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Abstract: The optimal separating hyperplane of a typical Least Squares Support Vector Ma-
chine (LS-SVM) is constructed using most of the training samples. A consequent disadvantage
is the slowdown of the LS-SVM classification process on the test samples. Previous methods
address this issue by simplifying the decision rule established after training, which risks a loss in
generalization ability and imposes extra computation cost. This paper presents a novel optimal
sparse LS-SVM whose decision rule is parameterized by the optimal set of training examples, in
addition to having an optimal generalization capability. For a large number of classification
problems, the new LS-SVM requires a significantly reduced number of training samples, a
property referred to as the sparseness of the solution. The training of the LS-SVM method is
implemented using a modified two-stage regression algorithm. Experiments on two-spiral data
confirms the advantages described. Simulation results on checkerboard data further illustrate
that the proposed LS-SVM can effectively produce an optimal hyperplane which is sparse in
training examples.

1. INTRODUCTION

Recently, a new formulation of the standard SVM - Least
Squares SVM (LS-SVM) [Suykens and Vandewalle (1999)],
has been proposed to avoid the use of the quadratic pro-
gramming (QP) involved in training. This considers only
equality constraints rather than the inequality ones in a
standard SVM. As a result, an LS-SVM classifier can be
built by solving a set of linear equations. Empirical studies
have suggested that LS-SVMs have very competitive gen-
eralization abilities to standard ones [Gestel et al. (2004)].

As with standard SVMs, the decision hyperplane, resulting
from the training of an LS-SVM, is constructed from a set
of weighted training samples. The SVM solution generally
requires a small number of training samples. However, in
an LS-SVM the training samples, which are the parame-
ters of the solution, usually constitute a large proportion
of the whole training set, in contrast to the sparseness
of the SVM solution[Müller et al. (2001)]. Consequently,
an LS-SVM involves more computation, which slows the
class label prediction on test samples. Several alternative
approaches have been proposed to address this issue, which
search for good approximate solutions. One alternative
formulation is parameterized by a much-reduced number
of vectors, and not necessarily by the training samples
only. Unfortunately, the actual implementation of the algo-
rithms can be very time-consuming. More specifically, ap-
proaches in Burges (1996), Downs et al. (2001), Schölkopf
et al. (1999), Schölkopf and Smola (2002) are all com-
putationally very expensive due to the iterative searches
involved. For example, the one proposed in Downs et al.
(2001) is particularly unrealistic due to its dependency on
the feature space which is usually of high, or even infinite
dimension.

In this paper, an optimal sparse LS-SVM is proposed
which can simultaneously locate the optimal separating
hyperplane and identify the optimal set of training sam-
ples for the training of its parameters. These goals are
achieved by an adaption of the original LS-SVM algorithm,
leading to a good generalization performance and a com-
pact formulation. Training is efficiently implemented by
application of a two-stage nonlinear regression algorithm
[Li et al. (2005), Li et al. (2006)], originally used in system
identification. The resultant regression function is the best
approximation to the input data in terms of the least sum-
squared errors. Additionally, one parameter of the regres-
sion (the dimension of the weighting vector) is adjustable.
This parameter, which is based on the optimal set of train-
ing samples required for the optimal hyperplane, is tuned
by ten-fold cross validation at the expense of kernel based
pre-processing of the training data. The class labels of −1
and 1 are interpreted as the target values for the regression.
Experiments on difficult classification tasks such as the
two spiral [Fahlman (1993)] and checkerboard datasets [Ho
and Kleinberg (1996)] suggest that the optimal sparse LS-
SVM implemented by two-stage regression maintains good
generalization capacity and is a competitive alternative to
conventional LS-SVMs. Simulation results on the checker-
board data further show that, the proposed LS-SVM can
effectively produce an optimal hyperplane which is sparse
in the number of training samples required.

The paper is organized as follows. Section 2 introduces
the LS-SVM algorithm in addition to a brief review of the
essential ideas of standard SVMs. The optimal sparse LS-
SVM, realized by a modified two-stage linear regression,
is detailed in Section 3. Section 4 gives the experimental
results obtained from application to the two-spiral and
checkerboard datasets. The paper is concluded in Section
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5, which also addresses the use of the proposed algorithm
for large-scale learning tasks.

