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Abstract: In this work we consider robust control of discrete-time linear systems affected by
time-varying additive disturbance inputs. We present a linear matrix inequality (LMI) based
design technique that takes into account in an explicit manner, by means of a Minkowski
function, the shape of the set in which the disturbances are bounded. This technique allows
one to obtain tight bounds on the performance of the closed-loop system.
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1. INTRODUCTION

One practically relevant problem in control theory is the
robust regulation towards a desired equilibrium of linear
discrete-time systems affected by time-varying additive
disturbance inputs. The input-to-state (ISS) stability no-
tion, originally proposed in Sontag [1989, 1990], provides a
natural framework that has been successfully employed in
the stability analysis and control synthesis of a wide class
of systems subject to disturbances.

ISS theory has been applied to discrete-time systems
in Jiang and Wang [2001]. In this work, the notions of
ISS stability and ISS-Lyapunov functions for discrete-time
systems were introduced. However, there are few results
in the literature that provide design methods to obtain
control laws that guarantee that the closed-loop system
is ISS with respect to a given disturbance. For linear
systems subject to additive disturbances, it is possible
to use H∞ design techniques, see for example Kaminer
et al. [1993], Chen and Scherer [2006], Limebeer et al.
[1989], Lie and I. [1996], Doyle et al. [1989], to obtain
controllers that guarantee that the closed-loop systems
is ISS. This approach is appropriate for disturbances
bounded in an ellipsoidal set. However, in many practical
control applications the disturbances are bounded inside a
polyhedral set (for example when lower and upper bounds
on the disturbances are provided) to which this approach
does not fit. One could overapproximate the polyhedron
by an ellipsoidal set, but clearly this leads to conservative
results.

In this work we consider robust control of discrete-time
linear systems affected by time-varying additive distur-
bance inputs. We present a linear matrix inequality (LMI)
based design technique that computes ISS gains and ISS
stabilizing controllers using different norms to measure

disturbance. In this way, the shape of the set in which
the disturbances are bounded can be accounted for. The
technique is based on defining a contractive constraint
(that guarantees that the closed-loop system is ISS) that
depends on the Minkowski functional, see Luenberger
[1969], Blanchini [1994], of the set in which the disturbance
is bounded. This method automatically provides better
approximation of ultimate bounds given fixed polyhedron
disturbance sets.

2. PRELIMINARY DEFINITIONS AND
ASSUMPTIONS

A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. It is said
to belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.
A continuous function β : [0, a)× [0,∞) → [0,∞) is said to
belong to class KL if, for each fixed s, the mapping β(r, s)
belongs to class K with respect to r and, for each fixed
r, the mapping β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞.

We now review the ISS framework for discrete-time au-
tonomous systems introduced in Jiang and Wang [2001].
Consider the discrete-time autonomous perturbed system
described by the following difference equation

x+ = G(x, v), (1)

where x ∈ Rnx is the state, x+ ∈ Rnx is the one step
predicted state vector, v ∈ V ⊂ Rnv is an unknown
time-varying disturbance input and G : Rnx × Rnv is an
arbitrary, possibly discontinuous, function. In what follows
we assume that V is a bounded set.

Definition 1. System (1) is said to be ISS with respect
to v if there exist a class KL function β and a class K
function γ such that for any initial state x(0) and any
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bounded disturbance v(k), the solution x(k) exists for all
k ≥ 0 and satisfies

‖x(k)‖ ≤ β(‖x(0)‖, k) + γ

(

sup
0≤l≤k−1

‖v(l)‖
)

.

Definition 2. A function V : Rnx → R≥0 is called an ISS-
Lyapunov function for system (1) if there exist class K∞

functions α1, α2, α3 and a class K function σ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
V (G(x, v)) − V (x) ≤ −α3(‖x‖) + σ(‖v‖). (2)

for all x ∈ Rnx and d ∈ Rnv .

Lemma 1. ( Jiang and Wang [2001], Lazar [2006]). If sys-
tem (1) admits an ISS-Lyapunov function, then it is ISS.

