
Learning and Adaptation of Skills in

Autonomous Physical Agents

Sandor M Veres
∗

Aron G Veres
∗∗

∗ University of Southampton, UK, s.m.veres@soton.ac.uk
∗∗ SysBrain Ltd, Birmingham, UK, Email:aron@sysbrain.org

Abstract: A skills learning methodology is presented for autonomous physical agents. Adap-
tation of skills and learning is a fundamental part of the simple agent behaviours outlined. A
general framework of skills learning is described that uses skill macros to define simple behaviours
by agents that communicate, sense and act in the physical world. Programmed playfulness can
be easily implemented in this framework that plays an important part in acquiring sophisticated
skills. Reusability of results in learning algorithms is supported by ontology based classification
of learning in skills. Ontologies provide references to object instances that enable modularization
of software and easy interfacing of skills with learning algorithms.

Keywords: Intelligent physical agents, formal methods, learning, adaptive control modelling
for control, .

1. INTRODUCTION

Autonomous agents have been used in computer science for
some time Wooldridge [2002], Meystel and Albus [2002]. In
the field of engineering we want autonomous machines to
be (1) capable of solving and executing complex problems
in the physical world and we also want them to be (2)
reliable. Reliability in essence means that we know how
they behave. Reactive agents are good for this as we can
prescribe or let them learn the rules by which they behave.
Deliberative agents using modelling and complex decision
making are however difficult to verify for all physical
environments and hence their reliability is more difficult to
prove. This apparent dilemma is attempted to be partially
solved by a reactive agent architecture in this paper that
prescribes a clearly defined behaviour logic for learning,
adaptation. Complete verifiability and reliability is not
claimed by our method: the main message of the paper
is how skills learning can eventually make our architecture
more and more reliable.

The well known subsumption architecture for mobile
robots was proposed by Brooks based on a set of task-
accomplishing behaviours. This approach did away with
symbolic reasoning and was choosing the next action
that was feasible (some sensory conditions were satis-
fied=’fired’) and had the highest priority according to
an inhibition relation on the set of all behaviours. In
this approach an intelligent behaviour emerged from the
dynamical interaction between the environment and the
agents as generated by the behaviour rules of the agents.
Obvious disadvantages are the lack of memory and the
inability to plan the execution of complex tasks under
changing conditions.

In Hahnel et al. [1998] the GOLOG logic based robot
command language was extended with the GOLEX exe-
cution and monitoring system. The Prolog based GOLEX
translated high level commands into low level robot exe-

cution primitives. The agent architecture of the RHINO
mobile robot using GOLOG/GOLEX was based on a task
planner, map builder, path planner, collision avoidance
and localization modules and the robot had to work out
the details of how to execute high level commands. To aim
for higher levels of intelligence various kinds of layered
architectures have been developed that separate reactive
behaviour for quick response and proactive planning for
complex tasks at least into two layers P et al. [1995].
Another architecture is TouringMachines A [1992] that
uses a reactive and a planning layer with memory for
plans to achieve goals that is supported by a modelling
layer, all working in parallel to support action selection.
The InteRRaP J [1997] is a three layer architecture for
cooperation, planning and behaviour selection that relies
on a world model, planning knowledge memory and social
knowledge about cooperation rules and properties of other
agents. A cognitive controller (CoCo) architecture defined
in Qureshi et al. [2004] is a three-tiered control architec-
ture for autonomous agents that combines reactive and
deliberative components.

Most of the agent architectures proposed in the literature
either assume that autonomous systems know how to
execute subtasks via their sensor and control algorithm, or
they just ignore the problem of learning skills. If learning
is considered in the agent literature then it is usually
aimed at higher level learning policies using given skills
in a discrete world. Learning then addresses policies of
behaviour by executing skills at will. For instance they
may address the problem of how to systematically search
a labyrinth or a room but learning for skills of how to move
various types of objects and place them back are usually
out of the scope of learning studies and are considered
as given. Hence a combination of learning skills as well
as learning successful behaviour by the execution of those
skills is very much needed.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15457 10.3182/20080706-5-KR-1001.3771

In this paper adaptation and learning of agent skills
will be examined and formal methodology proposed. The
methods presented are applicable to a range of reactive
and deliberative agent architectures.