2. FROM SVMS TO LEAST SQUARE SVMS

2.1 SVM Classifiers

Given n pairs of training samples (x1, y1), . . . , (xn, yn),
where x ∈ RN and y ∈ {−1, 1}, training a SVM to locate
the optimal hyperplane leads to the following quadratic
programming (QP) problem:

min
w,b,e

1

2
wT w + C

n
∑

i=1

ξi (1)

s.t. yi(w
T φ(xi) + b) ≥ 1 − ξi

ξi ∈ R ≥ 0 i = 1, . . . , n

where the regularization constants C ∈ R > 0 and b ∈ R.
The function φ maps training data to a feature space so
that they are linearly separable.

The optimal hyperplane is formulated as

w =

Ns
∑

i=1

αiyiφ(xi) (2)

where αi ∈ R > 0 and Ns is the number of training
samples xi which corresponds to αi > 0 .

The introduction of a kernel function enables the implicit
mapping of the training data from the input space to the
feature space without requiring knowledge of φ. One of
the most widely-used kernels is the Gaussian radial basis
function (RBF):

K(xi,xj) = e−||xi−xj ||
2/2σ2

(3)

In this case the decision function of the SVM becomes:

f(x) = sign(wT φ(x) + b)

= sign(

Ns
∑

i=1

αiyiK(xi,x)) (4)

An important attribute of the solution (4) is its sparseness
in αi — Ns,the number of non-zero αi is relatively small
compared to n, the total number of training data samples.
On the other hand, (4) implies that Ns is a major factor
in the computational complexity of SVM classification on
test samples.

2.2 Least-Squares SVM Classifiers

The least-squares SVM is the solution to the following
optimization problem (1) as:

min
w,b,e

1

2
wT w + γ

n
∑

i=1

e2
i (5)

s.t. yi(w
T φ(xi) + b) = 1 − ei i = 1, . . . , n

Introducing Lagrange multipliers αi(i = 1, . . . , n) for each
of the equality constraints gives:

L(w, b, e, α) =
1

2
wT w + γ

n
∑

i=1

e2
i

−
n

∑

i=1

αi{yi[w
T φ(xi) + b] − 1 + ei} (6)

Due to the equality constraints, αi can either be positive
or negative according to the Karush-Kuhn-Tucker (KKT)
conditions [Fletcher (1987)].

The optimality of (6) requires that:

∂L

∂w
= 0−→w =

n
∑

i=1

αiyiφ(xi) (7)

∂L

∂b
= 0−→

n
∑

i=1

αiyi = 0 (8)

∂L

∂ei
= 0−→ αi = γei, i = 1, . . . , n (9)

∂L

∂αi
= 0−→ yi(w

T φ(xi) + b) = 1 − ei (10)

With the adoption of the equality rather than the in-
equality constraints, the training of an LS-SVM reduces to
solving a linear system. Empirical studies have shown that
LS-SVMs provide competitive generalization performance
to SVMs.

However, in most cases, the total number of non-zero
αi in (7) could be as large as n. Thus the separating
hyperplane in an LS-SVM is spanned by a large proportion
of the training data set from (4). This non-sparseness in
the solution for LS-SVMs directly produces a prolonged
classification procedure on test samples.

3. A NOVEL SPARSE LS-SVM USING TWO-STAGE
REGRESSION

To solve the non-sparsity of LS-SVM solutions, an optimal
set LS-SVM is developed by reforming the set of linear
equations produced by conventional LS-SVMs. The aim of
the novel LS-SVM is two-fold: (1) to locate the optimal
separating hyperplane; (2) to identify the optimal set of
the training examples which construct the hyperplane.
This is achieved using a two-stage algorithm, initially
designed for use in the system identification. With ap-
propriate preprocessing of the input data, this can be
effectively used to train an optimal LS-SVM such that
the non-sparseness issue is less severe than conventional
ones. This optimal sparse LS-SVM is now introduced, fol-
lowed by a brief look at the two-stage regression approach
and a detailed description of its use in the new LS-SVM
algorithm.

3.1 A Novel Sparse LS-SVM Algorithm

In the optimization formulation of (5), the orientation w of
the separating hyperplane is optimized but not its location
b. To address this issue, the term b2 is appended to (5)
according to Mangasarian and Musicant (1999). Also note
that the equivalence of the equality constraint in (5) is:

wT φ(xi) + b = yi − ei (11)
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Hence the optimization formulation becomes:

min
w,b,e

1

2
(wT w + b2) + γ

n
∑

i=1

e2
i (12)

s.t. wT φ(xi) + b = yi − ei i = 1, . . . , n

where γ is the penalty constant.

