defined by (Rivoire (1992)):

ϑ̂(k) = (φT (k)φ(k))−1φT (k)y(k) (3)

where φ(k) is the observation matrix φ(k) of p-order.

In to order identify the wide dynamics bandwidth of the
servo-nanopositioner, we choose a Pseudo-Random Pat-
tern Generator signal (PRPG). It has been already proved
reliable for a good identification in different dynamic sys-
tems.

The scheme of Fig.2 depicts the principle of the numerical
identification. U(Z) represents the numerical input signal
(PRPG input signal), Y (Z) the numerical output signal
of the system. The system is provided with analog-to-
digital (ADC) and digital-to-analog (DAC) converters. It
offers the possibility to convert discrete-to-continuous and
continuous-to-discrete space.
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Fig. 3. Experimental frequency responses of (a) x-axis, (b) y-axis and (c) z-axis.
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Fig. 2. Identification of the system transfer function.

In Fig.2, the terms G(S) and H(z) represent the transfer
functions of the continuous system and the discrete sys-
tem, respectively. The parameters provided by the identi-
fication represent the ai and the bj of the discrete transfer
function which is given by the following expression:

b0z
2 + b1z + b2

z3 + a1z2 + a2z + a3

(4)

The identification was carried out for several operating
points, ranging from 0µm to 60µm with elementary steps
of 10µm and driving frequencies lower than the resonance
frequencies. The discrete models have been identified with
averaged parameter values for x, y and z axes, respectively:

Hx(z) =
0.00535z2 + 0.0271z + 0.0507

z3 − 0.00557z2 + 0.0196z − 0.93
(5)

Hy(z) =
0.003z2 + 0.00741z + 0.0117

z3 − 0.00579z2 + 0.025z − 0.997
(6)

Hz(z) =
0.000556z2 + 0.00535z + 0.00761

z3 − 0.00566z2 + 0.0222z − 1
(7)

Then, we used the MATLAB function d2c to convert
discrete-to-continuous functions:

Hx(s) =
12s2 − 1.106 × 104s + 8.045 × 106

s3 + 29.03s2 + 6.971 × 105s + 8.13 × 106
(8)

Hy(s) =
1.967s2 − 926.4s + 6.371 × 105

s3 + 0.812s2 + 3.177 × 105s + 6.399 × 105
(9)

Hz(s) =
1.038s2 − 924.7s + 5.32 × 105

s3 + 9.979 × 10−13s2 + 3.918 × 105s + 6.51 × 105

(10)

The results presented in Fig.3 show the experimental
frequency responses. Fig.4 compares the step responses
and PRPG obtained from theory and experiments along
the x-axis. In both cases, the results show good tracking
performances with negligible error.

However, it should be noticed that the identified models
vary strongly due to uncertain dynamics and are subject
to modeling uncertainties. It can be explained by the
following reasons:

• Time-varying changes in flexure stages stiffness are
due to repeated cycling at different strains (uncertain
pole location).

• Unmodeled nonlinear effects are significant (stiffness
is nonlinear versus position).

• Variance of the stage dynamics due to diverse oper-
ating conditions.

• Frequency response at the same operating point
varies with time. It typically manifests itself as a
change in resonance locations.

• Temperature variation affects directly the parameters
of piezoelectric ceramics.

4. PLUG-IN ROBUST CONTROLLER DESIGN

The existing controller is a proportional integral (PI) and
for the robustification of the existing controller we use the
H∞ loop shaping technique. In this part, we will present
the principles of the H∞ loop shaping control and how it
can be integrated in a robust plug-in controller.

4.1 H∞ Standard Problem

For P (s) and γ > 0 are given, the H∞ standard problem
of is to find K(s) which:

• Stabilize with way internal loop system in the Fig.5
• Maintain the norm with FL(P, K) defined as the

transfer function of exits Z according to the entries
W .

4.2 Coprime Factorization Approach

An approach was developed by (Glover (1988)) and
(Glover (1989)) starting from the concept of the coprime
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Fig. 4. Experimental responses (red lines) are compared
with the responses of the models (blue lines) Hx(s).
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Fig. 5. H∞ standard problem.

factorization of transfer matrix. This approach presents
interesting properties and its implementation calls upon
notions traditional of automatic control.

4.3 Robust Controller Design using Normalized Coprime
Factor

We define the nominal model of the system to be controlled
starting from the coprime factors on the left: G(s) =

M̃(s)−1Ñ(s). Then a perturbed model is written (see Fig
.6).

G̃ = (M̃ + ∆m)−1(Ñ + ∆n) (11)
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Fig. 6. Coprime factor robust stabilization problem.

where G̃ is a left coprime factorization (LCF) of G, and
∆m, ∆n are unknown and stable transfer functions repre-
senting the uncertainty. We can then define a family of

models with the following expression :

ξǫ = {G̃ = (M̃ + ∆m)−1(Ñ + ∆n) : ‖(∆m ∆n)‖∞ < ǫ}
(12)

where ǫmax represent the margin of maximum stability.
The robust problem of stability is thus to find the greatest
value of ǫ = ǫmax , such as all the models belonging to ξǫ

can be stabilized by the same corrector K. The problem
of robust stability H∞ amounts finding γmin and K(s)
stabilizing G(s) such as:

∥∥∥∥
(

I
K

)
(I − GK)−1(I W2GW1)

∥∥∥∥
∞

= γ−1

min = ǫ−1
max

(13)

However, Mc Farlane (1992) showed that the minimal
value γ of is given by:

γmin = ǫ−1
max =

√
1 + λsup(XY ) (14)

where λsup indicates the greatest eigenvalue of XY . More-
over, for any value ǫ < ǫmax a corrector stabilizing all the
models belonging to ξǫ is given by:

