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Abstract: This paper describes a landmark position measurement system using an integrated
laser-camera sensor. Laser range finder can be used to detect landmarks that are direction
invariant in the laser data such as protruding edges in walls, edges of tables, chairs. When
such features are unavailable the processes that depend on landmarks such as navigation and
simultaneous localization and mapping (SLAM) algorithms will not be able to perform at the
best accuracy. However, in many instances larger number of landmarks can be detected using
computer vision. In the proposed method camera is used to detect landmarks while the location
of the landmark is measured by the laser range finder using laser-camera calibration information.
Thus, the proposed method exploits the beneficial aspects of each sensor to overcome the
disadvantages of the other sensor. Experimental results with important statistics are provided
and an application in SLAM is presented.

1. INTRODUCTION

Recently, computer vision received much of attention for
landmark detection and localization, especially in SLAM
applications (Jeong and Lee (2006); Mouragnon et al.
(2006)). However there are many drawbacks in vision
based sensors. Monocular SLAM implementations require
the features to be present in the field of view for a longer
duration to facilitate the proper convergence of the feature
position estimate. However, stereo vision has the ability
to overcome some of issues in single camera systems,
but require a heavy computational overhead. Thus, it is
possible to use the features of both sensors, laser and
camera, to overcome drawbacks of each. Hence this work
demonstrates a novel application of a single laser-vision
model. This paper proposes feature extraction at the sen-
sor level while using laser-vision model as a single sensor
for detection and locating landmarks. Therefore this paper
constitutes following key contributions. First, the work
demonstrates effective integration of laser and camera as
a single sensor. Secondly the work demonstrates how the
integrated laser-camera model be used to effectively solve
the SLAM problem. The sensor also has the ability to
either work as a laser only sensor or vision only sensor.

1.1 Related Work

The range and bearing to unique visual landmarks can
be measured using different methods. The most common
method is the use of stereo cameras (Saeedi et al. (2006)).
Other methods include: single camera based feature po-
sition estimation (Montiel et al. (2006)) and optical flow
based calculation (Bouguet and Perona (1995)). Although
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computer vision based SLAM methods shows significant
advances, they exhibit one or more of the following draw-
backs with respect to general SLAM applications.

(1) The methods were only demonstrated to work in
small scale environments (Montiel et al. (2006)).

(2) Employs a large number of landmarks in the environ-
ment (Saeedi et al. (2006)).

These issues can be primarily attributed to the the large
uncertainties associated with the vision based feature posi-
tion calculation. Further, in stereo and other vision based
feature position calculation methods, uncertainty of the
feature position increases as the distance to the feature
increases. Additionally, regular camera lens provide only
a limited field of view. This severely limits the amount of
time that a feature is actively observed when the robot
is moving at relatively higher speeds. On the contrary,
laser range finder provides excellent range measuring ca-
pabilities to direction invariant landmarks (such as chair
and table legs, corners, tree trunks, poles, etc.). On multi
sensor SLAM, Castellanos et al. (2001) have presented a
laser-camera based method that fuses landmark informa-
tion from laser range finder data as well as image data.
The method presented by Castellanos et al. (2001) detects
landmarks using data from each sensor and calculates the
individual and joint compatibility between them. From
the laser range finder it locates the line segments, corners
and semiplanes. Using camera data it obtain redundant
information about the landmarks that were observed by
the laser range finder. Thus this method only facilitates
the laser based landmarks with additional redundant in-
formation about the corners and semiplanes from vision
data.
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1.2 Landmark Detection and Position Estimation Using a
Single Sensor

This section explores the applicability of each sensor for
landmark detection and position estimation. In robotics,
the camera and the laser range finder are the most com-
monly used sensors for environment sensing. Computer
vision based solutions have long been proposed for detec-
tion and in many cases for position estimation of visually
salient landmarks. The most important advantage of using
computer vision for landmark detection is that it can de-
tect visually salient landmarks with a high degree of details
that can later be used for tracking or association. Due
to the inherent sensor model, computer vision can only
capture the bearing to a feature. Therefore in computer
vision, stereo vision is the most popular method for direct
landmark position estimation. On the contrary, a laser
range finder scans its field of view to measure the distances
to closest object. Usually, the measurements are taken at
very small angular resolution and a higher range accuracy
than any of the other range sensors, providing a high
resolution depth plan of the field of view of the scanner.
Next, the issues relating to the landmark detection and
position measurement using a single sensor are addressed.