We denote by ∂P the boundary of a set P . For any real
λ ≥ 0, the set λP is defined as {x = λy : y ∈ P}. Let us
introduce the following definition, see Blanchini [1994].

Definition 3. A function Ψ : Rn → R is said to be a gauge
function if

• Ψ(x + y) ≤ Ψ(x) + Ψ(y) for all x, y ∈ Rn,
• Ψ(x) ≥ 0,
• Ψ(x) = 0 ⇒ x = 0,
• Ψ(λx) = λΨ(x) for all λ > 0.

A gauge function is 0-symmetric if and only if it is a norm.
In this work, we consider gauge functions in order to deal
with possibly nonsymmetric sets. We define the ball of
radius ξ with respect to Ψ as Bξ = {x ∈ Rnx : Ψ(x) ≤ ξ}.
The Minkowski functional Φ (see Luenberger [1969]) of
a closed set P that contains the origin in its interior is
defined as follows:

ΦP(x) =

{

0 if x = 0
ξ > 0, where x ∈ ∂(ξP) otherwise.

The Minkowski functional Φ is a gauge function and ΦP(x)
is the value by which ∂P has to be scaled in order to
include x. This implies that (due to the closedness of P)
x ∈ P ⇔ Φ(x) ≤ 1.

3. ROBUST FEEDBACK DESIGN

Consider the following discrete-time linear system subject
to bounded disturbances defined by the following differ-
ence equation

x+ = Ax + Bu + Ev (3)

where x ∈ Rnx is the state, x+ ∈ Rnx is the one step
predicted state vector, u ∈ Rnu is the input vector and
v ∈ V ⊂ Rnv is the disturbance input which is bounded
inside a closed polyhedron V that contains the origin in its
interior.

The main objective of this work is to design a feedback law
u = −Kx for system (3) such that the closed-loop system
is guaranteed to be ISS with respect to the disturbance
input v. To this end, given matrices Q > 0, R > 0, consider
a linear feedback gain K, a positive definite matrix P and
a positive constant γ such that the following inequality is
satisfied:

V (x+) − V (x) ≤ −L(x,−Kx) + γd(v)2 (4)

for all x ∈ Rnx and v ∈ Rnv , where

V (x) = xT Px,

L(x, u) = xT Qx + uT Ru,

and d(v) = ΦV(v) is the Minkowski functional of V . Using
the Minkowski functional to define this ISS constraint
allows one to take explicitly into account the shape of
V in the design technique. Inequality (4) guarantees that
system (3) in closed-loop with the feedback control u =
−Kx is ISS with respect to v. This is proved in the
following lemma.

Lemma 2. If P > 0, K satisfy (4) for a positive constant
γ then V (x) = xT Px is an ISS-Lyapunov function of
system (3) in closed-loop with u = −Kx.

Proof. If d is a norm, i.e., V is zero-symmetric, it is easy
to see that there exist class K∞ functions α1, α2, α3 and a
class K function σ such that (2) is satisfied.

If d is not a norm, consider the function d̂(v) :=

max{d(v), d(−v)}. This function satisfies d(v) ≤ d̂(v) for
all v ∈ Rnv . This implies that

V (x+) − V (x) ≤ −L(x,−Kx) + γd̂(v)2.

Next we prove that d̂(v) is a norm. This implies that d̂(v)
satisfies the following properties

• d̂(x + y) ≤ d̂(x) + d̂(y) for all x, y ∈ Rn,

• d̂(x) ≥ 0,

• d̂(x) = 0 → x = 0,

• d̂(λx) = |λ|d̂(x) for all λ ∈ R.

The first property follows from:

d̂(x + y) = max{d(x + y), d(−x − y)}
≤ max{d(x) + d(y), d(−x) + d(−y)}
≤ max{d(x), d(−x)} + max{d(y), d(−y)}
= d̂(x) + d̂(y).