K(s) = BT X(sI − A + BBT X − γ2ZY CT C)−1γ2ZY CT

Z = (I + Y X − γ2I)−1 (15)

γ = ǫ−1

where A, B and C are state matrices of the system defined
by the function G and X, Y are the positive definite
matrices and solution of the Ricatti equation :

AT X + XA − XBBT + CT C = 0 (16)

AY + Y AT − XCT C + BBT = 0 (17)

4.4 The Loop Shaping Design Procedure

Contrary to the approach of Glover-Doyle, no weight func-
tion can be introduced into the problem. The adjustment
of the performances is obtained by affecting an open
modeling (Loop Shaping) process before calculating the
compenstor. The design procedure is as follows :

• We add to the matrix G(s) of the system to be
controlled a pre-compensator W1 and/or a post-
compensator W2, the singular values of the nom-
inal plant are shaped to give a desired open-loop
shape. The nominal plant G(s) and shaping func-
tions W1 and W2 are combined in order to improve
the performances of the system such as Ga(s) =
W2(s)G(s)W1(s) (see Fig.7.a). In the monovariable
case, this step is carried out by controlling the gain
and the phase of Ga(jw) in the Bode plan.

• From coprime factorizations of Ga(s), we apply the
previous results to calculate ǫmax, and then synthesize
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Fig. 7. Loop Shaping design procedure.

a stabilizing controller K ensuring a value of ǫ slightly
lower than ǫmax.

∥∥∥∥
(

I
K

)
(I − W2GW1K)−1(I W2GW1)

∥∥∥∥
∞

= γ = ǫ−1

(18)

• The final feedback controller is obtained by combining
the H∞ controller K with the shaping functions W1

and W2 such that Ga(s) = W2(s)G(s)W1(s) (See
Fig.7.b).

5. APPLICATION TO THE PIEZOELECTRIC
NANOPOSITIONER

5.1 Implementation of the Controllers

In this part, we explain the synthesis and implementation
of the controllers. The synthesis of the controller K is
obtained according to the implementation shown in the
Fig.7 using the command ncfsyn of MATLAB -Analysis
and Synthesis toolbox (Balas (1994)). The controller K
is obtained by combining the pre-filter and the post-
filter. The pre-filter and post-filter are used to shape the
open-loop plant to achieve a desired frequency responses
according to some well defined design specifications such
as bandwidth and steady-state error (Lundstrom (1991)).
To obtain a high gain at low frequency, a PI controller is
synthesized for the x-axis like pre-filter W1 and in order
to obtain a small gain at high frequency, a low-pass filter
is synthesized like pre-filter W2. In order to obtain a high
performance and a good robustness, we add the following
weight functions:

W1 = 50 × 10s+35.2
10s

, W2 = 1

s+11.3
.

Using these weight functions, we obtained a six-order H∞

controller. In order to implement this controller, we use the
MATLAB function balmr to reduce the controller order
to the third-order approximation. The resultant plug − in
robust controller is given by :

Kr(s) =
−72.69s2 − 1824s − 6706

s3 + 66.88s2 + 625.7s − 5.07 × 10−11
. (19)

and the discrete controller :

Krd
(s) =

0.1726z2 − 0.3347z + 0.1622

z3 − 2.842z2 + 2.688z − 0.846
(20)

5.2 Characterization of the Nanopositioning Device

In this section, the nanopositioning is characterized in
terms of range, sensitivity and resolution in the open- and
closed-loop configurations. The calibration data showed
some hysteresis in open-loop. Hysteresis is primarily due
to the nonlinear relationship between applied voltage and
displacement which are important for large deflections. To
present the effectiveness of the H∞ closed-loop design, the
hysteresis curves obtained in open-loop (Fig.8.a) are com-
pared with the closed-loop design using the H∞ controller
(Fig.8.b). We can see clearly that for a nanopositioning
displacement of 40 µ m a maximum output hysteresis of 10
µ m was observed. The same experiment with the closed-
loop controller showed that the effects were practically
eliminated. An important observation comes from the fact
that the operating applied voltage is settled to 100V while
the system was identified for a low value of input signal
(PRPG signal). It shows clearly the linearity relationship
between the input-output signals. Similar linearity results
have been measured when considering creep effects. It
should be noticed that important differences were observed
for different displacement with PI and H∞ controller.
High precision is obtained with robustified PI controller.
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Fig. 8. Hysteresis in open-loop and closed-loop H∞ con-
troller.

5.3 Experimentation in nanopositioning tasks

The set of experiments of Fig.9 shows the step responses
with the simple PI controller and the H∞ plug − in ro-
bust controller. The experimental results demonstrate the
excellent position tracking with the proposed robust con-
troller. The position output tracks perfectly the position
reference. It should be noticed when considering PRPG
signals, the experimental results shows a good compromise
between performances and robustness with the robusti-
fied PI controller (Fig.10). The proposed plug − in ro-
bust controller design ensures the robust stability against
strong disturbances, the experimental response with a
step perturbation demonstrate the excellent tracking and
the position follows well the reference. We noticed that
the response is not affected by the application of a step
disturbance (Fig.11.a) or a noise perturbation (Fig.11.b).

6. CONCLUSION

The Loop Shaping Design Procedure (LSDP) using H∞

synthesis has been applied for robustified controller design
of nanopositioning system. In the proposed H∞ loop
shaping design procedure, the model uncertainties are
included as perturbations to the nominal model, and
robustness is guaranted by ensuring that the stability
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Fig. 9. (a) Step responses for PI and H∞ controllers and
(b) corresponding static errors.
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specifications (nanometer resolution) are satisfied in the
worst-case uncertainty. As conclusion, a very good point
of the design is the remarkable features that achieves
robustness with marginal reduction of performance.
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