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Abstract: In this paper, the problem of stabilization for the class of continuous time nonlinear systems
which are exactly discretized is addressed. By using the Takagi–Sugeno model approach, a discrete
controller capable of stabilizing the discrete TS model and the continuous model as well, is obtained.
This scheme allows the use of a digital controller for stabilizing an analog plant.

1. INTRODUCTION

The problem of stabilizing dynamical systems is an

interesting problem, and many approaches dealing with

it for different classes of systems – linear, nonlinear,

continuous, discrete – have been developed. In general,

the control law for each type of system has the same

nature of the original system, namely, for continuous

systems, continuous controllers are designed to guarantee

the stabilizability of the closed–loop system.

The use of faster digital computers has motivated the

design of sampled data controllers for continuous time

plants. However, when applied to the continuous system,

the performance of the digital controller may not be

necessarily satisfactory. A solution consists of discretizing

the continuous system and designing a suitable controller

on the basis of the discrete system obtained through this

procedure.

Several methods for the approximate discretization can

be found in the literature, but obviously the performance

of a controller designed on the basis of the approximate

discretization depends on the degree of approximation.

For example, when using the simple Euler method, it is

possible that the controller does not guarantee the stability

of the closed loop system (see Monaco and Normand-

Cyrot [2007] for an overview on this issue). Obviously,

a way to avoid this is to design the controller on the

basis of the exact discretization, although this is not

always possible. Recently, however, several methods for

the exact discretization have appeared in the literature.

⋆ Work partially supported by CONACYT (Project 46538) and
“Secreteria de Relaciones Exteriores” (S.R.E.), México, and by
“Consiglio Nazionale delle Ricerche” (C.N.R.) and “Ministero degli
Affari Esteri” (M.A.E.), Italy.

Moreover, some results suggest that it is possible to

induce the “exact discretizability property” by a suitable

feedback (Di Giamberardino et al. [2000]). An example

of such systems are the systems completely linearizable

by feedback or the class of systems transformable to a

polynomial triangular form.

On the other hand, recent results on the fuzzy mod-

eling, in particular, the Takagi–Sugeno (TS) model, have

allowed the use of this modeling approach to deal with

the problem of stabilizing nonlinear systems. Indeed, the

design of the controller is made on the basis of the linear

subsystems that describe locally the aggregate nonlinear

TS model. A relative advantage of using this approach is

that it is possible to stabilize nonlinear systems by means

of the design based on the linear subsystems.

In this paper, we propose the use of the TS model

approach for the discrete model obtained from an exact

discretization. This discretized model will be used to

calculate a discrete controller which stabilizes the exact

discretized model. We show that under some conditions,

this discrete controller, when applied to the continuous

time system via a zero order holder, it stabilizes this

continuous system as well.

The paper is organized as follows. In Section 2 some

facts about the discretization of dynamical systems are

recalled. In Section 3 the Takagi–Sugeno Fuzzy Model is

introduced, while in Section 4 the discrete fuzzy stabi-

lization problem is solved. An example is presented in

Section 5, and some comments conclude the paper.

2. SOME FACTS ABOUT THE DISCRETIZATION OF

DYNAMICAL SYSTEMS

Consider a linear time invariant system described by
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ẋ = Acx + Bcu (1)

y = Ccx (2)

where x ∈ IRn, u, y ∈ IRm. It is well known that the

discretization of this linear system with a sampling interval

δ is given by

xk+1 = Adxk + Bduk

yk = Cdxk

where

xk+1= x(kδ + δ), xk = x(kδ), uk = u(kδ),

Ad= eAcδ, Bd =

δ
∫

0

eAcs ds Bc, Cd = Cc.

For nonlinear systems, however, finding the exact so-

lution of the differential equations is in most cases dif-

ficult, if not impossible. Hence, various authors consider

approximate discretizations. As a result, at the sampling

instants the solutions of the differential and approximate

discretized systems do not coincide, and poor accuracy

may result. Also, relatively large sampling period may

cause instability or undesired behavior.

However, some cases for exact discretization have been

studied in the literature (Di Giamberardino et al. [1996],

Monaco et al. [1996]; see also Monaco and Normand-

Cyrot [2007] and references therein). These schemes allow

expressing the discretization process as a power Lie series,

and exact discretization can be obtained if some conditions

on the residuals hold. To precise the ideas, let us consider

the nonlinear system

ẋ = f(x, u).

