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Abstract:
Structured environment can be modelled in a simplified way as a set of planar surfaces and lines.
For mobile robot equipped with a 3D sensor and a camera, the incremental construction of such
a model is a Simultaneous Localisation And Mapping (SLAM) problem: while exploring the
environment, the robot executes motions; from each position, it acquires sensory data, extracts
3D perceptual features, and simultaneously, performs self-localisation and model update. Our
robot JIDO has a 3D pivoting laser range finder, acquiring images of 3D points, and has a
camera. Firstly, a segmentation algorithm of a 3D image into a set of planar faces is described:
this algorithm uses a region growing strategy and the Extended Kalman Filtering to estimate
the parameters of the support plane of every face. These planar faces are used as landmarks.
Next, we describe how to extract 2D line landmarks by fusing data from both sensors. Our
stochastic map is of heterogeneous type and contains plane and 2D line landmarks. At first,
The SLAM formalism is used to build a stochastic planar map, and results on the incremental
construction of such a map are presented, further on, heterogeneous map will be constructed.

1. INTRODUCTION

Execute missions in initially unknown environment is still
a great challenge for an autonomous mobile robot. The
robot needs a description of his environment. Maps are
required for self-localization, for motion planning, etc. We
find in the literature two main types of maps: Topological
and metric maps, see Chatila and Laumond [1985] and
Filliat and Meyer [2003]. A topological map can be seen
as an abstract representation describing relations between
environment areas (typically, rooms or corridors). Such
maps are well adapted for route planning, the selection
of the best strategy for motions between areas. Their
main drawback is the absence of geometric information:
thus, motions are executed by sensory-motor commands
(following a wall, a line, etc.). On the contrary, a metric
map provides a (detailed) geometric representation of the
environment; it gives explicit metric information (lengths,
widths, positions, etc.), generally expressed with respect
to a global reference frame.

When a robot owns a map and has to follow a given path, it
executes the Localisation task: it estimates continuously
its position in the map. The Mapping task is performed
when a robot moves around in order to construct the map
of its environment: to achieve that, the successive robot
positions must be precisely known, and could be given by
some external devices (GPS for example). At last, the third
task, known as Simultaneous Localisation and Mapping
or SLAM, is the conjunction of previous ones: the robot
executes motions in unknown environment, and exploits
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relative measurements acquired by embedded sensors, to
simultaneously locate itself and to build the map.

When the robot executes a SLAM task, it performs a
complex process, including execution of motions, acqui-
sition of sensory data, data association between these
sensory data and the current world model, estimation of
the robot pose using these associations and finally, the
incremental construction of the map. It has to take into
account many geometric constraints, and many sources
of error. Essentially, the robustness to achieve this task
depends on the robot capabilities to extract pertinent
information (called Landmark) from sensory data coming
from embedded sensors. The robot starts up from an initial
position without any a priory knowledge about landmarks:
by use of relative measurements on landmarks, the robot
estimates its pose and the poses of the landmarks in an
absolute frame, generally selected as the initial pose of the
robot. When moving, the robot updates the landmark map
and exploits it to produce an estimate of its pose.

SLAM has been an active research topic for more than
twenty years; many works from Durrant-White, Tardos,
Nebot, Dissanayake, Feder, Leonard, Newman, etc., aim to
develop generic tools, based on the formalism of stochas-
tic maps proposed by Smith et al. [1990]. The majority
of these works have focused on the estimation methods
required in order to maintain estimates of the robot pose
and of landmark attributes in a consistent stochastic map.
The extended Kalman Filter was initially proposed as a
mechanism that allows the incremental fusion of informa-
tion acquired by the robot; later, other methods have been
exploited successfully (information filter, particle filter ,
etc), especially in the FastSLAM method, proposed by
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Thrun et al. [1998]. A well detailed state of the art can
be found in Durrant-Whyte and Bailey [2006].

These approaches have been validated mainly by con-
structing 2D representations (like 2D segment maps) of
indoor environment from laser data acquired typically by
SICK range finders. Recently, 3D SLAM draws attention.
Takezawa et al. [2004] describes a SLAM framework based
on 3D landmarks. Jung [2004] constructs a 3D map from
interest points in outer environment using stereo vision
data; Sola et al. [2005] builds such maps using only monoc-
ular vision. These sparse representations allow essentially
the robot to locate itself. Our work is focused on the con-
struction of surface model in indoor environment, where
many planar surfaces (ceiling, floor, walls, doors) can be
used as landmarks. Our goal is to produce a geometric
stochastic map made of 3D planar features. In the same
area, a preliminary contribution of Nashashibi and Devy
[1993], with an off line validation from a limited number of
range images, and the works of Thrun et al. [2000] based
on the exploitation of two laser ranger finders to acquire
measurements on horizontal and vertical planes and to
produce a dense model of 3D points, from which a mesh
can be constructed a posteriori. Abuhadrous et al. [2004]
developed a similar approach to model urban sites using
GPS to localize the vehicle. Finally using only monocular
vision, planes are extracted by using homographies and
fused by a SLAM approach in Silveira et al. [2006].