The Lagrangian of (12) is:

L′(w, b, e, α) =
1

2
(wT w + b2) + γ

n
∑

i=1

e2
i

−
n

∑

i=1

αi[w
T φ(xi) + b − yi + ei] (13)

The optimality of (13) leads to the following conditions:

w =

n
∑

i=1

αiφ(xi) (14)

n
∑

i=1

αi = b (15)

αi = γei (16)

wT φ(xi) + b = yi − ei (17)

To ease the non-sparseness of (14) in α, the optimal
sparse LS-SVM seeks m(m << n) training examples
xi(i = 1, 2, . . . ,m), and corresponding m weights βi(i =
1, 2, . . . ,m) to reformulate the norm vector w and the bias
term b of the optimal hyperplane:

w =

m
∑

j=1

βjφ(xj) (18)

b =

m
∑

j=1

βj =

n
∑

i=1

αi (19)

Note that, although each training example xi doesn’t
necessarily satisfy (16), the following equation can still be
drawn from (15) and (19):

m
∑

j=1

βj = γ

n
∑

i=1

ei (20)

The sparse LS-SVM is also subject to:

wT φ(xi) + b = yi − ei, i = 1, 2, . . . , n (21)

These conditions lead to a linear system which is formu-
lated as:









E 0 0 −Φm

0 −1 0 IT

0 0 −1 IT

ΦT
n E E 0















w
b
e
β






=







0
0
0
y






(22)

where Φn = [φ(x1), . . . , φ(xn)],Φm = [φ(x1),. . . , φ(xm)],
y = [y1, . . . , yn]T , e = [e1, . . . , en]T , β = [β1, . . . , βm]T , I
is an m-column vector of 1s and E is an unity matrix of
appropriate dimension.

The linear equations can be further simplified to:
[

IT + H γ−1

IT −1

] [

β
b

]

=

[

y
0

]

(23)

where H = ΦT
nΦm.

Using the kernel technique, a Hessian matrix H is intro-
duced:

Hij = φ(xi)
T φ(xj) = K(xi, xj) (24)

Training the optimal sparse LS-SVM then amounts to solv-
ing (23), which relies on the use of a two-stage algorithm
from the field of system identification.

3.2 Two-Stage Regression [Li et al. (2005), Li et al.
(2006)]

This algorithm originates from nonlinear system identifi-
cation, though in broad terms, it can be considered an
linear regression approach. Applying two-stage in linear
regression also enables the size of the model to be varied
in that the algorithm can simultaneously perform feature
selection on the input data. The two-stage method finds
a model of a pre-set size, with the least approximation
errors for the input data which contains only the selected
features. The algorithm is now described from a regression
perspective.

Consider the problem of approximating a set of n data
pairs, (x1, y1), . . . , (xn, yn) where x ∈ Rd(d ≥ n) and y ∈
R. The model size (or features in the classification context)
is supposed to be k, where k can be either predetermined
or determined by a model (feature) selection criterion
along the regression process. The two-stage algorithm can
effectively select k (k ≤ d) features and a corresponding
weight vector which contains k coefficients to construct a
regression function:

f(x) = wT x′ + b (25)

Here x′ ∈ Rk with k selected features from x ∈ Rd

and w = [c1, . . . , ck]T ∈ Rk. The loss function for the
regression model is then:

J = (Pw − y)T (Pw − y) (26)

where P = [x′
1, . . . ,x

′
n]T = [p1, . . . ,pk] ∈ Rn×k, y =

[y1, . . . ,yn]T ∈ Rn is the target value vector.

For a data matrix P whose rank is k, an estimate of w
which minimizes J is:

w = (PT P)−1PT y (27)

Starting from (27), the two-stage algorithm searches for
the optimal regression function in two steps. First, one
feature is chosen at each step to update P. Without loss
of generality, assume that the feature index chosen is the
m-th one:

Pm = [p1, . . . ,pm] (28)

where pj ∈ Rn (j = 1, . . . ,m) is the j-th selected column
vector from the input data matrix X. Using (26) and (27),
the loss function at this stage is :

J(Pm) = yT [y − (PT
mPm)−1PT

my] (29)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7030



Next pm+1 is selected from the remaining (d−m) column
vectors of X, to minimize R(Pm+1) where Pm+1 =
(Pm,pm+1). Thus:

min
pm+1

J(Pm,pm+1) (30)

where pm+1 ∈ X and pm+1 /∈ Pm.