Expanding its solutions x(t) around t = 0 we get

x(t) =

[

x(t)

0!

]

t=0

+

[

ẋ(t)

1!

]

t=0

t +

[

ẍ(t)

2!

]

t=0

t2 + · · ·

= x(0) + f(x(0), u(0))t +
1

2!

[

ḟ(x, u)
]

t=0
t2 + · · ·

= x(0) +

∞
∑

i=1

ti

i!

[

f (i)(x, u, u̇, · · · , u(i−1))
]

t=0

(3)

where the operator f (i)(x, u, u̇, · · · , u(i−1)) is defined as

f (1)(x, u) = f(x, u)

f (i)(x, u, .., u(i−1)) =
∂f (i−1)(x, u, u̇, · · · , u(i−2))

∂x
f(x, u)

+
∂f (i−1)(x, u, u̇, · · · , u(i−1))

∂u
u̇ + · · ·

+
∂f (i−1)(x, u, u̇, · · · , u(i−1))

∂u(i−2)
u(i−1).

Taking the solution (3) around t = kδ and considering a

piecewise constant input uk for kδ ≤ t < (k + 1)δ, we can

write the discrete solution as

xk+1 =

∞
∑

i=0

δi

i!

[

Li
f(x,u)(x)

]

x=xk
u=uk

= e
δLi

f(x,u)(x)
∣

∣

∣

x=xk
u=uk

(4)

where Li
f(x,u)(·) is defined as

Li
f(x,u)(x) =

∂Li−1
f(x,u)

∂x
f(x, u), L0

f(x,u)(x) = x.

From the previous expression, if for a finite i the term

Li
f(x,u) is zeroed, namely the nilpotency condition is ful-

filled, and the discretization becomes exact. Otherwise,

only an approximation up to a certain degree can be ob-

tained. The condition of nilpotency is a sufficient condition

for exact discretization.

3. THE TAKAGI–SUGENO FUZZY MODEL

Let us consider a continuous time nonlinear system

described by

ẋ = f(x, u)

y = h(x)
(5)

where x ∈ IRn, u, y ∈ IRm, and f and h are analytic

functions of their arguments. It is well known that it

is possible to describe, at least in a certain region of

interest, the behavior of the nonlinear system (5) by

a suitable aggregation of local linear subsystems. One

of these approaches is the Takagi–Sugeno modeling. In

particular, the subsystems are defined as follows

Plant rule i: IF zj is Fji, j = 1, · · · , p

THEN Σ:







ẋ = Aix + Biu

y = Cix, i = 1, · · · , r

where z1, · · · , zp are measurable premise variables, which

may coincide with the state vector or with a partial set

of this vector through the output signals yi. Moreover,

F1i are the corresponding fuzzy sets. Usually, these linear

subsystems are obtained from some knowledge of the

process dynamics or by their linearization about some

point of interest.

For a given pair (x(·), u(·)), the aggregate fuzzy model

is obtained by using a singleton fuzzifier, a product infer-

ence and a center of gravity defuzzifier, giving a Continu-

ous Fuzzy Model (CFM) described by

ẋ =

r
∑

i=1

µi(z)Aix +

r
∑

i=1

µi(z)Biu

y =
r
∑

i=1

µi(z)Cix.

(6)
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with z =
(

z1 · · · zp

)T
. Here µi(z) is the normalized

weight for each rule calculated from the membership

functions for zj in Fji, and such that µi(z) ≥ 0, and
r
∑

i=1

µi(z) = 1.

This modeling procedure allows studying nonlinear

systems by introducing tools valid in the linear setting.

In particular, several results are known for stabilization.

One of these provides sufficient conditions for the asymp-

totic stability of the equilibrium of the aggregate fuzzy

model (Tanaka and Wang [2001]).

Theorem 1. Let us assume that the pairs Ai, Bi of (11)

are stabilizable, i = 1, · · · , r, namely there exist matrices

Ki such that Ai+BiKi are Hurwitz. Then, the equilibrium

of the continuous fuzzy control system (6) is globally

asymptotically stable if there exist a common positive

definite matrix P such that

P (Ai + BiKi) + (Ai + BiKi)
T P < 0 (7)

for i = 1, 2, · · · , r, and

GT
ijP + PGij < 0 (8)

for i < j, and Gij =
(Ai + BiKj) + (Aj + BjKi)

2
. ⊳

Theorem 1 expresses the fact that if each linear sub-

system can be stabilized, and if there exists a matrix P

satisfying the matrix Lyapunov equations (7), (8), then

the following continuous fuzzy controller

u =

(

r
∑

i=1

µj(x)Kj

)

x (9)

stabilizes the fuzzy system (6).