2. SKILL MACROS

Skills are rarely performed by an agent on their own,
they are often performed simultaneously or in a sequence:
walking and holding an object, turning while watching or
tracking. Sometimes or executing a sequence of skills that
together form a more complex skill: search for the required
object, plan how to approach it, go to it, lift it up, turn
around and take it to required position. For us human this
is a simple as saying ”can you please fetch that tissue for
me from the shelf” which is a very high level command
”fetch it for me”. This simple task means the execution of
a sequence of complex skills for a robot. The robot may not
abe able to do well some steps, that is why it needs skills
learning. In this section composed behaviours are defined
by logic formulae built from skill symbols, these formulae
will be called skill macros.

The language LABL of temporal agent behaviour logic is
defined over a set of atomic formulae Om = {p, q, ...} called
basic skills (also called OMs for operational modes) as
follows:

φ = p|¬φ|φ ∨ φ|φ ∧ φ|2φ|♦φ|φ ⇀ φ|⊤|⊥ (1)

A formula in LABL over Om is called a skill macros.

With each skill in Om there is an activity dynamics
associated by the activity function defined as

A : Om 7→ Fb (2)

where Fb is a set of feedback loops between the agent’s
actuators and a part of the agents internal or external
environment (internal is for instance for iterative refine-
ment of plans of future actions). There are three important
temporal functions defined over the set Fb. The first one
is the Boolean temporal activation function a : Fb →
{0, 1} and the second one is the activity value function
v : Fb → [−1, 1] and the third one is the timeout function
t : Fb → [0,∞] . The activation function provides a
semantics for the logic of skills (OMs) as the a can be used
to evaluate any temporal logic behaviour formula through
the activity functions associated with OMs.

Definition 1. A logic formula is called a simple skill macro
if it only contains the operations ∨, ∧ and ⇀ .

A simple skill macro defines parallel activities connected
by (∧), sequential activities connected by ⇀ and activity
options connected by ∨ relations. For instance the p∨ (q∧
r) ∨ (s ⇀ u ⇀ w) can mean that either the skill p is on
or the skill q and r are simultaneously active or the skill
s is first on then followed by skill u which is followed by
w. When w stops operating then either p must start, or q
and r or s needs to restart again.

Definition 2. An agent simple behaviour A is defined by
the tuple A = {Om, A, Fb, a, v, t, B} where B is a simple
skill macro in terms of the basic skills in Om.

A simple behaviour defines its semantics in terms of its
activity function a. At any moment of time its behaviour

formula B can be evaluated in terms of a. Note that
satisfaction of B at any time instant does not mean
anything about the success or reliability of the agent, it
merely says that at any time the agent will activate skills
in accordance with satisfying formula B . For any A and
B the A ⇀ B is defined true if either A or B holds true
and in temporal sense B follows A. Operations of ∨,∧ are
defined as usual as ”or” and ”and” between skills.

Definition 3. A simple behaviour A is is called consistent
if B is true as a temporal logic formula while the behaviour
is executed by the agnet, i.e. 2B evaluates to true using
a.

The semantics of behaviour logic formulae is that they take
on true 1 or false 0 values during the course of time via the
mapping a. s ⇀ u means that s is followed by u in time,
hence temporal logic is needed instead of propositional
logic (if only ∨,∧,¬ were used then propositional logic
would suffice).

Note that function a is evaluated over the temporally
changing skills Fb and expresses the fact that the agent
runs the algorithms of Fb. The qualification of success
of operations Fb is expressed by function v, which means
poor performance for low positive values, very good per-
formance for values near to 1, instability or totally unac-
ceptable performance for small negative values of v and
damaging or dangerous performance for v close to -1.

Definition 4. A consistent simple agent behaviour A with
behaviour formula B is called safe if it always evaluates
any active skill with v > 0 while being active. A is
called reliable at level ǫ > 0 if the active skills are always
evaluated to v > 1 − ǫ eventually.