Finally, k column vectors are chosen from the input data
X, producing a matrix Pk. Meanwhile, X is split into (Pk,
Pd−k), where Pk consists of the selected vectors in the
input matrix, while Pd−k represents the unselected ones.

It should be noted that the first step is a forward subset
selection approach and the result is not optimal. In other
words, the selected vectors are not sparse enough due to
the correlations between vectors. Therefore, the second
part of the two-stage algorithm optimizes Pk, replacing
previously selected pi vectors with new column vectors
from Pd−k to produce a further reduction in J(Pk). At
each step, a pi(i = 1, . . . , k) is selected from Pk for exami-
nation and replaced by a pj(j = 1, . . . , d−k) from Pd−k in
order to compare the estimation performances of their re-
sulting Pk. The original pi vector is finally replaced by the
one from Pd−k which produces less estimation errors than
pi and the smallest errors of all the column vectors from
Pd−k. Otherwise, the pi being examined stays unchanged.
This process ensures an optimal regression function which
contains the weight vector w and selected input data.

3.3 Training of Optimal Sparse LS-SVMs

Equation (23) is equivalent to:

(In×m + H)β + e = y (31)

where In×m is an n-by-m matrix of ones.

Prior the application of the two-stage regression method
to (31), the training data {xi, yi} where i = 1, . . . , n
and y ∈ {−1, 1} are preprocessed, producing a matrix
D = [d1, . . . ,dn]T ∈ Rn×n:

Dij = K(xi,xj) + 1 (32)

In addition to the Gaussian RBF in (3), alternatives for
the kernel function K include:

K(xi,xj) = (xT
i xj + 1)p (33)

K(xi,xj) = tanh(κxT
i xj + δ) (34)

where (33) is a polynomial with degree up to p and (34)
describes a two-layer sigmoidal neural network.

Replacing K in (32) with a specific kernel function, for
example, the Gaussian RBF, gives:

Dij = e−||xi−xj ||
2/2σ2

+ 1 (35)

The problem of finding the optimal hyperplane with the
norm vector of (18) is then reduced to approximating
the data set (d1, y1), . . . , (dn, yn) by generating a model
of a designated size m(m ≤ n). The two-stage linear
regression algorithm can be immediately applied, which
results in k selected column indexes of D and a weight
vector β = (β1, . . . , βm) with βi for the i-th chosen column.
These indexes are, in fact, those of m chosen examples
from the original training set xi(i = 1, . . . , n) used to

construct the separating hyperplane of the optimal sparse
LS-SVM.

Denoting these m training samples S = (s1, . . . , sm), the
resulting optimal sparse LS-SVM classifier is:

f(x) = sign(

m
∑

i=1

βiK(si,x) + b) (36)

where b =
∑m

i=1
βi.

More specifically, in the case of a Gaussian RBF, the
decision rule on a test sample x is:

f(x) = sign(

m
∑

i=1

βie
−||si−x||2/2σ2

+

m
∑

i=1

βi) (37)

The parameters σ,m in (37) can be determined by leave-
one-out cross validation. Note that the tuning of the
parameter γ in (12) becomes a search of the optimal model
size m, and the two-stage algorithm is used to implement
optimal sparse LS-SVMs.

4. EXPERIMENTS AND RESULTS

The proposed optimal sparse LS-SVM was evaluated using
two classification problems supplied by the two-spiral and
checkerboard datasets.