While the algorithm of SLAM is well studied, using new
sensors and robust features extraction rest an open topic.
Sensors’ data fusion is a interesting approach to overcome
the deficiency of each sensor and to obtain more sophisti-
cated and accurate results.

We detail in the section 2 the extraction of planar fea-
tures from range images. Then in section 3 we describe
our method of fusion of laser and image data in order
to obtain 2D line landmarks used in the map. Next in
section 4 we define our heterogeneous map which contains
plane landmarks and 2D line landmarks. Finally in sec-
tion 5, experimental results using our Jido mobile robot
are discussed, before summarizing our contribution and
presenting current works in section 6.

2. PLANE EXTRACTION

3D sensors (laser range finder, stereo vision, PMD sen-
sor, etc.) provide images with thousands of 3D points.
Compressing such a point cloud into some planar features
without loosing the essential information is really impor-
tant. It is a segmentation problem: how to divide the range
image into features, i.e. how to bind each point with a label
identifying to which feature it belongs, so that the point
of the same plane have all the same label. Segmenting a
range image acquired by a mobile robot, is a difficult topic,
because we do not know what is seen in the scene; moreover
segmentation processes must be robust in presence of non-
planar or non static objects and in spite of noises.

2.1 Related Work

The planar segmentation has been well studied in com-
puter graphics in order to perform real-time rendering of
complex models Heckbert and Garland [1997]. There is a

major difference between robotics and computer graphics.
Data in robotics are issued from sensors and hence they
are erroneous, while models in computer graphics are sup-
posed to be without errors. The decimation algorithms in
computer graphics aim to accelerate rendering and not to
deal with errors.

Horn and Schmidt [1995] extract plane using Hough Trans-
formation. They wanted to extract only vertical plane,
which limit their method. Sequeira et al. [1999] use a
hybrid method of region-based and edge-based to perform
the segmentation and assure the alignment of consecutive
data using an Iterative Closest Point algorithm . Liu et al.
[2001] use Expectation Maximisation (EM) to create a 3D
map of planar segments, but this iterative method is a little
compatible with real-time constraint of mobile robotics.
Kohlhepp et al. [2004] extract planes in real time by
using an grouping algorithm of scan lines. This algorithm
assemble neighbour line segments in an efficient way, but
it requires data line segmentation in each scan line.

Hähnel et al. [2003] proposed a simplification algorithm
adapted to robotic context. In this article they extract
planes by using an approach of type region-growing by
starting from an arbitrary point, then try to enlarge
the region in all directions. Weingarten [2006] proposed
some improvement to this algorithm by starting region
seed from the most flat point in the cloud (minimum
local error), and by profiting from the structure of the
range image to simplify the research of neighbour points.
Our approach is based on these two works, with some
differences in the choice of plane’s parameters and the
method of their estimation. Recently, Harati et al. [2007]
proposed a method based on bearing angle, which is the
angle of the laser beam and the reflecting surface.

2.2 Plane Equation

In Euclidean space, a plane equation is given by:

a x+ b y + c z + d = 0 (1)

The normal vector is n = (a b c)t, and the unit normal
vector û = n

||n|| . The distance from the origin is given by

ρ = d
||n|| . The Hessian Normal Form is:

û · P + ρ = 0 (2)

where P = (x y z)t is a point of the plan. In these
representations, there are four parameters, then there
exists a redundancy, as a plane can be parametrised by
only three parameters: the distance from the origin and
two angles. Let ϕ be the angle between the projection of
the plane normal on the OXY plane and the axis

−−→
OX , and

let ψ be the angle between the plane normal with the axis
−→
OZ. The plane equation is then:

cosϕ sinψ x+ sinϕ sinψ y + cosψ z + ρ = 0 (3)

The vector (ρ ϕ ψ)t will be used as the minimal parametric
representation of a plane.