Note that the v > 0 condition being defined at any time
instant does not mean that v > 0 is only dependent on
feedback loop data at that time instant. v > 0 is typically
a function of a control criterion (or self-made goals and
external rewards) that is obtained from a sequence of past
feedback input-output data.

Safe operation depends on the actual interaction of the
agent with its environment. A lot can be achieved for safety
by simply altering the a switching function so that if any
skill approaches the v < 0 region then the agent is switched
to another skill that is used to rescue the situation.
Whether that will help to achieve overall objectives is
another matter and is part of the overall performance
evaluation of the agent. Automating a consistent switching
mechanism is the topic of the next section.

3. SWITCHING BETWEEN SKILLS

The activity function a of a level-1 autonomous physical
agent (APA) is changing over skills as the skills progress.
There are the following practically important cases to
consider:

(1) An active skill is successfully completed at a required
level of reliably.

(2) An active skill is not successful at the required level
(e.g. v < 0.5) but it still operates safely.

(3) An active skill is timed out.
(4) An active skill is being aborted by another active skill

or by higher level decision.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15458

f Environment (Mf)

Fig. 1. The feedback interaction of a skill f ∈ Om

with the environment. An uncertain environmental
model Mf can be used to assess or verify and agent’s
performance under skill f .

The interaction of an agent with its environment under
a single skill is normally the topic of control engineering.
This control engineering problem can however be widened
with the realtime signal choices made for actuators and
sensors signals to be used in the feedback loop.

The objective of this paper is to help to make opera-
tional mechanisms safer by leaning of autonomous physical
agents. The previous section introduced the important
concept of the consistency simple behaviours. A further
step towards safe operation and good performance is to
analyze the conditions of successful operation and bring
them together with the above logical framework. To keep
the new formalism to a minimum, any f ∈ Fb will be
associated with an initial condition I(f, Mf) that is a 0 or
1 Boolean valued relation function between the agent and
its environment.

Definition 5. We say that the adaptation condition is ǫ-
satisfied by a basic skill f if it holds that whenever I(f, Mf)
is satisfied and the agent has f active, the performance
v(f) is guaranteed to converge to and stay inside [1− ǫ, 1]
within time period t(v) under uncertain environmental
model Mf .

For instance a biped robot may be able to start and walk
nicely (v(f) → [1 − ǫ, 1]) if not starting from a lying or
fallen-over position but if it already stands reasonably
upright (I(f, Mf)), even if perhaps a rucksack has been
placed on its back. The latter means that under some
initial condition the skill of the walking of the robot is
adaptive. (Note that here adaptivity is meant in a broad
sense, if some modelling is done by the agent it may be
part of the basic skill to take that into account for control
adaptation.) If the condition I(f, Mf) of walking is not
satisfied then the robot may decide to switch to another
skill f1, meaning for instance that the robot is ”trying to
stand up” first, an action that is a skill itself.

Individual skills of the agent can be tested by formal
analysis and practical testing. Hence the above analysis
highlights the relevance of enforcing such an a on agent
behaviour that starts any f ∈ Fb under condition I(f, Mf)
being satisfied that leads to eventually v(f) > 1 − ǫ.

Lemma 6. A simple agent behaviour A is reliable at level
ǫ > 0 if the following two conditions are satisfied:

(a) All skills f ∈ Mf satisfy the adaptation condition at
level ǫ.

(b) The activity function a is such that whenever an a(f)
becomes 1 for an f ∈ Fb then I(f, Mf) is satisfied.

Proof. Straightforward from the definitions: as all oper-
ational conditions are adaptive, and start from correct
initial conditions, the performance function v will rise
above 1 − ǫ for any skill within its time limit.2

The most used main classes of learning skills can be

(1)Parametric feedback/feedforward tuning

(2)Learning for model predictive control

(3)Neural network based FB/FF tuning

(4)Support vector machines

(5)Reinforcement learning.