4.1 Two-Spiral Classification

The two-spiral dataset is available from the Carnegie
Mellon repository [Fahlman (1993)]. This has two groups
of spiral-shaped data points, with 97 points for each,
as illustrated by Fig. 1 in which “+” and “-” classes
are designated separately by a cross and a circle. The
Gaussian RBF is chosen as the kernel function for the
experiments in this paper. For the optimal sparse LS-SVM,
the parameter settings are: σ = 1 for the width of the RBF
and the optimal model size, or the number of training data
points used to construct the separating hyperplane, is 192,
which were obtained using the ten-fold cross validation.
The standard LS-SVM was also implemented to classify
the two spirals, with parameter settings of σ = 11.33
in the RBF kernel and γ = 0.16 in (12). The solution
is parameterized by 194 training data points, as shown
in Fig. 2. Fig. 3, Fig. 4 and Fig. 5 show the two-spiral
optimal sparse LS-SVMs with model sizes of 192, 120 and
72 respectively. In these figures, the black solid line is
the optimal separating hyperplane. It reveals that even
though the “perfect” model size is 192, an optimal sparse
LS-SVM with good generalization performance can be
achievable from a model of, as few as, 72 training samples.
These results demonstrate that the proposed LS-SVM
algorithm can effectively improve the sparseness of the
solution with desirable generalization performance. The
Receiver Operating Characteristic (ROC) curves of the
three classifiers are shown in Fig. 6, indicating that they
are all very good classifiers.

4.2 Checkerboard Classification

The checkerboard dataset [Ho and Kleinberg (1996)] con-
tains 1,000 data points of two categories, as shown in
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Fig. 1. Two-spiral Dataset

Fig. 2. Two-spiral Conventional LS-SVM Classifier con-
structed from 192 training data points

Fig. 3. Two-spiral optimal sparse LS-SVM classifier con-
structed from 192 training data points

Fig. 4. Two-spiral optimal sparse LS-SVM classifier con-
structed from 120 training data points

Fig. 5. Two-spiral optimal sparse LS-SVM classifier con-
structed from 72 training data points

Fig. 6. The ROC Curve for two-spiral optimal LS-SVMs
parameterized by over 72 training samples

Fig. 7. Checkerboard Dataset

Fig. 7. For the standard LS-SVM, parameter settings
derived from an exhaustive grid search are: σ = 1.6372,
γ = 0.12416. The results from the conventional LS-SVM
classifier are depicted in Fig. 8 where the shaded regions
represent the “cross” category. The resulting separating
hyperplane is constructed from the whole 1000 training
data points.

The training of the optimal sparse LS-SVM leads to a
classifier constructed from 100 data points with the RBF
width σ = 0.06, as illustrated by Fig. 9. The optimal
sparse LS-SVM successfully reduced the training samples
of the solution by 90%, while maintaining an excellent
generalization capacity.
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Fig. 8. Checkerboard standard LS-SVM classifier with
1000 training points to parameterize the solution

Fig. 9. Checkerboard optimal sparse LS-SVM classifier
with 100 training points to parameterize the solution

Fig. 10. Checkerboard optimal sparse LS-SVM classifier
with 70 training points to parameterize the solution

In fact the sparseness of the optimal LS-SVM solution can
be further improved, as demonstrated by Fig. 10 whose
hyperplane is built from only 70 training examples with
σ = 0.02. Although its generalization performance is not
the optimum, it would provide a satisfactory alternative
where test speed, rather than prediction accuracy, is
required.

5. DISCUSSIONS AND CONCLUSIONS

This paper proposes a novel algorithm for training an
optimal sparse Least Squares Support Vector Machine
(LS-SVM). Its decision rule is parameterized by the op-
timal set of training samples, which provides the optimal

generalization capability. Its training is achieved by using
a modified two-stage regression algorithm from Li et al.
(2005) and Li et al. (2006). Simulation results suggest that
the optimal sparse LS-SVM can ease the non-sparseness
problem of conventional LS-SVM, without any loss the
generalization capability.

The computation of the Hessian matrix for preprocessing
the input data, as required for training an optimal sparse
LS-SVM, has a major influence on its overall complexity.
In this paper, with a lack of prior knowledge, each training
sample is considered equally as a candidate to span the
decision hyperplane, as the kernel between each pair of
training samples is computed. The associated Hessian
matrix is square. However, the issue of how many training
samples seems to outweigh that of which exact training
sample should be selected, as indicated the experiments.
This property allows for the simplification of Hessian.
A subset of training samples can first be appointed as
parameters in the solution, a kernel function is then
computed for each sample pair, one being the original
full set, the other from the subset. The optimal size of
the subset can be found from a grid search. The square
Hessian matrix thus reduces to be a rectangle, enabling
the algorithm to become more applicable to large scale
learning tasks.
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