Monocular vision has been widely used in visual landmark
detection in bearing only SLAM. Starting from the initial
works of Andrew Davison (Davison and Murray (2002))
the research in vision based SLAM has moved to realtime
monocular SLAM (Clemente et. al. (2007); Davison
et. al. (2007)) implementations. In (Clemente et. al.
(2007); Davison et. al. (2007)) the position (depth) of the
visual landmarks is estimated using repeated observation
of the landmark, and when the estimation converges it is
initialized into the map. This type of feature initialization
requires landmarks to be present in the field of view
of the camera until the depth estimates converge to an
acceptable level. Although these are pioneering methods
in vision based SLAM, in typical application scenarios the
landmarks cannot be guaranteed to remain in the field of
view for a specific duration. In other methods the optical
flow of a landmark, along with the robot velocities, can
be used to calculate its position with respect to the robot
frame.

In the detection of landmarks based on the laser range
finder data, the corner and line (planes in the real world)
features are the mostly used features (Martinez-Cantin
et. al. (2006); Castellanos et al. (2001)). The landmarks
that can be represented by a point in the map are often
preferred over the line features, which can only be localized
with a higher degree of freedom when the complete line
segment is in the field of view of the scanner. The corner
features that are invariant to the direction of the laser
scan arise in the laser data due to objects such as corners
in walls and other objects that have protrusions similar
to legs of tables. However, in some cases these types of
corner features may not be available in environments such
as long corridors. Nevertheless, in most cases there are
patterns on walls and other features that can be easily
detected using computer vision. In addition, due to the
differences in the appearance of surfaces under lighting, the
regular corner features would usually appear as visually
salient features. In the rest of this section two attempts in

localizing features using computer vision and laser range
data are discussed with their limitations. The next section
introduces an integrated laser-vision sensor that exploits
above mentioned properties of the visual features with the
high accuracy of the laser based measurement.

Landmark localization using computer vision Landmark
localization using only monocular vision has been achieved
using two main methods: bearing only localization and
optical flow based localization. Bearing only localization
requires multiple wide baseline frames to infer the 2D
position of a landmark. Therefore, the position estimation
and the accuracy of the estimation of a landmark using
bearing only readings are highly dependant on the move-
ment of the camera and the number of sensor frames. In
contrast, the optical flow based feature localization can be
used to calculate the landmark position as soon as accurate
optical flow data becomes available. Thus, in this paper,
for monocular vision based landmark localization, only the
optical flow based method was investigated.

From the six degree of freedom general model, the hori-
zontal velocity of features (optical flow) (ṗ) on the image
plane can be derived from the horizontal feature position
(p), heading velocity (v), rotational velocity (ω), and focal
length of the camera (λ) as follows:

ṗ =
pv

Z
−

ω

λ
(λ2 + p2) (1)

where Z is the distance to the feature in the direction of
the heading velocity. Using the above equation and the
camera model (p/λ = X/Z) where X is the perpendicular
distance from the feature to the heading direction, the
feature position with respect to the robot can be calculated
by:

X =
p2vλ

ṗλ + (λ2 + p2)ω

Z =
pv

ṗλ + (λ2 + p2)ω
(2)

The covariance of the calculated position can be found
using the first order Taylor expansion of the feature
position [X, Y ]T . The covariance matrix of the position
calculation can be obtained from

ΣX,Z = J · diag [σp, σṗ, σv, σω] · JT (3)
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and σp, σṗ, σv, and σω are the standard deviations of the
horizonal feature position on the image, horizontal optical
flow, heading velocity and rotational velocity of the robot,
respectively. The uncertainty of the calculated locations
can be evaluated by comparing the area of the ellipsoid
defined by the 95% confidence interval. The uncertainty
comparison for varying optical flows and feature positions
is shown in Figure 1. From Figure 1 it is evident that at
low optical flows the uncertainty increases regardless of the
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Fig. 1. Sensitivity of the uncertainty of the feature localiza-
tion. The uncertainty is quantified by the area of the
ellipse representing 95% confidence. pmax = 1.75mm
, v = 0.092m/s and ω = 4 × 10−3rad/s. (σp =
10.9 × 10−6m, σṗ = 0.3 × 10−4m/s, σv = 7.8mm/s,
σω = 10−6rad/s)

feature position on the image. Moreover, as the feature
moves closer to the edge of the image, the uncertainty
increases even for the same optical flow value. Generally,
a robot encounters many combinations of robot velocities
and feature positions could give rise to high covariance
values in the feature position calculations. The limitations
in the usable range of optical flow and feature position
make the optical flow based feature position calculation
method unsuitable for SLAM applications.

Landmark localization using laser data The direction
invariant features in the laser data can be identified as
unique landmarks using the minimum points in the laser
data plot (Schulz et. al. (2003)). These landmarks gen-
erally remain in the laser data regardless of the direction
of scan. In addition to the convex features that appear as
minimum points in the laser data, concave points such as
sharp corners can be reliably detected in the laser data.
However, as shown in Figure 2, in certain environments
such as in long corridors, there might not be any direc-
tional invariant features. In such cases feature based laser
only SLAM implementations will not be possible unless
higher level features such as lines are used.