3.1 Example 1

Assume that a garden robot only has a simple behaviour
and it can: either (1) mow the lawn or (2) turn on the
watering system or (3) recharge its own batteries or (4)
empty the grass from its container to a prescribed dump
site (5) report to a human operator for maintenance.
Within each of these tasks there are several skills to be
executed consecutively:

• O1 → Fp1: Mowing.
• O2 → Fp2: Planning of mowing.
• O3 → Fp3: Watering.
• O4 → Fp4: Planning of watering.
• O5 → Fp5: Empty grass container.
• O6 → Fp6: Planning route to charging point.
• O7 → Fp7: Recharge.
• O8 → Fp8: Decide on and request maintenance.
• O9 → Fp9: Write problems report.
• O10 → Fp10: Map building.
• O11 → Fp11: Self modelling of hardware for diagnos-

tics.
• O12 → Fp12: Modelling of past mowing, watering and

maintenance work completed.
• O13 → Fp13: Planning for emptying grass container.
• O13 → Fp14: Idle (standby).

Out of these O1, O3, O5, O7 are feedback-loop based op-
erational modes that need sensing and control of actions
accordingly. O2, O4, O6 are on the other hand skills that
need algorithms working on models only and do not need
sensing or actuation. skills O10, O11 and O12 need sensing
only and algorithms that build models from sensor data.
Decisions by O8 are based on internal models and may
result in sending a message to the human operator after
writing report O9 on the problems that may need mainte-
nance.

A skill macro that the autonomous lawnmower needs to
satisfy (for its simple behaviour) can for instance be

B1 = ((O2 ⇀ O1 ⇀ O13 ⇀ O5) ∨ (O4 ⇀ O3)∨
∨(O6 ⇀ O7)) ∧ (O8 ⇀ O9) ∧ O11 ∧ O12 ∧ O10 ∧ O14

(3)

The a switch must be such, as decided within each op-
erational mode, that the total formula B must always
hold true. This means that the parallel modelling and
maintenance monitoring operational activity can carry on
while one of the mowing, watering or recharging tasks are
executed. Despite the essentially reactive behaviour the
lawnmower has the ability of interpretation of the envi-
ronment (via the basic skill of map building) and planning

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15459

while strict discipline of behaviour code is maintained.
Based on sensing or assessment of algorithmic results, the
evaluation of v is constantly carried out for each opera-
tional mode.

Now the reliability at level ǫ of this simple behaviour is
achieved if all feedback and open-loop skills are proven to
work under uncertain models of the environment and the
initial conditions are always achieved when switching to a
new basic skill. To achieve the necessary initial conditions
the basic skill algorithms need careful action around the
switching points. When the physical and control algorith-
mic work on the lawnmower robot has been completed,
then the satisfactory nature of a, v, t can be formally
tested. As this may be difficult in practice, adaptation
and learning in the skills is therefore vital to reduce de-
velopment effort and to achieve level-ǫ reliability of the
autonomous lawnmower.

4. PLAYFULNESS FOR BEHAVIOUR LEARNING

Why do kittens play? Why do children play? Why do
adults play games, and solve crosswords? Playing provides
opportunity to practice skills. From the previous sections
it is clear that one aspect of learning is to gather data for
learning under non-dangerous circumstances. If an agent
only executes a simple behaviour in ’live-missions’ then
it is likely that a huge amount of development effort will
be needed to make it to operate safely, all skills need to
be performed very well from the very start and also at
any switch of operational modes the initial condition must
be strictly kept. This is a very demanding job for agent
developers.

An alternative is to build a basic structure (using paramet-
ric controllers, NNs, self-organizing NNs, reinforcement
learning structures, adaptive modelling, etc.) of each skill
of a simple behaviour then endow it with the ability to
randomly play with the purpose of improving its skills.
This section provides a solution by adding a ”play skill”
to the simple skill macro.

Let B be a simple skill macro for the simple behaviour
A of an agent. An extended formula Bp = B ∨ Op is
obtained by adding a skill Op that takes now a supervisory
role. The job of Op is to monitor performance of each skill
under various environmental circumstances and randomly
choose from a set of playing activities and execute them
by interfering with the normally used activity function a
. Playing activities are designed such that they do not
interfere with the overall final goals of a mission and they
are always obtained as a modified portion of the B. This
is achieved by suitable changes in the switching of a.