The second and third of the above properties hold by
definition. Finally, taking into account that λ ∈ R, the
fourth property holds as follows:

d̂(λx) = max{d(λx), d(−λx)}
= max{|λ|d(x), |λ|d(−x)}
= |λ|max{d(x), d(−x)}
= |λ|d̂(x).

This implies that there exist class K∞ functions α1, α2, α3

and a class K function σ such that (2) is satisfied. 2

Next, a LMI design technique to obtain matrices K, P and
positive constant γ such that (4) is satisfied for a given
system is presented. This technique takes into account
the shape of the polyhedron in which the disturbance is
bounded. This is possible because the ISS inequality (4)
depends upon the Minkowski functional of the set V and
hence, it depends on the shape of the set V . This is the
main contribution of this paper and it is presented in the
following theorem.

Theorem 3. Consider system (3). If matrices there exist
matrices W, Y and a constant γ such that the following
inequality











γ 0 vT
i ET 0 0

∗ W WAT − Y T BT WQ
1

2 Y T R
1

2

∗ ∗ W 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I











≥ 0, (5)
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is satisfied for all vertices vi of V , then (4) is satisfied for
P = W−1, K = Y W−1 and γ.

Proof. Taking into account the definition of V and L,
inequality (4) is equivalent to

(Ax + Bu + Ev)T P (Ax + Bu + Ev) − xT Px ≤
−xT Qx − uT Ru + γd(v)2, ∀x ∈ Rnx , v ∈ Rnv .

Substituting u = −Kx we obtain

Γ(x, v) + vT ET PEv − γd(v)2 ≤ 0, ∀x ∈ Rnx , v ∈ Rnv ,

where Γ(x, v) is a quadratic function of x and v, of the
form

Γ(x, v) = xT ((A − BK)T P (A − BK)
+Q + KT RK − P )x + 2vT ET P (A − BK)x.

Inequality (4) must be satisfied for all x, so it must hold
for the maximum value of Γ(x, u) for any given v. In order
to evaluate the maximum value for a given v, from now on
we assume 1 that

S = (A − BK)T P (A − BK) + Q + KT RK − P < 0.

This assumption implies that for a fixed v ∈ Rnv , Γ(x, v)
is a concave function of x and that the maximum for v
is attained at the point x∗(v) such that x∗(v) ∈ {x ∈
Rnx |∂Γ(x,v)

∂x
= 0}. Operating we obtain that

x∗(v) = −S−1(A − BK)T PEv

and

Γ(x∗(v), v) = −vT ET P (A − BK)S−1(A − BK)T PEv.

Therefore inequality (4) holds for all x ∈ Rnx and v ∈ Rnv

if
−vT ET P (A − BK)S−1(A − BK)T PEv

+vT ET PEv − γd(v)2 ≤ 0, ∀v ∈ Rnv .

This inequality is satisfied for v = 0. If v 6= 0 we divide
the inequality by d(v)2, which yields

− v

d(v)

T

ET P (A − BK)S−1(A − BK)T PE
v

d(v)

+
v

d(v)

T

ET PE
v

d(v)
− γ ≤ 0, ∀v ∈ Rnv .

Taking into account that d is a gauge function we obtain
the following equivalent inequality

−zT ET P (A − BK)S−1(A − BK)T PEz

+zT ET PEz − γ ≤ 0, ∀z such that d(z) = 1.

Because S < 0 the right-hand side is a convex function in
z, this implies that inequality is satisfied if it holds for all
the vertices of the set B1, where B1 = {z ∈ Rnv |d(z) = 1}
is the unit ball of d. It follows (recall the definitions of d
and V) that inequality (4) is satisfied holds for all x ∈ Rnx

and v ∈ Rnv if

−vT
i ET P (A − BK)S−1(A − BK)T PEvi

+vT
i ET PEvi − γ ≤ 0

(6)

for all vertices vi of V .

In what follows, we are going to manipulate this inequality
to obtain (5). Applying Schur complement, inequality (6)
is equivalent to

[

γ − vT
i ET PEvi −vT

i ET P (A − BK)
∗ −S

]

≥ 0.