2.3 Estimation Process

Kalman Filter is a recursive estimator: to estimate the
current state, only the previous state and actual measure-
ments are required. The observation history is not needed.
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In the Extended Kalman Filter (EKF), the dynamic and
observation models could be non-linear functions. To es-
timate the parameters of a plane using EKF, the state
vector is St = (ρt ϕt ψt)

t and Pt|k is the covariance
matrix at time t knowing all the measurements until time
k. We consider that each point that belongs to the plane
is an observation of this plane. we will not detail the filter
equations as they can be found in many textbooks.

2.4 Segmentation by Region-growing

Let V = {v1, v2, . . . , vN} be the set of 3D points, and N =
{n1,n2, . . . ,nNv

} be the set of estimated normals for these
points. For each point, we find the local plane (by using
its 8 neighbours) using a mean least squares method, and
calculate the corresponding error, let E = {e1, e2, . . . , eNv

}
be the set of these errors. In the main loop of algorithm 1,
we choose a new point (not already treated) with the
minimum local fitting error, we use the parameters of this
local plane to initialise the state of the Kalman filter, then
we call the second algorithm for region growing. We use
a queue (First In First Out) to keep points during the
(breadth-first) research phase. In the algorithm 2, we take
the first point in the queue, then we search for its non-
treated neighbours. A chain of tests are done on those
neighbours: distance between the two points, distance
between the neighbour point and the estimated plane,
distance between the plane normal and the point normal,
we do also a χ2 test with the Mahalanobis distance. A
point that satisfies all theses tests is a good candidate to
joint the plane, and eventually its neighbours, hence we
add it the queue, and update the filter state using the
point coordinates as a new measurement. The algorithm 1
gives a pseudo-code of the segmentation process, while the
algorithm 2 details the enlarging loop of the plane.

Algorithm 1 Planar Segmentation by Region-growing

1: Parameters:
2: V = {v1,v2, . . . ,vNv

} : The 3D points set
3: N = {n1,n2, . . . ,nNv

} : points’ Normals
4: E = {e1, e2, . . . , eNv

} : errors of local planes fitting
5: S = {s1, s2, . . . , sNS

} : set of output planar segments
6: calculate normals
7: fit local planes
8: S ← φ
9: q← φ

10: Nt ← 0 : number of treated points
11: while Nt ≤ Nv do
12: vmin ← get Non Treated Point With Min Local

Error
13: Initialise Filter using vmin local plane
14: q← vmin
15: growRegion(q)
16: S ← add The Segment
17: end while

2.5 Choice of Plane Landmark Local Reference

Let P be a plane landmark defined by its parameters
(ρw, ϕw, ψw) in the global reference frame Rw. We are
looking for a orthonormal frame for this plane. We choose
the projection of the origin Ow on the plane P as an origin
Op of local frame, and the axis Zp to be parallel to the

Algorithm 2 Region Growing

1: while q 6= φ do
2: vf ← getFirst(q)
3: Nvf

: get Valid Non-Treated Neighbours
4: for all vi ∈ Nvf

do
5: if vi ∈ Plane then
6: addAtTheEnd(q, vi)
7: updateFilter(vi)
8: end if
9: end for

10: removeFirst(q)
11: end while

normal vector n. We need also to choose the axis Xp.

Let
−→
iw,
−→
jw,
−→
kw be the unit vectors of axes OwX,OwY,OwZ

respectively, and
−→
ip ,
−→
jp ,
−→
kp unit vectors of wanted axes

OpXp, OpYp, OpZp respectively.
−→
ip = [ sinϕw − cosϕw 0 ]

T
(4)

This vector can be interpreted as the unit vector of
direction of the intersection line between the plane P and
the plane Z = 0 (if they are not parallel).

But knowing that:

−→
kp =

[

cosϕw sinψw
sinϕw sinψw

cosψw

]

(5)

The rotation matrix from global to local references is:

Rwp =

[

sinϕw cosϕw cosψw cosϕw sinψw
− cosϕw sinϕw cosψw sinϕw sinψw

0 − sinψw cosψw

]

(6)

and the translation vector is:

twp = ρw

[

cosϕw sinψw
sinϕw sinψw

cosψw

]

(7)

3. 2D LINE LANDMARK EXTRACTION

To define a 3D line we need to define two planes. Using
the camera, we can obtain one of them, so we need to
use the 3D laser to define the other plane. By fusing the
data of both sensors we can extract 3D lines in the scene.
For representation reasons, we will consider the 3D line as
2D line attached to a holding plane. The holding plane is
define by the laser data (as describe in 2).

3.1 Line Extraction

We use a traditional method of line extraction in images. It
begins by a Canny filter to extract the contour, then we use
a polygonal approximation to estimate the line segment
passing through adjacent contour points. A phase of post
processing is necessary to merge similar segments and to
remove very small ones.