The sampled version of system (5), using zero order

holders, is given by

xk+1 = f(xk, uk)

yk = h(xk).
(10)

Also in the discrete time context one can consider a

description of the sampled system (10) by means of an

aggregation of linear subsystems which, in the Takagi–

Sugeno modelization, are defined as

Plant rule i: IF zj,k is Fji, j = 1, · · · , p

THEN Σ:







xk+1 = Ad
i xk + Bd

i uk

yk = Cd
i xk, i = 1, · · · , r.

With a procedure analogous to that for continuous sys-

tems, one can get a Discrete Fuzzy Model (DFM), de-

scribed by

xk+1 =

r
∑

i=1

µi(zk)Ad
i xk +

r
∑

i=1

µi(zk)Bd
i uk

yk =

r
∑

i=1

µi(zk)Cd
i xk.

(11)

Sufficient conditions for the asymptotic stability of the

equilibrium of the DFM are given by the following (Tanaka

and Wang [2001]).

Theorem 2. Let us assume that the pairs Ad
i , Bd

i of (11),

are stabilizable, i = 1, · · · , r, namely there exist matrices

Kd
i such that Ad

i +Bd
i Kd

i are Schur. Then, the equilibrium

of the discrete fuzzy control system (11) is globally asymp-

totically stable if there exist a common positive definite

matrix P such that

(Ad
i + Bd

i Kd
i )T P (Ad

i + Bd
i Kd

i ) − P < 0 (12)

for i = 1, 2, · · · , r, and

(Gd
ij)

T PGd
ij − P < 0 (13)

for i < j and Gd
ij =

(Ad
i + Bd

i Kd
j ) + (Ad

j + Bd
j Kd

i )

2
. ⊳

Hence, if each linear subsystem can be stabilized, and

if there exists a matrix P satisfying the matrix Lyapunov

equations (12), (13), then the discrete fuzzy controller

uk =





r
∑

j=1

µj(xk)Kd
j



 xk (14)

stabilizes the fuzzy system (11). An interesting question

arises at this point: if the discrete system (10) is the exact

discretization of the corresponding continuous system (5),

and the fuzzy system (11) is the exact description of

system (5), will the controller (14) stabilize the continuous

system (6) as well? This question will be studied in the

following section.

4. THE FUZZY DISCRETE STABILIZATION

PROBLEM

Let us consider the nonlinear system (5), defined glob-

ally in a region D, and let us suppose to determine its

exact discretization

xk+1 = Adxk + Bduk + f2d(δ, xk, uk). (15)

We also assume that it its possible to obtain an exact

TS fuzzy model (11) of (15), defined in the same region

D. The problem of global discretized stabilization can be

formulated as follows.

Global Discretized Stabilization Problem (GDSP). Given

a nonlinear system (5), the GDSP consist of finding a dis-

crete system (11) and a piece–wise constant controller (14)
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such that, for any initial condition x0 = x(0) ∈ D, the

solution of the close–loop system

ẋ = f(x,

r
∑

j=1

µj(xk)Kd
j xk)

xk+1 =

r
∑

i=1

µi(xk)Ad
i xk+

r
∑

i=1

µi(xk)Bd
i

(

r
∑

j=1

µj(xk)Kd
j

)

xk

satisfies that

lim
t→∞

x(t) = 0. ⋄

The following result expresses a condition for the

existence of a solution to the GDSP.

Theorem 3. Assume the following assumptions hold

(H0) The nonlinear system (5) is exactly discretizable.

(H1) The function f satisfies the Lipschitz condition

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖

in a region D, and the solution x(t) of the continuous

system (5) exists globally on D.

(H2) There exist matrices P > 0, and Kd
i such that the

matrix inequalities

(Ad
i + Bd

i Kd
i )T P (Ad

i + Bd
i Kd

i ) − P < 0 (16)

for i = 1, 2, · · · , r, and
(

Gd
ij

)T
PGd

ij − P < 0 (17)

hold.