For instance in the above examples of the lawnmower,
some playing activities can be obtained as follows: (a)
practice docking for recharging; (b) practice fast and slow
mowing on rough ground or high grass; (c) practice finding
the boundary of the garden lawn; (d) practice activating
the watering system and sensing of how it works. The
purpose of the practice is not merely to repeat tasks as that
would be useless: its purpose is to fine-tune the skills of the
level-1 autonomous system, i.e. to adapt the discrete and
continuous control parameters in skills. For that each skill
must have a tuneable structure with learning mechanisms.

Playing activities for Op can be preprogrammed by the
engineer developing the agent or Op can also be generated
automatically from B. Given the very simple nature of
level-1 agents, a straightforward method is that the en-
gineer designs a series of playing activities for the agent.
The task of Op is then to seek out opportunities when
these can be played, or depending on learning skills, to
activate them. When playing activities are executed learn-
ing should take place automatically as all skills should be
programmed with learning ability.

4.1 Ontology for skill learning

Modularization and standardization of learning algorithms
for skills. In the following ontology description the root
class is ”learning algorithm” its subclass is ”action learn-
ing”:

>learning algorithm
@default settings: structure
@v-function : char
@t-function : char
@control sequence : signal
@sensed reactions : signal

>>action learning
@performance constraints : text
@performance criteria : text
@situation model associations : cell
@sensory associations: cell

>>>NN learning
@NN-type : char
@structural parameters : cell
@weights : cell

>>>modelled action learning
@predictive model type : char
@control optimisation method : char

>>learning dynamical models
@model-type : char
@initialisation method : text
@adaptation method : text

>>>learning of parametric models
>>>training of NN
>>>learning of associative models

>>learning spacial static scene
@model type : char
@method : text
@model resolution: char

4.2 Interfacing of learning algorithms

Learning algorithms are interfaced to the skill via the

(1) measured sensor signals,
(2) v and t functions,
(3) actuator signals used.

These can make the algorithms in principle easy to re-
place as long as there are built-in mechanisms in the
agent architecture to adjust (1) array dimension and (2)
initializations to the circumstances by association of past

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15460

experience. A shared database of learning algorithms as
for the suitability of learning algorithms in various skills
is therefore desirable. Such a data base can be made
accessible to agents via the Internet. Control engineers who
today design adaptive and learning algorithms, can place
their work onto this database from where agents could pick
them up for and try them to improve their performance
(see for instance sysbrain.org)

The learning algorithms are classified and can be searched
by shared ontologies of the developer community specified
for some families of agents. High level code based algo-
rithms (in MATLAB or MATLAB-like languages such as
Octave, SciLab, CC, etc.) can be uploaded for free or can
be offered to users at sysbrain.org. sysbrain.org offers a
central service of storing and redistributing learning algo-
rithms for skills to development engineers of autonomous
systems. Each database entry can belong to one of the
classes in the above ontology. To provide reusability by
others, the following detailed information is to be submit-
ted online:

Table 1. Learning algorithms submission data
to sysbrain.org

FAS Full Application Specification

GVS Goals and Variables Specification

LMS Learning Method Specification

ADS Application Dynamics Specification

4.3 Library of basic skills

In the rest of this section it is analyzed how learning
algorithms of skills can be classified, labelled and their
input-output classes defined to make them easily reusable
by agents. By learning skills we mean algorithms with
prescribed input-output object structures as defined by
shared ontologies to make them reusable. Classification is
needed to cover application areas with suitable learning
algorithms and labelling is needed for agents to recognize
whether they can be used in some given situations. We in-
tend to define here purpose equivalent learning algorithms.

Classification of learning algorithm is possible at least four
ways. The basic categories for learning routine specifica-
tions are as follows.

FAS Full Application Specification. This is the most spe-
cific specification of a routine’s applicability. It pro-
vides exact make of sensors, actuator set and the
make of robot, vehicle or system. There are options
for the learning techniques to be used: despite the
application fully specified, itself the algorithm is not
restricted to one type.