1.3 Objective

The main objective of this paper is to develop a reliable
landmark detection and localization method that uses
an integrated laser-camera sensor for SLAM applications.
This papers presents a novel method for landmark detec-
tion and location calculation based on multisensor data
in the context of SLAM. In contrast to the other notable
works in multisensor SLAM Castellanos et al. (2001) the
proposed method fuses the information in sensor domain
rather than fusing map information that is being built
using each sensor, as shown in Fig. 3. In the proposed
work a camera is mounted on a laser range finder and the
coordinate transformations have been obtained through a
experimental calibration process Ortin et al. (2005). The
vertical lines in environment are detected using the image
data (bearing information) and the range to the vertical
lines can be then interpolated using the laser readings
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Fig. 2. A typical laser reading in an indoor environment
where there are not sufficient direction invariant fea-
tures.

and the coordinate transformation between the laser and
the camera. These located features are then used in the
extended Kalman filter based SLAM formulation.
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Data

Global Map
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Fig. 3. Block diagram of the proposed SLAM process

2. CALIBRATED LASER-VISION SENSOR

A camera is mounted on the laser range finder using a
custom made bracket as shown in Fig. 4. The camera is
mounted at the center of the laser range finder to main-
tain the coordinate transformation between laser scanning
plane and camera coordinate system as simple as possible.
The coordinate frames are defined as shown in the Fig. 4.

2.1 Visual Landmark Detection

Landmarks in the camera images can take several forms.
The most common landmarks are the visually distinct
corner features. Other visually salient landmarks include,
lines, arcs, and user defined objects. In this paper the
visually salient vertical line features were detected in the
captured images. Consistent lines features are the most
robust in terms of detection accuracy and repeatability.
In this work two algorithms has been evaluated for the
detection of vertical lines in the images.

(1) Hough transform based method.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11759



Camera

Mount

Laser Range 

Finder

Camera

Side ViewFront View

xl

yc

xc

yl

zl
zl

zc zc

a

b

Fig. 4. Coordinate frames of calibrated laser-vision sensor

(2) Corner feature based method.

Line detection algorithms based on the Hough transfor-
mation is most popular in computer vision and pattern
recognition. Hough transformation typically accumulates
the votes for line configurations based on their support in
the binary image. Since it is of interest to detect only the
vertical (or close to vertical) lines, the search space can be
restricted to compute the angle values in the vicinity of
zero, thus reducing the computational cost. In addition
to the hough transform based method, a simpler and
computationally efficient corner based method was tested
for vertical line detection. Initially, a set of horizontal lines
were superimposed on the original image as shown in Fig
5. Then, all the resulting corner features are detected using
Harris corner detector Shi and Tomasi (1994) and are
indicated by the white circles in Fig. 5.

Fig. 5. Line feature detection using artificially generated
corner features.

This list of corner features are then searched for sets
of features that are vertically aligned. If the number of
features in a set is greater than a threshold value then
the average of the horizontal position is identified as a
consistent vertical line. Identified lines are marked with
white line stubs at the bottom of the image frame shown
in the Fig. 5. The corner based method is approximately
equivalent to the Hough transform based method. Instead
of accumulating the pixel count at finer resolution for the
full image, the corner based method samples the image
at vertical line positions and accumulate the points where
there is strong evidence for vertical lines.

A comparison of the two methods are shown in the Fig.
6 for three typical images that is taken during a robot
run. The lines in the top part of the image are the ones
detected using Hough transformation and the lines in the
bottom part detected using corner based method. It is
evident from the images that on average Hough transform
returns more line images than the corner based method.
This can be attributed to the fact that it accumulate the
evidence for lines in the whole region than some sampled
points in the image as in the case with corner based
method. From the Fig. 6 it is evident that in addition

to the ability to recover large number of landmarks the
Hough transformation based method is more accurate as
well. Therefore in the work described in this paper Hough
transformation is selected.

Fig. 6. Detected line features using Hough transformation
and the corner based method.

2.2 Measurement Model

In this section it is assumed that the transformation
between the sensor frames have been calibrated for lens
distortion and sensor misalignment. Laser ranger provides
a set of scanned reading that provides the range to the
objects in the laser scan plane. The scanner is able to
operate in a field of view of 180 degrees with a half a degree
resolution. The bearing angle (θl) of the detected line
features can be calculated using the camera model. Then
using the coordinate transformation between the camera
and the laser range finder and the calibration information
the range to the line features can be interpolated using
laser range scan. This process of range interpolation is
shown in the Fig. 7.