3.2 Interpretation Plane

For a line segment li in the image, the associated Interpre-
tation plane is the plane passing through this 2D line and
the centre of projection (viewpoint) of the camera. The
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normal vector of this plane can be calculated only based
on intrinsic parameters of the camera (αu, αv, u0, v0) and
the data image of the segment. In fact, let (δi, γi) be the 2D
line parameters of the infinite line holding the 2D segment
li, where γi is the angle with the axis u and δi is the
distance from the origin.

The 2D line equation is in the image reference frame:

cos γi u+ sin γi v − δi = 0 (8)

Then using camera coordinates:

cos γi (αu
xc

zc
+ u0) + sinγi (αv

yc

zc
+ v0)− δi = 0 (9)

we obtain:

αu cos γi xc + αv sin γi yc+
+(−δi + u0 cos γi + v0 sin γi) zc = 0

(10)

The normal vector in the camera reference frame is then:

nc =

[

αu cos γi
αv sin γi

−δi + u0 cos γi + v0 sin γi

]

(11)

3.3 The 2D Line in the Plane Landmark Reference

We search to find the 2D line glued on the plane landmark
that correspond to a 2D line segment in the image. Let Pi
be a plane in the map with the parameters ai, bi, ci, di
(of course we derived them from (ρ, ϕ, ψ)), and l be a
line segment in the image with the corresponding inter-
pretation plane Psg expressed in global reference frame by
the parameters asg, bsg, csg, dsg. For a point (xw , yw, zw)
belongs to the 3D line formed by the intersection of the
interpretation plane and the plane landmark, it verifies:

{

aixw + biyw + cizw + di = 0
asgxw + bsgyw + csgzw + dsg = 0

(12)

Let (xp, yp, zp) be the coordinates of a point in the local
reference frame associated with the plane landmark Rp.
The choice of the local frame gives us:

[

xw
yw
zw

]

= Rwp

[

xp
yp
zp

]

+ twp (13)

As a result, the equation of the 2D line which match with
3D line but glued on the plane landmark expressed in local
coordinates (Note that zp = 0):

(asgsϕw − bsgcϕw) xp+
+ (asgcϕwcψw + bsgsϕwcψw − csgsψw) yp+
+ (dsg − asgρwcϕwsψw − bsgρwsϕwsψw − csgρwcψw)

= 0

(14)

we can write is the form:

α xp + β yp + σ = 0
where :
α = asg sinϕw − bsg cosϕw
β = asg cosϕw cosψw + bsg sinϕw cosψw+
−csg sinψw

σ = dsg − asgρw cosϕw sinψw+
−bsgρw sinϕw sinψw − csgρw cosψw

(15)

Zc

Yp

Xp

Xc

YcOc

Yi

Xw

Zw

Ow

Or

Xr

Yr

Zr

Zp

−→n

Xi

Yw

Op

Fig. 1. A 2D Segment in image its corresponding 2D
Segment glued on the Plane Landmark

4. THE STOCHASTIC MAP

The SLAM algorithm maintains a representation of Land-
marks and robot states, as illustrated in figure 2. During
the displacement of the robot, it uses its sensors to observe
the surrounding landmarks. The system state at time k,
X(k), is composed of the vector Xv representing the robot
state, and of nf vectors describing the observed landmarks,
Xi(k), i = 1, . . . , nf .

X(k) =
[

XW
v XW

1 . . . XW
nf

]T

(16)

where XW
i is the state of a landmark in the global frame

RW . Henceforward, (except counter indication), all states
are in global frame, so we will omit the global reference
symbol. We can rearrange the system state vector so that
we group the states of landmarks in one term Xm(k) :

X(k) =

[

Xv

Xm

]

(17)

Our robot JIDO displaces in indoor environment supposed
unknown, and composed (in a simplified way) by planar
surfaces which we choose as landmarks for the SLAM
algorithm. By mean of the camera we extract segments
2D in the image. These segments can be interpreted as
the projection of Line 3D (or more generally Planes) onto
the image plane. So the first idea to come is to use the
Segment 3D as second type of landmarks in the stochastic
map. We don’t consider this case for many reasons: First of
all, using only one camera can not give us 3D information
of 3D Lines. Second, to represent 3D Lines we need at
least 6 parameters (as the intersection of tow planes), but
in fact, a 3D line can be represented only by 4 parameters,
so by using 3D line we add non independent parameters to
the map and this redundancy is a source of divergence. To
over come this deficiency we choose to use the following
strategy: A 3D line is the intersection of two planes, one
of them must be already in the map and comes from laser
data segmentation, the other is the interpretation plane
of a 2D segment in the image. For representation reasons,
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Fig. 2. System States

we choose to add the 3D line as a 2D line with respect to
a local frame of a plane already in the map. Hence, the
second type of Landmark for as is a 2D Line attached
to a Plane Landmark.