1 This assumption will be immediately satisfied by the matrices P, K

obtained following the proposed design method.

Taking into account the definition of S we obtain
[

γ 0
∗ P − Q − KT RK

]

−
[

vT
i ET

(A − BK)T

]

P [Evi (A − BK)] ≥ 0.

Applying Schur complements we obtain




γ 0 vT
i ET

∗ P − Q − KT RK (A − BK)T

∗ ∗ P−1



 ≥ 0.

Following the same approach and applying twice the Schur
complement it follows that (6) is equivalent to













γ 0 vT
i ET 0 0

∗ P (A − BK)T Q
1

2 KT R
1

2

∗ ∗ P−1 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I













≥ 0.

By pre- and post-multiplying with the positive definite
matrix:

diag(I, P−1, I, I, I)
we obtain













γ 0 vT
i ET 0 0

∗ P−1 P−1(A − BK)T P−1Q
1

2 P−1KT R
1

2

∗ ∗ P−1 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I













≥ 0.

By applying the changes of variables P = W−1 and
K = Y W−1, we obtain (5). 2

Using Theorem 3 it is possible to obtain matrices K, P
such that the positive constant γ is minimized for a given
system solving the following LMI optimization problem

min
W,Y,γ

γ subject to (5) (7)

and letting P = W−1 and K = Y W−1.

Remark 1. The LMI constraint (3) depends on the vertices
of the set V which defines the gauge function d of inequal-
ity (4). However, this inequality holds for all v ∈ Rnv . This
implies that regardless of the set V used to design K, P and
γ, the trajectories of the state of the closed-loop system
can be bounded using (4) for any disturbance realization.

Remark 2. The constant γ characterizes the set Ωγ in
which function V is not guaranteed to decrease for all
v ∈ V ; that is,

Ωγ = {x : L(x,−Kx) ≤ γ}.
This implies that minimizing γ, we obtain a linear feedback
K that minimizes in an indirect way the size of the set in
which the system is ultimately bounded. Note that the set
is not bounded in Ωγ , but in a set that contains Ωγ , see for
example Alamo et al. [2005] for details on this reasoning.

Remark 3. The linear feedback u = −Kx and the cost
function V (x) = xT Px obtained applying Theorem 3
can be used as the terminal cost and the corresponding
local feedback in the design of robust MPC controllers.
See Lazar et al. [2008], Limon et al. [2006].

Remark 4. The results obtained can be also applied to
systems affected, possibly simultaneously, by time-varying
parametric disturbances and additive disturbance inputs,
defined by the following difference equation

x+ = A(w)x + B(w)u + E(w)v,
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where w is an unknown time-varying parametric uncer-
tainty bounded in W , where W is a compact polyhedron,
A(w), B(w), E(w) are affine functions of w ∈ W and there
exists a w ∈ W such that the matrix B(w) has full-
column rank. In this case, the LMI constraint must hold
for the combination of all the vertices of W and the vertices
that define the polytopic uncertainties. The resulting LMI
constraint is the following











γ 0 vT
i E(wj)

T 0 0

∗ W WA(wj)
T − Y T B(wj)

T WQ
1

2 Y T R
1

2

∗ ∗ W 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I











> 0,

for all vi ∈ vert V and wj ∈ vert W .

Remark 5. The proposed design technique is related to
the H∞ control problem, see Kaminer et al. [1993], Chen
and Scherer [2006], Limebeer et al. [1989], Lie and I.
[1996], Doyle et al. [1989] and the references therein. In the
H∞ design technique, the matrices P, K and the positive
constant γ are obtained such that

V (x+) − V (x) ≤ −L(x,−Kx) + γd(v)2

for all v where d(v) is the Minkowski functional of the
set vT v ≤ 1, or equivalently, the 2-norm of the vector v.
Note that for this set, the proposed approach cannot be
applied because an ellipsoid is not defined by a finite set of
vertices. This inequality leads to the following LMI, see for
example Kaminer et al. [1993], Chen and Scherer [2006],
Limebeer et al. [1989], Lie and I. [1996], Doyle et al. [1989],











γI 0 ET 0 0

∗ W WAT − Y T BT WQ
1

2 Y T R
1

2

∗ ∗ W 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I











> 0. (8)

In this line of results, the disturbance is assumed to be
bounded in a set defined by the unit-ball of the 2-norm.
This assumption may lead to conservative estimates when
the disturbance is bounded in a polyhedral set. The results
presented in this paper help in this direction as they
provide techniques better suited to polyhedral sets.