θl

Measured angle to 

the line feature (θl)

Laser range  

scan pointsri

ri+1

i i+1

r
θ

Camera

Plan view

α

Fig. 7. Interpolation of the range to the line feature.

With a resolution of the laser range scanner at 0.50 the
range to the line feature can be calculated using following
interpolation.

rθ =
ri+1 cos(θ − α) + ri cos(0.50

− α + θ)

2 cos(θ)
(4)

Since the bearing to the feature is measured using camera
model and the range is measured using the interpolated
range data, the uncertainty of the measurements also have
to be calculated using the characteristics of each sensor. In
the camera model, the incident angle for the same image
area changes with the distance from the optical axis. Hence
the bearing uncertainty increases when the distance to the
line feature from the optical axis increases. But, since the
used camera lens has only a narrow field of view, bearing
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uncertainty can be assumed to be a constant. For the
range, usual constant uncertainty of the laser range finder
is used. Thus, the covariance matrix of the measurements
can be expressed as,

R = diag[ σ2
r σ2

θ ]. (5)

Where σr and σθ are the standard deviation of the range
and bearing measurement errors, respectively.

3. EXPERIMENTS AND RESULTS

In this section two groups of experiments are carried out,
the first for the verification of the method and the second is
an application of the method to SLAM. In the verification
experiments the vision data is superimposed on known
laser data to test the accuracy of the method. In addition
to that the vision based landmark detection is compared
with a laser only method for the number of retrieved
landmarks.

3.1 Verification of the Method

The laser data and the camera image is superimposed for
the verification of the method. Fig. 8 shows the results of
the feature detection and locating using integrated sensor
for a typical set of image and laser scan data. Fig. 8 shows
that vertical line features on the wall can be accurately
localized using the proposed method.

Laser Data

Bearing of the 

detected lines

Fig. 8. The landmarks detected by the camera and their
bearing angle superimposed on laser readings.

As discussed previously, the protruding features in the
laser data can be detected as landmarks in the laser
data. These features can be detected using strong corner
points in the plot of laser data. Fig. 9 shows a comparison
between number of landmarks that can be detected in
laser data and in image data during a robot run. It is
clearly evident that there are significant periods where
image features out number the laser based landmarks.
Further, the number of image features remain much more
steady compared to the large variations in the number of
laser based landmarks. Additionally, it should be noted
that where there is low number of visual features there
is a significantly higher number of laser based landmarks.
Therefore, landmark localization method that uses both
methods of detection can benefit from the higher number

of landmarks throughout the run of the robot. Although
the results are purely specific to a given environment, the
total number of landmarks can be improved using the
proposed method in addition to the laser only methods.
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Fig. 9. Number of landmark features detected by vision
and laser system.

3.2 Application in EKF SLAM

An experiment was conducted using the Pioneer 3AT
robot in a typical indoor environment in order to illustrate
the viability of the landmarks located using the laser-
vision based in a typical SLAM scenario. The robot was
driven approximately 67.5m forming two loops. During
this experiment the laser range data, images from the
camera and odometry data were logged at regular spatial
intervals. After the landmarks are detected and located
using laser data and images, the data is processed off-
line using the EKF method Dissanayake et al. (2001). The
Joint Compatibility Branch and Bound (JCBB)Neira and
Tardos (2001) algorithm was used for the data association.
A from the data gathered during the robot run map
consisting of 71 landmarks that has been built (Fig. 10(b)).
The Fig. 10(a) shows the robot path using pure odometry
data, where there are significant errors.

4. CONCLUSION

In this paper it is shown that computer vision and laser
range scanner can be used to accurately detect and mea-
sure the visually salient landmarks in the environment.
Further, such measurements can be readily integrated into
EKF based SLAM method to build maps of typical indoor
environments. One possible pitfall of this method arises
when the line features in the real 3D world does not
intersect with the laser scan plane. However, this condition
can be ensured by mapping the laser points to the image
plane using the sensor calibration data and focusing on
the vertical lines that intersect mapped laser data curve.
In the current method this cannot be directly achieved
as the Hough transform based method return generic ver-
tical lines but not localized vertical lines. Although not
directly comparable to the multisensor SLAM presented
in Castellanos et al. (2001), it is possible to observe that
the proposed method can be used localize strong (visually
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Fig. 10. Results of a localization and mapping of a robot
run: (a) with odometry, and (b) using EKF and
vision-laser landmark localization.

salient) landmarks using both camera and the laser than
using data camera images as a redundant support role.
Future extensions of this work include the use of more
accurate sensor uncertainty modeling specially, in the case
of bearing angle to the landmark and experimentation in
large looping environments with possible sub-mapping.
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