This choice of 2D line landmark may appear to be cor-
related with the plane landmark, and does not import
more information. But in reality it is not, because even
if we say that the 2D line is glued with a plane, the line
equation itself is derived from information from Camera
and Laser. So the use of camera data adds new information
not already present in laser data. We can also understand
that a plane alone does not give the same information as
a plane with a line on it.

In the scenario presented in figure 2. The robot state at
time k can be determined by its position and orientation
in the space. The robot state vector is defined by: Xv(k) =
[xv(k), yv(k), θv(k)]

T . Each planar surface is considered as
an infinite plane is defined by three parameters Xπ,i(k) =
[ρi(k), ϕi(k), ψi(k)]

T . Each 2D Segment is considered as an
infinite line in the plane landmark and is defined by means
of two parameters XL,i(k) = [δi(k), γi(k)]

T . Of course,
a plane landmark can contain many 2D line landmarks,
but a 2D line landmark can not exist alone without a
holding plane landmark. Our stochastic map is then a
heterogeneous map. It has two types of landmark. For
more details about the construction of the stochastic map
you can see Zureiki et al. [2008].

5. IMPLEMENTATION AND RESULTS

In our experiments, we used our robot JIDO illustrated
in figure 3. It has two motorised wheels, a Sick Range
Finder fixed on the rear and another Sick LMS-200 Range
finder on a rotating axis installed ahead, a stereo rig on a
pan/tilt, another stereo rig on the manipulator arm, etc.

We use the 3D scanner laser. It is a LMS 200 Range Finder,
fixed on a motorised axis by stepper motor, and can rotate
around the horizontal axis. The angular resolution of the
laser scanner is fixed on 0.5◦, with a field of view of 180◦

which gives 361 points per scan. For the rotation of scanner
around the horizontal axis, we choose to make steps of 0.01
Rad (≈ 0.57◦) and to rotate the scanner between −0.3
Rad and 1.4 Rad, which includes 171 scans. The produced
range image is composed of 171 ∗ 361 = 61731 points. We
use the left camera of the stereo rig to acquire images.

The robot did a tour in our laboratory. It moves and halts,
takes measurements from each position, then it advances
again. It has made a tour in a corridor and return to

Fig. 3. The mobile robot Jido.

Fig. 4. Segmentation of 3D Range Image.

Fig. 5. Image of the same segmented scene.

the departure point, making in all 12 displacements. The
segmentation algorithm of the range image gives good
results. Figure 4 represents an output of the segmentation
algorithm. In which the points of each plane are coloured
by a different colour. Figure 5 shows the same scene as
viewed from the camera, of course the two sensors has
not the same field of view. The test is done on a P4 with
3GHz and 512MB of RAM. The segmentation takes about
10 seconds for a range image of 61731 points.

The incremental construction of the map of the corridor
is illustrated (partially) in the figure 6, where we choose
to print only the points belonging to each planar facet in
the stochastic map, in which the poses of the robot issues
from odometer are in red and from SLAM algorithm are in
blue. The figure 7 represents the same scene viewed by an
external camera to better appreciate the results. For now
only plane landmarks are added to the stochastic map, the
addition of 2D line landmarks is under construction, with
the aim to present final results in future occasions.
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Fig. 6. A 3D Map by the SLAM algorithm.

Fig. 7. Image of the Corridor.

6. CONCLUSION

This paper has described a 3D SLAM method, proposed to
build a 3D planar representation of an indoor environment
from sensory data acquired by a pivoting laser range finder
and a camera. A range image segmentation method is
detailed to obtain planar facets from cloud points. Pre-
liminary results on map reconstruction only with planar
landmarks are presented. A 2D line landmark attached to
a plane facet is proposed and extracted by fusion of laser
and camera data. Future work is to achieve the building
of the heterogeneous map.

Adding 2D lines to planes has two major importance: make
the map more rich for navigation, and at the same time
enforce the phase of data association of plane landmarks.

Currently, the robot must stop at each position during
the acquisition of laser scanner. We aim to use the same
segmentation method with online acquisition made by a
PMD sensor (Swiss Ranger from the CSEM company)
mounted on the mast of the JIDO robot.
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