Remark 6. The results obtained can be applied to opti-
mize not only ISS gains, but also induced norms (such as
H∞ in the ellipsoidal case). If L(x, u) = xT CT Cx, where
C is a matrix that defines an output z = Cx of the system,
it can be proved using a passivity type reasoning that the
following inequality holds

∑∞

k=0 z(k)T z(k)
∑∞

k=0 d(v(k))
≤ γ

for all {d(k)} where γ is the ISS gain obtained solving the
proposed LMI optimization problem and z(k) is the output
trajectory of the system in closed-loop with the obtained
linear feedback u = Kx from from initial state zero for a
disturbance trajectory {d(k)}.

4. EXAMPLE

Consider the discrete-time linear system (3) subject to
bounded additive disturbances defined by the following
matrices:

A =

[

1 1
0 1

]

, B =

[

0
1

]

, E =

[

1 0
0 1

]

.

−0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15

v
1

v
2

Fig. 1. Sets 0.1V1 (blue), 0.1V∞ (red) and 0.1V2 (green).

In this section we are going to obtain three different
feedback laws and the corresponding ISS-Lyapunov func-
tions. Each feedback law assumes that the disturbance is
bounded in a closed set with a different shape.

First, we solve Problem (7) for Q = I, R = 10 and
V1 = {v : ‖v‖1 ≤ 1}. In this case, d(v) = ‖v‖1. The
vertices of V1 are the following:

v11 =

[

1
0

]

, v12 =

[

−1
0

]

, v13 =

[

0
1

]

, v14 =

[

0
−1

]

,

and the corresponding matrices are

P1 =

[

4.2445 6.3364
6.3364 20.4440

]

,

K1 = [0.3096 1.3088] ,

γ1 = 20.4643.

Next we solve Problem (7) for Q = I, R = 10 and
V∞ = {v : ‖v‖∞ ≤ 1}. In this case, d(v) = ‖v‖∞. The
vertices of V∞ are the following:

v∞1 =

[

1
1

]

, v∞2 =

[

1
−1

]

, v∞3 =

[

−1
1

]

, v∞4 =

[

−1
−1

]

,

and the corresponding matrices are

P∞ =

[

4.9827 8.1513
8.1513 23.3409

]

,

K∞ = [0.4166 1.4160] ,

γ∞ = 44.6690.

Finally, we obtain the H∞ feedback gain and correspond-
ing ISS-Lyapunov function. In this case the gauge function
is defined as the Minkowski functional of the set V2 defined
as

V2 = {v : ‖v‖2 ≤ 1}.
We solve Problem (7) for Q = I, R = 10 substituting the
LMI inequality (4) by the H∞ LMI (8), see Remark 5, and
we obtain the following results

P2 =

[

4.9710 7.7439
7.7439 22.5426

]

,

K2 = [0.3771 1.3757] ,

γ2 = 25.5104.
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Fig. 2. Sets L(x,−K1x) ≤ γ10.12 (blue), L(x,−K∞x) ≤
γ∞0.12 (red) and L(x,−K2x) ≤ γ20.12 (green).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15
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−0.05

0
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0.1

0.15

0.2

v
1

v
2

Fig. 3. Sets 0.2V1 (blue), 0.1V∞ (red) and 0.1
√

2V2 (green).