GVS Goals and Variables Specification. There are sensor
and actuator variables given for specific types of de-
vices without their makes and settings being defined.
There is the type of performance criterion function
also given that has to be improved by the routine. The
performance may be measurable over a longer time
period than the response updating period. Again the
learning method is not defined. As long as the GVS
specification fits the routines are practically replace-
able which does not mean that their performance will
be the same.

LMS Learning Method Specification. The type of method
such as some type of artificial neural networks (NN),
self-organizing NN (SONN), reinforcement learning
(RL), analytic model based adaptive control (AC), as-
sociative leaning, including hidden Markov processes
(ASL), support vector machines (SVM), empirical
tuning of controllers by iterative feedback tuning
(ET), etc.

ADS Application Dynamics Specification Application dy-
namics specification is by type and complexity of
dynamics as described by state-space or PDE descrip-
tions. Also the supervised or non-supervised nature
of the learning algorithm is to be specified here as
that is part of the interaction dynamics between the
autonomous system and the environment.

Note that these four methods of categorization can ac-
tually be reduced to three as FAS is merely a higher
resolution version of GVS. GVS and LMS are however
”orthogonal” and it is possible to consider their ”cross
products” as follows. Then a third dimension to locate a
learning routine is by type of application dynamics that
it is suitable for. Part of ADS is to say whether learning
is supervised or unsupervised but actual model types of
environmental dynamics also need to be defined under
ADS. Table 2 summarizes this classification.

Table 2. Classification of learning algorithms
for reuse

GVS/LMS SONN RL AC ASL SVM ...

G1V1 ADS ADS ADS ADS ADS ...
G1V2 ADS ADS ADS ADS ADS ...
G2V1 ADS ADS ADS ADS ADS ...

...

Hence a labelling of a learning algorithm category is now
possible by constructs like ADS.NN.G1V1 or ADS.AC.G2V1
etc. where ADS, NN, G1V1 are identifiers of the applica-
tion dynamics description, neural networks structure and
temporal variable use and goal descriptions, respectively.

The practical objective is to categorize these learning
algorithms so that we try to avoid overlaps within any
of the three dimensional boxes used. Even so there can be
thousands of combinations of practically useful learning
algorithms for autonomous systems that are essentially
different and may not be substitutable for each other.

As the learning methods listed above are probably well
known by the reader, here we illustrate the classification by
goals and temporal variables. For instance a very common
problem in control engineering of vehicles and processes is
the following: given are

• an array Y of current environmental measured vari-
ables,

• an array U of current variables through which the
autonomous system can influence variables Y ,

• an array Yr of future reference sequences for Y for
time period N ,

• a performance function V (Yr, Ysequence),

find an algorithms that can improve (reduce) V as time
progresses.

We will call this the G1V1 type of goal-variable specifica-
tion of learning (for control). It can find solutions among

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15461

the most common learning methods as listed above but the
methods it can use are heavily affected by the application
dynamics that influences learning structures complexity.
Note that this type of performance specification is ex-
tremely broad: it includes the control problem specification
for a jumbo jet, a satellite or two legged robot.

G1V1 essentially says that for a given set of desired out-
put sequence find the control mechanism that strives to
keep the performance function V low as the monitored
time window for Y progresses. Here we do not include
the problem of learning how to set the desired Y r au-
tonomously. Specifying a suitable Yr can be part of an-
other learning algorithm directed at improving the systems
ability of problem solving. This aspect of learning can be
well covered by associative learning techniques. The idea
of G1V1 is for instance in the form of ADS.G1V1.SVM
is based on the use of support vector machines and it
would accept various dimensions of arrays for Y, Y r, U and
would also accept an input variable for and ADS label.
The routine would apply somewhat different algorithms
depending on the type and complexity of the application
dynamics, depending its ADS variable input. The number
of ADS variables labels that the routine would accept
depends on with how many types of application dynamics
the developer tested the algorithm.

