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Abstract: An Integral Nested Sliding Mode Control (INSMC) is proposed for n-link robotic manipulators 
tracking problem by employing Integral Sliding Mode (ISM) and Nested Sliding Mode (NSM) concepts. 
This controller has the robustness of NSM against matched and no matched perturbations, and the 
capability of ISM to reduce the sliding functions gains. Application to a two-link planar robot manipulator 
is presented as a simulation example. 

1. INTRODUCTION 

The robotic manipulator trajectory control problem has been 
studied extensively and an important number of 
methodologies have been used to solve it such as Computed 
Torque (see Khalil [1995]), Lyapunov Stability (see Canudas 
[1996]), Passivity (Canudas [1996]), Adaptive Control (see 
Craig [1988] and Slotine [1988]), Neural Control (see Ozaki 
[1992]), Fuzzy Control (see Choi [1997]) and Sliding Mode 
Control (SMC) (see Utkin [1999]). Among this methods 
SMC is one of the most effective approaches because its 
robustness to matched perturbations and low computational 
cost. However conventional SMC is not robust against no-
matched perturbations. 

In this work we design a controller on the basis of Nested 
Sliding Mode (NSM) (see Adhami [2005]) in combination 
with Integral Sliding Mode (ISM) in order to achieve 
robustness to matched, and no matched perturbations, and 
ensure output tracking. This Integral Nested Sliding Mode 
Control (INSMC) can guarantee the robustness of the system 
throughout the entire response starting from the initial time 
instance and reduce the sliding functions gains in comparison 
with NSM. 

The rest of the work is organized as follows. The dynamics of 
an n-link robotic manipulator and its structural properties are 
formulated in Section 2. In Section 3 an INSMC for robotic 
manipulators is designed. The simulation results, based in a 
two-link planar robotic manipulator, are presented in Section 
4 to verify the robustness and performance of the proposed 
control strategy. Finally, some conclusions are given in 
Section 5. 

2. PROBLEM FORMULATION 

Consider a non perturbed n-joint robotic manipulator system 
described by the following model: 

 ( )   ( , )   ( )  M q q C q q q g q τ+ + =  (1) 

where ( )q t  is an n×1 vector of joint angular positions, τ is 
the n×1 vector of applied joint torque, ( )M q is the n×n 

manipulator inertia matrix, ( ),C q q  is the n×1 vector of 

centripetal and coriolis torques and ( )g q  is the n×1 vector of 
gravitational torques. This model has the following important 
properties: 

1) ( )M q  is a symmetric positive definite matrix for all 
nq ∈ℜ . 

2) There exists a unique matrix ( ),C q q  such that 

( ) 2 ( , )M q C q q−  is skew symmetric. 

Defining 1y q= , 2y q=  as the state variables and adding 
perturbations terms due to external disturbances, parameters 
variation and model uncertainties, we obtain the following 
state space representation: 

 1 2

2 2 1 2 2 1 1 2

  
( , )  ( )   ( , , ) 

y y
y f y y b y u y y tλ

=
= + +

 (2) 

with 1y  the output of the system and u τ=  the vector of the 
torques applied to the joints of the robot, 2 1 2( , )f y y  and 

2 1( )b y  are the continuous vector functions. 

Throughout the development of the controller, we will use 
the following assumption: 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9899 10.3182/20080706-5-KR-1001.3780



 

     

 

A1) The unmatched 1( , )u y tλ  and matched perturbation 

1 2( , , )m y y tλ  perturbation terms which will be defined later, 
are bounded by known positive scalar functions: 

 1 1 1

1 2 2 1 2

( , ) ( , )

( , , ) ( , , )
u

m

y t y t

y y t y y t

λ β

λ β

<

<
 (3) 

. 

A2) The signum function can be approximated by the 
sigmoid function as showed by the following limit:  

 ( ) ( )lim sigm S sign S
ε

ε
→∞

=  (4) 

The following figure shows the approximation for various 
values of the sigmoid function slope 

  

Fig. 1. Sigmoid function for various values of the slope ε. 

A3) [ ]2 1( )rank b y n= ,  

where n  denotes the degrees of freedom of the manipulator. 

Let 1 ( )refy t  presents the desired trajectory of the joint 
positions vector. The considered problem is to design an 
Integral Nested Sliding Mode controller that obtains output 
trajectory tracking in despite of the perturbations of the 
system. 

3. INSMC FOR ROBOTIC MANIPULATORS 

Let 1 ( )refy t  be a twice differentiable function, but with 
unknown derivatives, then define the output tracking error as 

1 1 1 ( )refe y y t= −  and its derivative as 

 1 2 1( , )ue y y tλ= +  (5) 

where 1( , )u y tλ  is the unmatched term defined by the 
following equality 

 1 1( , )u refy t yλ = − . (6) 

Then define the pseudo-sliding function 1s  for the first block 
(5) as 

 1 1 1s e z= + , 1 1(0) (0)z e= −  (7) 

where 1z  is the integral variable that will be defined later. 