We have obtained three different feedback laws and the
corresponding ISS-Lyapunov functions. Each of these feed-
back laws guarantee that (4) is satisfied for a given gauge
function, namely,

V1(x
+) − V1(x) ≤ −L(x,−K1x) + γ1d1(v)2,

V∞(x+) − V∞(x) ≤ −L(x,−K∞x) + γ∞d∞(v)2,
V2(x

+) − V2(x) ≤ −L(x,−K2x) + γ2d2(v)2.

Using these functions we can obtain bounds on the trajec-
tories of the closed-loop system for a given closed set V . In
this example, we are going to consider two different cases.

Case 1: Assume that V is defined by {v : ‖v‖1 ≤ 0.1}. In
this case, the following inequalities hold

d1(v) ≤ 0.1, ∀v ∈ V ,
d∞(v) ≤ 0.1, ∀v ∈ V ,
d2(v) ≤ 0.1, ∀v ∈ V .

Although the value of the three gauge functions are equal,
in Figure 1 it is shown that 0.1V1 ⊆ 0.1V2 ⊆ 0.1V∞. The
set V is better approximated by V1. This implies that
the feedback law u = −K1x provides better bounds on
the trajectories of the closed-loop system. If u = −K1x
is applied it is guaranteed that the function V1(x) =
xT P1x decreases for all initial states outside the ellipsoid
L(x,−K1x) ≤ γ10.12. If u = −K∞x is applied it is
guaranteed that the function V∞(x) = xT P∞x decreases
for all initial states outside the ellipsoid L(x,−K2x) ≤
γ∞0.12. If u = −K2x is applied it is guaranteed that
the function V2(x) = xT P2x decreases for all initial states

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
1

x
2

Fig. 4. Sets L(x,−K1x) ≤ γ10.22 (blue), L(x,−K∞x) ≤
γ∞0.12 (red) and L(x,−K2x) ≤ γ2(0.1

√
2)2 (green).

outside the ellipsoid L(x,−K2x) ≤ γ20.12. Figure 2 shows
that the ellipsoid corresponding to K1 is smaller than the
one corresponding to K∞ and K2.

Case 2: Assume that V is defined by {v : ‖v‖∞ ≤ 0.1}. In
this case, the following inequalities hold

d1(v) ≤ 0.2, ∀v ∈ V ,
d∞(v) ≤ 0.1, ∀v ∈ V ,

d2(v) ≤ 0.1
√

2, ∀v ∈ V .

In Figure 3 it is shown that 0.1V∞ ⊆ 0.1
√

2V2 ⊆ 0.2V1.
The set V is better approximated by V∞. This implies that
the feedback law u = −K∞x provides better bounds on
the trajectories of the closed-loop system. If u = −K1x
is applied it is guaranteed that the function V1(x) =
xT P1x decreases for all initial states outside the ellipsoid
L(x,−K1x) ≤ γ10.22. If u = −K∞x is applied it is
guaranteed that the function V∞(x) = xT P∞x decreases
for all initial states outside the ellipsoid L(x,−K2x) ≤
γ∞0.12. If u = −K2x is applied it is guaranteed that
the function V2(x) = xT P2x decreases for all initial states

outside the ellipsoid L(x,−K2x) ≤ γ2(0.1
√

2)2. Figure 4
shows that the ellipsoid corresponding to K∞ is smaller
than the one corresponding to K1 and K2.

This example demonstrates that using an appropriate
description of the disturbance to design the linear feedback
allows us to obtain better bounds on the trajectories of the
closed-loop system.

5. CONCLUSIONS

In this paper a novel approach to the design of feedback
laws and ISS-Lyapunov functions for discrete-time linear
systems subject to bounded disturbance inputs bounded
has been presented. The LMI-based proposed technique
computes ISS gains and ISS stabilizing controllers using
different norms to measure disturbance. This method
automatically provides better approximation of ultimate
bounds given fixed polyhedron disturbance sets. This leads
generally to less conservative results if instead one would
use a method based on an overapproximation of the
disturbance set with an ellipsoidal set and rely on one
of the existing approaches. The proposed method can be
applied to obtain the terminal cost and the corresponding
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local controller needed to design robust min-max MPC
controllers.
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