4.4 Initialization of learning algorithms

A major and most important issue is that many learning
algorithms cannot efficiently run without some initializa-
tion. Insisting on that the user of the learning algorithm
should find the initialization would seriously limit the
reusability of learning routines. It is therefore the most
practical to required that an ADS specification by an
author of an ADS, that is taken as an input by the author’s
algorithm, must also provide an example model of the ADS
for simulation purposes that then can be used by users
of the routine to initialize the learning algorithm with a
method also provided by the developer of the learning
algorithm. Although this may be a very demanding job
it is fair to say that there is no real prospect of wide
reusability for a learning algorithms if others cannot ini-
tialize the learning algorithm with reasonable effort by the
application developer.

For instance for ADS.G1V1.SVM a possible calling MAT-
LAB m-function interface of a learning routine could be

function U = G1V1_SVM(Y,Yr,U,Ads,In_parms)

that must be accompanied by two routines when dis-
tributed to users:

function [Y,state] = G1V1_SVM_model(Ads,state,U)
function In_parms =
= G1V1_SVM_init_trainin(’G1V1_SVM_model’)

The implementer of the learning algorithm could then
adopt the Ads model to suit the particular application
to find initial parameters for the G1V1 SMV that can be
implemented realtime in a skill.

A convenient way is to call routines by English sentences.
This type of coding is called sEnglish for ’system English’
(see www.sysbrain.org for further details).

5. CONCLUSIONS

The main results of this paper is the formalization of skills
learning that is applicable to simple reactive as well as
complex multilayered deliberative agent architectures. All
agents need skills learning as higher levels of abstraction
and deliberation does not solve the problem of acquiring
and using skills of interaction with the physical environ-
ment and other agents. Physical agents need to operate in
the real world ”skillfully” that is difficult to pre-program.
The problem is not only the number of engineering hours
needed (to do the development work) but also that the
agents will not be able to perform well in changing envi-
ronments if basic skills are non-adaptive. Need for learning
has been broadly recognized before but in this paper we
formally separate skills learning from policy learning in
deliberative architectures.

On the other hand the ideas of this paper also give recipes
to simplifying autonomous agent architectures and not to
apply deliberative architectures where they are not really
essential. It is illustrated that the capability of higher levels
of abstraction are not required to be able to exhibit highly
adaptive, planning-based-behaviour that is normally asso-
ciated with higher levels of intelligence. Instead of higher
levels of deliberation, simply some planning and modelling
skills can be added to simple behaviours. Finally the paper
presented an initial classification and interfacing system
for learning algorithms that can ease the programming of
agents by community wide sharing of code and structures.

REFERENCES

Fergusion I A. Towards an architecure for dynamic,
rational, mobile agents. Proc. 3rd European Wroshop
in Modelling Autonmous Agents, MAARMAW-91:249–
262, 1992.

D. Hahnel, W. Burgard, and G. Lakemeyer. GOLEX -
bridging the gap between logic (GOLOG) and a real
robot. Proc. of the 22nd German Conf. on AI (KI-98),
page 12, 1998.

Muller J. A cooperation model for autonmous agents.
In: Intelligent Agents, III, Edts: Muller, Wooldridge,
Jennings, LNAI 1193:245–260, 1997.

A. M. Meystel and J. S. Albus. Intelligent Systems:
Architecure, design and Control. Wiley Series on Intel-
ligent Systems. John Wiley and Sons, Inc., New York,
2002. ISBN ISBN 0-471-19374-7.

Muller J P, Pishel M, and Thiel M. Modelling reactive be-
haviour in vertically layered agent acrhitectures. LNAI,
In Intelligent Agents: Theories, Acrhitectures and Lan-
guages, LNAI 890:261–276, 1995.

F. Z. Qureshi, D. Terzopoulos, and R. Gillett. The cogni-
tive controller: A hybrid, deliberative/reactive control
architecture for autonomous robots. In B. Orchard,
C. Yang, and M. Ali, editors, Innovations in Applied
Artificial Intelligence. 17th International Conference on
Industrial and Engineering Applications of Artificial
Intelligence and Expert System (IEA/AIE 2004), vol-
ume 3029 of Lecture notes in Artificial Intelligence,
pages 1102–1111, Ottawa, Canada, May 2004. Springer-
Verlag.

M Wooldridge. An Introduction to Multiagent Systems.
John Wiley & Sons, Chichester, 2002. ISBN ISBN 0-
471-49691-X.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15462