The dynamics of 1s  can be obtained of the form 

 1 2 1 1( , )us y z y tλ= + +  (8) 

Considering 2y  as virtual control in (5), we propose  

 2 2,0 2,1ref ref refy y y= +  (9) 

where 2,0refy  is the nominal part of the control and 2,1refy  is 
the control which will be designed to reject the perturbation 
in (5) (see Utkin [1999]). To obtain 2refy  and replace it in 
(6) we must define the sliding function for the second block 
as 

 2 2 2 2 2 2, - refs e z e y y= + = , 2 2(0) (0)z e= −  (10) 

with 2z  the integral variable. From the equation (10) we 
obtain 

 2 2 2 2-refy s y z= +  (11) 

Then using (9) and (11) the first transformed block (8) 
becomes as  

 1 2 2 2,0 2,1 1- ref ref us s z y y z λ= + + + +  (12) 

Now 1z  of the form 

 1 2 2 2,0-( - )refz s z y= +  (13) 

with the initial condition 1 1(0) (0)z e= − , and defining 2,0refy  
as follows 

 20 1 1-refy c e=  (14) 

where 1c 0> , the dynamics for 1z  and 1s  are represented 
as  

 
1 2 2,0

1 2,1

 - -

.
ref

ref u

z e y

s y λ

=

= +
 (15) 

Then the second part 2,1refy  2,1refy of (9) is selected of the 
form 

 2,1 1 1 1- ( )refy k sigm sε=  (16) 
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where 1k 0> . Proceeding with the second block, its 
dynamics can be obtained by differentiating (10) along the 
trajectories of the system (2): 

 2 2 1 2 2 1 2 2 ( , )  ( )  - ref ms f y y b y u y z λ= + + +  (17) 

where 2refy  is defined as 

 

2 1 1 2,1 1 2

1 1

1 1

-

1- tanh ²( (1)) 0
 

0 1- tanh ²( (2))

ref refy k Py c y

s
P

s

ε

ε
ε

= −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 (18) 

 and the matched perturbation term mλ  is given by 

 ( )1 1 1 2( , , )m uc k P y y tλ ε λ λ= − + +  (19) 

Designing 0 1u = u +u  we obtain 

2 2 1 2 2 1 0 2 1 1 2 2 ( , )  ( ) ( )  - ref ms f y y b y u b y u y z λ= + + + +  (20) 

we choose 2z  as follows 

 2 2 1 2 2 1 0 2- ( , ) - ( ) refz f y y b y u y= +  (21) 

with 

 2 2(0) (0)z e= −  (22) 

to ensure sliding mode occurrence from initial instance:  
Then choosing 

 1
0 2 1 2 1 2 2 2 2( ) (- ( , ) - )refu b y f y y y c e−= +  (23) 

where 2c 0> , and using (21) and (23) the equation (20) is 
reduced to 

 2 2 1 1( ) .ms b y u λ= +  (24) 

To induce sliding mode in (24) we choose 

 1
1 2 2 1 2- ( ) ( )u k b y sign s−=  (25) 

with 2k 0> . Using (15), (16), (24 and (25), the dynamics of 

the variables 1s  and 2s  are derived as follows 

 
1 1 1 1

2 2 2

  - ( )
  - ( )

u

m

s k sigm s
s k sign s

ε λ
λ

= +

= +  (26) 

while the tracking errors 1e  and 2e  dynamics are obtained 
from (5), (9)-(11), (14) and (10), (21)-(24), respectively, of 
the form mλ  

 
1 1 1 2 2,1

2 2 2 2 1 1

  -

  - ( ) .
ref u

m

e c e e y

e c e b y u

λ

λ

= + + +

= + +  (27) 

Establishing the following set of conditions: 

 1
1 2 2, 1 0,  

1
k k

β
δ β

δ
> > > >

−
 (28) 

1 , 0u u usλ δ δ≤ > ,                                 (29) 

 

we can enunciate a theorem  as follows 

Theorem 1. If the assumptions A1), A2) and A3) hold, the 
conditions (28) are satisfied and the control law  

1 1
2 1 2 1 2 2 2 2 2 2 1 2( ) (- ( , ) - ) - ( ) ( )refu b y f y y y c e k b y sign s− −= +   

is constructed; then a solution of the error dynamics (27) is 
asymptotically stable.  

The proof of the Theorem 1 is described in Appendix A.   

Therefore the control objectives are fulfilled, and the desired 
performance of the robotic manipulator is obtained. 