Under (H0), (H1), (H2), the controller (14) solves the

GDSP. ⊳

Proof. From the previous discussion, since by (H2) the

controller (14) stabilizes the system (11), then it stabilizes

also the exact discretized system (15). Hence, we have that

lim
k→∞

x(kδ) = lim
k→∞

xk = 0.

Now, by assumption (H1), the solution x(t) of the contin-

uous system (5) can be expressed as

x(kδ + θ) = F (xk, θ)

with

F (0, θ) = 0

where t = kδ + θ and θ ∈ [0, δ) a linear function. In fact,

this solution can be written as

x(t) = x(t0) +

t
∫

t0

f(τ, x(τ) dτ.

Setting t0 = kδ, t = kδ + θ, θ ∈ [0, δ), xk = x(kδ)

x(kδ + θ) = xk +

kδ+θ
∫

kδ

f(τ, x(τ) dτ = F (xk, θ)

and

‖x(kδ + θ)‖ = ‖F (xk, θ)‖ ≤ ‖xk‖ +

kδ+θ
∫

kδ

‖f(τ, x(τ)‖ dτ

≤ ‖xk‖+L

kδ+θ
∫

kδ

‖x(τ) dτ

≤ (α + Lθ)‖xk‖c

where

‖xk‖c = max
τ∈[kδ,kδ+θ]

‖x(τ)‖

and ‖xk‖ ≤ α‖xk‖c for an appropriate constant α. Hence,

if xk goes to zero, then F (xk, θ) goes to zero as well.

Therefore, one can conclude that

lim
t→∞

x(t) = lim
t→∞

x(kδ + θ) = 0. ⊳

Remark 1. Note that assumption (H1) is the extension

to the nonlinear setting of the corresponding result for

linear systems. In fact, recalling that the solution of a

linear system can be written as

x(kδ + θ) = eAθxk +

kδ+θ
∫

kδ

eA(kδ+θ−s)Bu(s) ds

if a piece–wise constant controller u(t) = Kxk is used for

t ∈ [kδ, (k + 1)δ), then the solution takes the form

x(kδ + θ) =

(

eAθ +

kδ+θ
∫

kδ

eA(kδ+θ−s) ds BK

)

xk

=

(

eAθ +

θ
∫

0

eAτ dτ BK

)

xk

and from this it follows that if the linear discrete system is

stabilized, then the linear continuous system is stabilized

as well. It is worth noting that when taking an approx-

imate solution, this property is no longer guaranteed, as

pointed out before. ⊳

4.1 The Particular Case of a Class of Feedback Discretiza–

ble Nonlinear Systems

In general there is not a special form for nonlinear sys-

tem to guarantee that there exists an exact discretization.

For particular cases, however, it is possible to show that

there exists an exact discretization. For example, the class

of systems described by
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ẋ1 = f1(x2, x3, · · · , xn, u)

ẋ2 = f2(x3, x4, · · · , xn, u)

...

ẋn−1 = fn−1(xn, u)

ẋn = fn(u)

(18)

where fi(·) are polynomials, can be discretized exactly.

More in general, a special class of systems for which ex-

act discretization can be obtained is that of the nonlinear

system (Monaco et al. [1996])

ẋ = f(x) + g(x)uk, g(x) =
(

g1(x) · · · gm(x)
)T

(19)

where x ∈ IRn, f(x), g1(x), · · · , gm(x) are real analytic

vector fields on IRn, and the control uk ∈ IRm is piece–

wise constant over the sampling period δ. The sampled

version of (19) is described by (Monaco and Normand-

Cyrot [1985], Monaco et al. [1996])

xk+1 = ef(x)+g(x)uk(Id)
∣

∣

∣

xk

=

∞
∑

k=0

Lk
f(x)+g(x)uk

(Id)
∣

∣

∣

xk

. (20)

This expression is the formal exponential function, calcu-

lated as an infinite series in xk. Thus, the problem is to

determine the function F (δ, xk, uk): IR ×IRn ×IRm → IRn,

expressing the sampled closed form and sum of the infinite

exponential series. If the sum of (20) is finite, i.e. if there

exists a k̄ such that for any (x, u) ∈IRn ×IRm

xk+1 =

k̄
∑

k=0

Lk
f(x)+g(x)uk

(Id)
∣

∣

∣

xk

(21)

then F (δ, xk, uk) is the finite discretization of the continu-

ous system (19). This finite discretization is not coordinate

free, but in closed form. These concepts are related to the

nilpotency of the Lie algebra associated to the continuous

system. In fact, if this algebra is nilpotent and of dimension

n at some point, then there exists locally a sampled closed

form and, in suitable coordinates, the system is finite

discretizable. Hence one tries to induce the finite discretiz-

ability property by applying first a continuous feedback.