3. SIMULATIONS 

As a testing illustration of the designed algorithm, it will be 
applied to a two-link planar robot manipulator with 
perturbations due to external disturbances, model 
uncertainties, parameters variation and the load that the robot 
manipulate. To completely define the state-space 
representation in (2), we will define the following terms as 

 
( ) ( )

( )

1
2 1 2 1 1 2

1
2 1 1

( , ) ,

( )

f y y M y N y y

b y M y

−

−

= −

=
, 

 ( ) 11 12
1

21 22

m m
M y

m m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

 ( )
( ) ( ) ( )( )
( ) ( )( )

2
1 2 2 2 2 2

1 2 2
1 2 2 2 1

- 2 1 2 - 2
,

1 sin 2

L L M y y y
N y y

L L M y y

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 ( )( )
( )

2
22 2 2

12 21 22 1 2 2 1

2
11 1 1 2 12 22

,

cos 2 ,

2 ,

m L M

m m m L L M y

m L M M m m

=

= = +

= + + −

 

where 1 2 1, ,L L M  and 2M  are the lengths and masses of the 
the first and second links, respectively. The values of these 
manipulator parameters used in the simulations were 

 1 2 1 210 ,   1 ,   1 ,   1 M kg M kg L m L m= = = = ; 

To fulfil all the design conditions, the control parameters 
were adjusted to 

 1 2 1 27,   35,   4,   4,   20K K c c ε= = = = = . 
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The perturbations terms used in simulation are 

     4 5cos(2 )
2sin(.5 ) 5 3sin( )u m

t
t t

λ λ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
, 

and the references for the angular joint positions are  

 1

2sin(2 )
2 3cos( )ref

t
y

t
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
. 

Figure 2 shows the results for the tracking responses, in 
Figure 2a and 2b are shown the responses for joint 1 and joint 
2 respectively. It can be appreciated that the performance of 
the control defined in (29) is satisfactory, since the objectives 
are accomplished, rejecting the external disturbances, model 
uncertainties and parameters variation as well. The tracking 
errors converge to a neighbourhood of zero, it can be 
observed in Figure 3. This also can be observed in Figure 4 
where the phase portrait of the tracking errors is shown. In 
Figure 5 the input controls for joint 1 and joint 2, 5a and 5b 
respectively, can be observed.  

4. CONCLUSIONS 

An INSMC is designed for rigid robotic manipulators by the 
combination of Nested and Integral SMC concepts. The 
proposed algorithm is robust against matched and no matched 
perturbations due to external disturbances, model 
uncertainties and parameters variations. The INSMC 
demonstrates a satisfactory performance in output tracking 
problem of robotic manipulators, moreover it obtains a 
reduced steady tracking error in comparison with standard 
SMC. 
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Fig. 2. Tracking responses 
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Fig. 3. Tracking errors. 
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Fig. 4. Phase portrait of the tracking errors. 
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Fig. 5 Input controls for: a) joint 1, b) joint 2. 
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Appendix A. PROOF OF THEROEM 1 

    In order to prove Theorem 1, it must be demonstrated first 
stability of the system (26). We choose the following 
Lyapunov function: 

 1
2 2 22

TV s s=  (a1) 

Differentiating (A1) along the trajectories of the system (26) 
and using (3) yields 

 
( )
( )

2 2 2 2

2 2 2 1 2

- ( )

- ( , , )

T
mV s k sign s

s k y y t

λ

β

= +

≤ +
.  

Under the conditions (28) we obtain 2 0V < , therefore, due 

to the condition (10) sliding mode occurs on 2 0s =  from 
initial time. If we do not know the initial condition we assure 
at least finite time convergence of 2s  to zero.  

Proceeding in similar way for the first block, we define 

 1
1 1 12

TV s s= ,  

Thus 

 ( )1 1 1 1 1- ( )T
uV s k sigm sε λ= + . (a2) 

Establishing the following equality 

 ( ) ( )1 1 1 1 1( ) ,sigm s sign s sε ε= − Δ , (a3) 

where ( )1 1, sεΔ  is the difference between the signum and 
sigmoid functions, then using (a3) the derivative (a2) 
becomes as 

 ( )( )( )1 1 1 1 1- 1 , uV s k sε λ< − Δ + .  

It is evidently that ( )1 1, sεΔ  is bounded that is for a given 

1ε , there is, a positive constant 1 0δ> >  such that 

 ( )1 1, sε δΔ =   
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Therefore under the condition (28) we have 1 0V < , and  

hence 1s  converges to a region  1s ≤ Ω  given by 

 
1

2ln

2

δ
δ

ε

−⎛ ⎞
⎜ ⎟
⎝ ⎠Ω = .  

Now, defining 1sϕ =  and  1
2

TVϕ ϕ ϕ=  and then using (15) 
and (18) the straightforward calculations gives  

 
( )1    

T

T
u

V

k P
ϕ ϕ ϕ

ϕ ε ϕ λ

=

= − +
 

Under the condition (29) or 

 u udλ ϕ≤   

( )tϕ  converges asymptotically to zero. Therefore, from (15) 
and (24) we obtain 

 
2,1

1 1( )
ref u

m

y

b y u

λ

λ

= −

= −
  

and hence the system (27) can be reformulated as 

 1 1 1 2

2 2 2

  -
  -

e c e e
e c e

= +
=

 (a2) 

If 1 0c >  and 2 0c >  then a solution of (a2) asymptotically 
tends to zero provided then  

1lim ( ) 0
t

e t
→∞

= . 

and Theorem 1 is proved. 
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