For, following Monaco et al. [1996], we will consider the

following assumption.

(H3) There exist a feedback

u = α(x) + β(x)v

and a transformation

z = Φ(x)

such that the system (5) is transformed into a nonlinear

system

ż = f̃(z, v)

y = h(Φ−1(z))
(22)

which is exactly discretizable. ⋄

This condition relaxes assumption (H0) in the sense

that it covers a broader set of nonlinear systems. The

following corollary can be thus derived.

Corollary 1. Assume conditions (H1), (H2) and (H3)

hold. Then the GDEP is solved. ⊳

In this case, the controller to be implemented is an

hybrid controller, given by

u(t) = α(x) + β(x)





r
∑

j=1

µj(Φ
−1(zk))K̃d

j



Φ−1(zk)

where the membership functions µj(Φ
−1(zk) and the gains

K̃d
j are calculated for the transformed system (22).

5. AN ILLUSTRATIVE EXAMPLE

Let us consider the system given by

ẋ1 = x2 + x2
3

ẋ2 = x3

ẋ = u

which is in the special form (18). Its discretization is

xk+1 =









1 δ δx3+δ2 (1+2uk)

2

0 1 δ

0 0 1









xk +











δ3 (1+2uk)

6

δ2

2

δ











uk.

To obtain the TS discrete fuzzy model, we rewrite this

system as

xk+1 =







1 δ z1

0 1 δ

0 0 1






xk +









z2

δ2

2
δ









uk

where the minimum and maximum values for z1 and z2

are chosen as

z1,min= −0.28125, z1,max = 0.34375

z2,min= −2.6042× 10−3, z2,max = 7.8125× 10−3

and u ∈ [−1, 1], x3 ∈ [−1, 1], δ = 0.25. The membership

functions are obtained as in Tanaka and Wang [2001],

namely

M1(z1)=
z1 + 2.21875

4.5
, M2(z1) =

−z1 + 2.21875

4.5

N1(z2)=
z2

0.0052
, N1(z2) =

−z2 + .0052

0.0052

µ1(xk)= M1N1, µ2(xk) = M2N1

µ1(xk)= M1N2, µ1(xk) = M2N2.
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The aggregate model is thus written as

xk+1 =

4
∑

i=1

µi(xk)Ad
i xk +

4
∑

i=1

µi(xk)Bd
i uk

yk =

4
∑

i=1

µi(xk)Ckxk

where

A1 = A3 =







1 δ 2.28125

0 1 δ

0 0 1







A2 = A4 =







1 δ −2.28125

0 1 δ

0 0 1







B1 = B2 =







0.0052

δ2

2
δ







B2 = B4 =







0

δ2

2
δ






.

The results of the application of the discrete stabilizer (14)

are shown in Figures 1 and 2. Figure 1 shows the response

of the discretized system with the discrete controller,

while Figure 2 shows the response of the continuous time

nonlinear system when driven by the digital controller. As

it can be observed, the continuous systems is stabilized by

the proposed digital controller.

0 50 100 150 200
−12

−10

−8

−6

−4

−2

0

2

Fig. 1. Response of the discretized system

6. CONCLUSIONS

In this paper a scheme that guarantees the global

stabilization of a continuous time nonlinear system by

0 50 100 150 200
−30

−25

−20

−15

−10

−5

0

5

Fig. 2. Response of the continuous nonlinear system

means of a digital controller has been proposed. This

scheme is based on the existence of an exact discretization

and an exact Discrete Takagi–Sugeno Fuzzy Model for

which a discrete stabilizer is calculated. This result can

be extended to the class of nonlinear systems exactly

discretizable via a continuous feedback. The proposed

scheme can be seen as an extension of the well known

result for linear time invariant systems, and can be seen

as a possible way of stabilizing nonlinear systems by a

digital controller calculated on the basis of a discrete TS

fuzzy model. An illustrative example suggests the validity

of the result.
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